DATS Workshop on Digital Air Traffic Services: Workload and Safety Assessment February 6-7, 2020 Linköping University

AMPLIFY TEAMWORK WITH AUTOMATION

ATCO's Perceived Workload and Monitoring Performance between Traditional and Digital Tower Operations

Wen-Chin Li BSc PhD FCIEHF C.ErgHF

Safety and Accident Investigation Centre, Cranfield University, U.K.

www.cranfield.ac.uk

© Cranfield University

Overview

- > New Issues of HP on Digital Tower Operations
- Assessing Monitoring Performance and Workload
 - 1. NASA-TLX to Evaluate ATCOs' Perceived Workload
 - 2. SART for Situation Awareness
 - 3. Apply Eye Tracking to evaluate ATCO's monitoring performance
- Discussions and Conclusion
- ➢ Q & A

http://www.cranfield.ac.uk

SESAR ATM Operational	Crar Univ
Step Timeline	Hom

Cranfield	
University	

udv 🗢	Business \bigtriangledown	Research \bigtriangledown

Explore 🗢 🛛 International 🗢

About \bigtriangledown

St

ome / News /

UK's first Digital Air Traffic Control Centre opens at Cranfield

Published 13 Dec 2018 Press release number PR-AERO-18-133

http://www.cranfield.ac.uk

Application of NASA-TLX to Evaluate ATCOs' Perceived Workload

- Workload can negatively affect ATCOs' task performance and increase the error of operations, how to measure it?
- The NASA Task Load Index (TLX) is a popular technique for measuring subjective workload related to task performance
- The dependent variables consisted by mental demand, physical demand, temporal demand, performance, effort and frustration
- > ATCOs were required to evaluate their perceived workload between local tower operations and remote tower operations (Pushback, taxi and departure from Runway 26)

Overall Goal of Task: Pushback, taxi and departure from Runway 26

The task performance consisted with 8 sub-goals and 26 operational steps in need of 132 seconds to complete the overall task

- 1. Issue push-back instruction and annotate strip with right frequency (10-18 s)
 - 1. Check areas is clear (2-3 s)
 - 2. Issue push-back instruction (3-5 s)
 - 3. Monitor read-back (3-5 s)
 - 4. Interact with strip "PUSH" button (1-2 s)
 - 5. Populate strip with correct frequency (1-3 s)
- 2. Issue taxing instruction (9-15 s)
 - 1. Check for conflicting traffic (3-5 s)
 - 2. Issue taxi instruction (3-5 s)
 - 3. Monitor read-back (3-5 s)
- 3. Monitor taxing progress and A/C approaching holding point (6-10 s)
 - 1. Monitor aircraft taxiing (3-5 s)
 - 2. Ensure A/C turn and stop at correct holding point (3-5 s)
- 4. Scan ATM and final approach (8-15 s)
 - 1. Scan ATM for traffic (2-3 s)
 - 2. Look out window for traffic and other risks (5-10 s)
 - 3. Interact with strip "REL" button (1-2 s)
- 5. Deselect correct stop-bar and issue line-up clearance (8-15 s)
 - 1. Interact with "AGL" panel by pressing correct stop-bar (2-3 s)
 - 2. Issue line up clearance and obtain correct read-back (5-10 s)
 - 3. Move strip to runway bay (1-2 s)
- 6. Ensure release obtained (11-22 s)
 - 1. Ensure "REL" button turn green (1-2 s)
 - 2. Recognize and issue any amended clearance (5-10 s)
 - 3. Obtain read back from 1.7.2 (5-10 s)
- 7. Scan runway and runway strip bay (4-7 s)
 - 1. Scan runway for hazards (3-5)
 - 2. Scan runway strip bay (1-2 s)
- 8. Issue take-off clearance (16-30 s)
 - 1. Issue take-off clearance (2-3 s)
 - 2. Obtain read back (2-3 s)
 - 3. Select "TO" button on strip (1-2 s)
 - 4. Monitor take-off run (10-20 s)
 - 5. Press "ATD" button on strip (1-2 s)

T-test of ATCOs' Perceived Workload between Remote Tower and Local Tower Operations

Dimension	T					T-Te	est	
Dimension	Towers	Mean	SD	t	df	р	SE	Cohen's d
Mental demand	Remote tower	52.045	17.297	2 262	21	0.003	3 042	0.717
Wentar demand	Physical tower	41.818	15.472	3.303	21	0.003	5.042	0.717
Physical demand	Remote tower	27.955	17.839	0.251	21	0 005	2 722	0.051
Filysical demand	Physical tower	27.045	19.002	0.231	21	0.805	3.722	0.051
Temporal demand	Remote tower	50.227	13.756	4 401	21	0.000	2.986	0.957
	Physical tower	36.818	17.151	4.491		0.000		
Daufaunanaa	Remote tower	67.045	18.104	2 776	21	0.011	3.520	-0.592
renormance	Physical tower	76.818	21.852	2.770				
Effort	Remote tower	43.864	19.082	1 714		0.101	4.906	0.265
Enon	Physical tower	35.455	18.575	1./14	21	0.101		0.365
Emistration	Remote tower	37.045	20.099	1 250	21	0.000	2.765	0.020
Frustration	Physical tower	25.000	17.252	4.350	21	0.000		0.929
NASA-TLX	Remote tower	46.212	9.473	2.025	21	0.000	1.0.40	0 626
Total Score	Physical tower	40.492	11.012	2.935	21	0.008	1.949	0.020

