
Algorithm Package Manual:

Best Low Rank Tensor Approximation

Berkant Savas
Department of Mathematics, Linköping University

besav@math.liu.se

June 19, 2009

Abstract

This report is a short manual for algorithms for computing best low (multilinear) rank approximation
of tensors. The algorithms are based on Newton and quasi-Newton methods operating on product
of Grassmann manifolds. The package is implemented in matlab and uses the matlab Tensor
Toolbox and Grassmann Classes toolbox. General tensors of arbitrary order can be approximated.
For symmetric tensors order-3 and order-4 tensors can be approximated.

1 Contents of package

This package contains implementation of seven algorithms described in the references [3, 6] for the best
low rank approximation of tensors. There are over 20 functions supporting the different algorithms. The
algorithms are based on the matlab Tensor Toolbox1 [1] and the Grassmann Classes2 [5]. I am assuming
the reader has the necessary theoretical knowledge about the best low multilinear rank approximation
of tensors. Otherwise consider e.g. [3, 6] and the references therein.

File name Algorithm description
algNgc.m Newton-Grassmann method implemented in global coordinates.
algNlc.m Newton-Grassmann method implemented in local coordinates.
algQNgc.m Quasi-Newton-Grassmann method with bfgs updates in global coordinates.
algQNlc.m Quasi-Newton-Grassmann method with bfgs updates in local coordinates.
algLBFGS.m Quasi-Newton-Grassmann method with limited memory l-bfgs updates

implemented using global coordinates.
symalgQNgc.m Quasi-Newton-Grassmann method with bfgs updates in global coordinates

for symmetric tensors.
symalgQNlc.m Quasi-Newton-Grassmann method with bfgs updates in local coordinates

for symmetric tensors.

All algorithms work with third order tensors. The two algorithms for symmetric tensor work on fourth
order tensors as well. In addition algQNlc.m works for arbitrary order tensors within the memory
limitations of a computer.

This package is available at http://www.mai.liu.se/~besav/soft.html. To test the algorithms down-
load the zip-file, unpack it and run the test.m file.

1http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
2http://www.mai.liu.se/~besav/soft.html

1

mailto:besav@math.liu.se
http://www.mai.liu.se/~besav/soft.html
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
http://www.mai.liu.se/~besav/soft.html


2 Function descriptions

In this section we will give a short description of the different files and how they can be used.

2.1 Newton-Grassmann algorithms

The first two algorithms algNgc.m and algNlc.m have the same input arguments and give the same
output arguments. The inputs are (in the given order): (1) The original tensor A which we want to
approximate; (2) An initial approximation to the solution, which is given in a cell array; (3) Dimensions
of the tensor A, denoted n; (4) The multilinear rank of the approximating tensor, denoted r; (5) The
maximal number of iterations; (6) The required relative tolerance, i.e. ∇f(X, Y, Z)/f(X, Y, Z) where

f(X, Y, Z) = ‖A · (X, Y, Z) ‖

Here is an example of how it may look.

>> tol = 5e-13; maxIt = 10;
>> n = [7 10 11]’; r = [3 4 5]’;
>> A = tensor(randn(n’));
>> % Random initial approximations of the matrices

>> X{1} = orth(randn(n(1),r(1)));
>> X{2} = orth(randn(n(2),r(2)));
>> X{3} = orth(randn(n(3),r(3)));
>> [X1,f1,ng1] = algNgc(A,X,n,r,maxIt ,tol);
>> [X2,f2,ng2] = algNlc(A,X,n,r,maxIt ,tol);

The algorithms return the computed matrices X, Y, Z stored in the cell arrays X1 and X2 that (locally)
maximize the objective function f(X, Y, Z). The second and third output, f1 and ng1 (also f2 and ng2),
contain the function values and the norm of the gradient from each iteration.

Remark 2.1. In Newton algorithms it is important to have good initial approximation, i.e. to be suffi-
ciently close to a local minimizer. If this is not the case the Hessian of the objective function may not
be negative definite which will (most of the time) cause the algorithm to diverge. No checks are made to
see or ensure that the Hessian at the initial approximation is negative definite. There are various ways
to fix this, see e.g. [4]. In our experiments the one method that worked best was to flip the signs of the
positive eigenvalues of the Hessian. One should be aware that this does still require to be quite close to a
local maximizer and not to forget the (expensive) computation of the eigenvalues and the corresponding
eigenvectors of the Hessian.