- ATCO has perceived significantly higher on mental demand, temporal demand, frustration and lower performance on the remote tower operation
- To maintain safe level of Performance ATCOs experienced higher workload which induced fatigue quicker
- However, different tasks, interface design and operating systems may have impacts to operators' perceived workload and SA (SAAB vs Frequentis)
- Furthermore, workload may induce fatigue and decrease SA, ANSPs have to find a solution to mitigate ATCO's perceived workloads and fatigue

Application of SART-10D	to
Assess ATCOs' Situation	
Awareness	

Domains	Construct	Definition		
Attentional demand	Instability of situation	Likeliness of situation to change suddenly		
	Variability of situation	Number of variables that require attention		
	Complexity of situation	Degree of complication of situation		
Attentional supply	Arousal	Degree that one is ready for activity		
	Spare mental capacity	Amount of mental ability available for new variables		
	Concentration	Degree that one's thoughts are brought to bear on the situation		
	Division of attention	Amount of division of attention in the situation		
Understanding	Information quantity	Amount of knowledge received and understood		
	Information quality	Degree of goodness of value of knowledge communicated		
	Familiarity	Degree of acquaintance with situation experience		

SA = Understanding - (Demand - Supply)

- ATCO's SA including Attentional Demands, Supply and Understanding which affecting the safety of operations
- The situation awareness rating technique (SART) is a simplistic post-trial subjective rating technique
- SART allows operators to rate his/her SA by practical experiences on monitoring performance
- > The main advantages of SART are easy to use and low cost

ATCOs' Situation Awareness between Physical Tower and Remote Tower Operations by T-Test

	. .	Mea		N	T-Test			
Variables	Design	n	SD	N	t	df	р	Cohen's d
Demand	Remote Tower	7.73	1.98					0.93
	Physical Tower	5.93	1.53	15	3.60	14	0.003	
	Remote Tower	23.80	1.37		2.60			0.69
Supply	Physical Tower	21.80	2.34	15	5 2.09	14	0.018	
	Remote Tower	17.47	0.99		2 45			
Understanding	Physical Tower	18.80	1.42	15	-3.45	14	0.004	-0.89
Situation Awaranass	Remote Tower	33.53	3.04	15	-1.18	1/	0.258	0.30
Situation Awareness	Physical Tower	34.67	4.17	15		14	0.238	-0.50

Results of SART SA = Understanding - (Demand - Supply)

40

- Remote tower requires more attention distributions to different AOIs compared with Local Tower
- Remote tower provide more information to ATCOs which is good but increasing cognitive loads as well
- Significant differences on Understanding

t t	start_time	duration	start_fram	end_frame	norm_pos_	norm_pos_	dispersion	confidence	method	gaze_point	gaze_point	gaze_point	base_data
1	2001144	268.8	0	3	0.345086	0.688303	2.282601	0.969684	pupil	-173.329	-111.402	404.4291	2001144.3
2	2001145	1671.6	15	47	0.349168	0.671771	2.681658	0.938463	pupil	-167.096	-100.248	404.0191	2001145.2
3	2001147	537.6	54	65	0.378184	0.668043	2.892652	0.897898	pupil	-136.762	-97.6081	413.8925	2001147.2
4	2001150	201.6	122	127	0.566809	0.787099	2.869376	0.987401	pupil	57.11878	-173.108	422.9009	2001150.2
5	2001153	344.4	180	187	0.559672	0.783228	1.302335	0.982206	pupil	49.85557	-171.578	427.1187	2001152.9
6	2001154	814.8	207	222	0.581245	0.726576	2.506263	0.984049	pupil	69.87098	-131.809	419.8405	2001154.3
7	2001169	201.6	485	489	0.61368	0.596923	2.948462	0.992935	pupil	91.99541	-49.6254	384.6228	2001168.6
8	2001169	2007.6	489	527	0.57195	0.573739	2.921891	0.970909	pupil	53.617	-37.1116	390.1345	2001168.9
9	2001171	260.4	528	533	0.562379	0.569628	0.618981	0.985578	pupil	44.98811	-34.9597	391.5079	2001170.9
10	2001175	428.4	596	603	0.563254	0.221387	2.620708	0.834324	pupil	38.80267	124.2926	308.4091	2001174.7
11	2001177	201.6	642	648	0.531266	0.733779	3.007139	0.986851	pupil	19.1737	-136.195	424.3036	2001177.2
12	2001178	2041.2	649	689	0.536141	0.704807	2.956601	0.993119	pupil	23.61108	-116.809	421.079	2001177.5
13	2001180	512.4	689	700	0.539431	0.700516	2.293827	0.99801	pupil	26.85001	-113.959	420.2623	2001179.5
14	2001182	285.6	728	734	0.53916	0.746505	1.264382	0.978403	pupil	27.40558	-144.943	425.2958	2001181.5
15	2001184	226.8	759	763	0.474601	0.69019	0.714803	0.980335	pupil	-37.968	-108.997	424.9684	2001184.3
16	2001190	1327.2	872	899	0.324585	0.625802	1.728324	0.894534	pupil	-191.37	-72.6932	396.8428	2001189.8
17	2001194	226.8	961	967	0.526295	0.678024	2.949918	0.995812	pupil	13.84112	-101.388	425.5688	2001194.1
18	2001198	210	1038	1042	0.515563	0.776974	2.698485	0.972476	pupil	3.27177	-167.17	429.9472	2001197.9
10	2001202	250.5	1100	1100	0 407670	0 737053	2 020220	0.000516	nunil	75 776	135 610	434 3175	2001202.2
													10000

11

E -

© Cranfield University

ATCO's Visual Parameters on HCI with RTM

			-
AOI ID	AOI	Mean(SD)	AOI
1	Lighting panel	4.77(2.96)	Lighting panel
2	Schmid voice switch	5.00(2.88)	Schmid voice switch
3	Flight strip	13.14(5.83)	Flight strip
4	ATM radar display	15.68(7.74)	ATM radar display
5	AWOS	6.27(3.21)	AWOS
6	PTZ control panel	10.32(8.28)	PTZ control panel
7	Out of Window	45.18(17.53)	Out of window

ATCOs' projection of attention distribution among 7 AOIs Descriptive statistics of average fixation duration Descriptive statistics of average saccade amplitude Mean(SD)

455.93(203.61)

809.55(303.30)

444.96(158.90)

744.74(160.87)

661.73(269.81)

577.14(156.34)

720.15(194.73)

_	AOI	Mean(SD)
_	Lighting panel	8.91(3.19)
_	Schmid voice switch	11.87(17.03)
	Flight strip	10.16(3.83)
-	ATM radar display	6.46(1.62)
-	AWOS	5.80(2.15)
-	PTZ control panel	8.16(3.04)
-	Out of window	6.67(1.26)

Percentage of Attention Distribution: OTW is the Crucial Interface

The Integration of OTW and PTZ may Facilitate ATCO's Task Performance

Increasing ATCO's SA

- 1. PTZ controls need to be on the OTW view rather than being out of main field of view.
- 2. PTZ presets need to be agreed. PTZ needs to be easy to slave to a position of interest.
- Need more camera windows on PTZ. Need to know more about operations of PTZ.
- 4. Operating PTZ will involve a lot of head down time, not looking out the window.
- 5. The PTZ requires too much effort and attention to look for aircraft
- 6. PTZ screen too remote + removed from OTW main screen.
- 7. Label Tracking, PTZ, Integrated Labels.

What revision needed to be made on CWP

- PTZ presets need to be better configured.
- difficult to monitor downwind with PTZ.
- PTZ should be in front, VCS on right of strips, AWOS further right and behind.
- PTZ screen is a bit 'behind' us.
- PTZ position to look at, too much of a stretch.
- Movement tracking on PTZ would make a positive improvement.
- PTZ not intuitive to use and too slow to update.
- Joystick would be useful for PTZ.
- Mice need to be labelled Names of PTZ better identified on screen and screen needs to be more in front of ATCO.

Workload Intervention: Psychophysical Coherence increasing Attention, SA and Decision-making

HRV Analysis - General Results

RR Time Series act correction "Automatic correction": 6.91% of beats corrected)

Time-Domain R	Time-Domain Results					
Variable	Units	Value				
Mean RR*	(ms)	985.2				
STD RR (SDNN)	(ms)	64.0				
Mean HR*	(beats/min)	60.90				
Min/Max HR	(beats/min)	50.80/74.83				
RMSSD	(ms)	58.3				
NNxx	(beats)	73				
pNNxx	(%)	37.4				
RR triangular index		15.077				
TINN	(ms)	289.0				

130

General Discussion

- ATCO's attention, situation awareness and performance can be affected by subjective perceived workload and emotional response
- Be aware of the new technology may induce new HCI issues and increasing perceived workload (senior vs junior)
- The findings are valuable for both ATCO's training, certification, and system design on RTM
- ATCO's perceived workload, monitoring performance, SA and fatigue needed further research for future RTO
- Further thought, technology shall increase not only human performance but also wellbeing

Q and **A**

Wen-Chin Li PhD. FCIEHF C.ErgHF.

Senior Lecturer Safety and Accident Investigation Centre, Cranfield University, U.K. E-mail: wenchin.li@cranfield.ac.uk

Human Factors in Aviation Safety 9 November - 10 November