Theoretically the two algorithms are equivalent, i.e. they give the very same iterates. In practice
there are differences but these differences are very small. Run the test.m file and compare the two
Newton-Grassmann plots.

2.2 Quasi-Newton-Grassmann (BFGS) algorithms

The algorithms algQNgc.m and algQNlc.m are Quasi-Newton algorithms with bfgs updates of the
Hessian approximation implemented on a product of Grassmannians. The first algorithm is implemented
using global coordinates and the second algorithm is implemented using local coordinates. These two
algorithms give the same outputs as the Newton algorithms in Section 2.1, i.e. a cell array with the
matrices X, Y, Z, the function values from each iteration and the norm of the gradient from each iteration.
The inputs and ordering to the quasi-Newton algorithms is almost the same as for the Newton algorithms.
There is an additional text string input for quasi-Newton algorithms which indicates the form of the
initial Hessian in the bfgs updates. Currently one may chose to initiate the Hessian approximation
with the exact Hessian using the string ’exHess’ or a suitably scaled identity matrix using the string
’scldIdent’ (see [4] for details). The function input arguments specifying the initial Hessian is put last
in the argument list. Assuming necessary variables are initiated we call these two algorithms with the
following commands. Here we initiated with the exact Hessian

2



>> % Variable X contains the initial approximations.

>> [X3, f3,ng3] = algQNgc(A,X,n,r,maxIt ,tol ,’exHess ’);
>> [X4, f4,ng4] = algQNlc(A,X,n,r,maxIt ,tol ,’exHess ’);

and here with a scaled identity.

>> [X3,f3,ng3] = algQNgc(A,X,n,r,maxIt ,tol ,’scldIdent ’);
>> [X4,f4,ng4] = algQNlc(A,X,n,r,maxIt ,tol ,’scldIdent ’);

Also for quasi-Newton algorithms, when the initial Hessian is specified, the outputs of local and global
coordinate implementations are practically the same.

2.3 Limited memory Quasi-Newton-Grassmann (L-BFGS) algorithms

The fifth algorithm is a quasi-Newton algorithm implemented using the limited memory l-bfgs update.
The Hessian is stored in factored form and only the last m sk and yk vectors are used to form the
Hessian approximation. The intended use of l-bfgs methods are for large problems, in which it is not
suited to compute an exact Hessian3. For this reason the algLBFGS.m only uses the scaled identity as
an approximation to the initial Hessian and thus there is no need to explicitly specify this with input
arguments. The integer m, stating the number of vectors used in the approximation, has to be specified
in the argument list. Compared to the input arguments for the Newton algorithms there is this addition
to the list. Assuming necessary variables are initiated the command has this form,

>> m = 10; % Number of vectors in the L-BFGS method.

>> [X5,f5,ng5] = algLBFGS(A,X,n,r,maxIt ,tol ,m);

2.4 Test the code and compare the algorithms!

The package contains a test.m file which runs all of these algorithms and plots the results for comparison
with an Alternating Least Squares (ALS) implementation of the tensor approximation problem, [2], also
know as the Higher Order Orthogonal Iteration.

References

[1] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping.
ACM Trans. Math. Softw., 32(4):635–653, 2006.

[2] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(R1, R2, . . . , RN ) ap-
proximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4):1324–
1342, 2000.

[3] L. Eldén and B. Savas. A Newton–Grassmann method for computing the best multi-linear rank-
(r1, r2, r3) approximation of a tensor. SIAM J. Matrix Anal. Appl., 31:248–271, 2009.

[4] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, second edition, 2006.

[5] B Savas. Algorithm package manual: Best low rank tensor approximation. Department of Mathe-
matics, Linköping Univeristy, 2008. http://www.mai.liu.se/˜besav/soft.html.

[6] B. Savas and L.-H. Lim. Quasi-Newton methods on Grassmannians and multilinear approximations
of tensors. Submitted to SIAM Journal on Optimization, 2009.

3The Hessian may be large but more important issue is the it is required to be in factored form.

3


	Contents of package
	Function descriptions
	Newton-Grassmann algorithms
	Quasi-Newton-Grassmann (BFGS) algorithms
	Limited memory Quasi-Newton-Grassmann (L-BFGS) algorithms
	Test the code and compare the algorithms!


