First Results of the Project
Capacity Modeling and Shift Optimization for Train Dispatchers CAPMO-Train

Christiane Schmidt
Rabii Zahir
Christiane Schmidt
Rabii Zahir

Agenda

- Train Dispatchers-Connection to Our Work on ATCOs
- Motivation for our Project
- Who Are We?
- Project Goals
- First Results for Daily Shift Planning for Train Dispatchers

Train Dispatchers

- Several train dispatchers direct and facilitate train movements
- Each train dispatcher is responsible for one or several (adjacent) geographical areas

Research questions
\checkmark How are human resources (HR) organized at RTC?
\checkmark How is the total taskload from a number of airports distributed over several controller working positions? (KODIC I, II projects 2016-2017)
\checkmark How does the workload at the Remote Tower environment differ from the one at the conventional tower? (CAPMOD project 2018-2021)

Vi hälsar på hos trafikledarna

Motivation

- Several train dispatchers direct and facilitate train movements
- Work of a train dispatcher results in workload
- During a train dispatcher shift the workload should be neither too high or too low
- Workload within "sweet spot"
- Unforeseen events increase workload
- Shift work yields risk of fatigue
\Rightarrow Shift of train dispatchers should be planned such that workload does not exceed upper and lower thresholds, train dispatcher maintains situational awareness, fatigue is avoided, operational and legal regulations are taken into account

Christiane Schmidt
Algorithms (PhD) and optimization,
Experience with similar combination from work with ATCOs

Tomas Lidén
PhD: optimization train traffic and maintenance, Long experience in railway

Rabii Zahir, LiU
PhD student

Focus on working environment of train dispatchers
Observations within other projects
(BelOpt, X2R)
Usage of data in CAPMO-Train

Plan:

- Study upper and lower bounds for safe workload
- Study influence of unforeseen events on workload
- Study operational requirements on train dispatcher shifts
- Discuss objectives of any scheduling of train dispatchers from Trafikverket
- Design optimization framework for the optimal planning of train dispatcher shifts
- Computation and analysis of train dispatcher shifts for Malmö dispatching center
- Highlight trade-off between different objectives
- Highlight inefficiencies in current shift planning
- Extend optimization framework for ad-hoc replanning off train dispatcher shifts in case of unforeseen events
- Computation and analysis of train dispatcher shifts for Malmö dispatching center
- Automated shift planning incl. workload

Fig. 7. Controllers-to-airports assignment for the minimum total number of controllers (objective 1) during the day with highest traffic (Schema 2).The table entries give the number of movements per airport. Different colors represent different controllers.

Fig. 8. Top: Controller shifts (for Schema 2) for each of the eight controllers assigned to work at the RTC during the highest traffic day. The rectangular boundaries indicate the complete shift, while the colored cells indicate the hours "in position" for each controller. Bottom: Statistics for Schema 2.

Experience in shift planning and workload considerations for air traffic controllers in remote tower centers (KODIC+CAPMOD)

Initial Results CAPMO-Train (to appear in RailBelgrade 2023)

Tomas Lidén
Christiane Schmidt
Rabii Zahir

Problem Background

A set of geographical areas to cover for one day A set of dispatchers
Allowed shift length
Minimum resting time between shifts
Task load per area and time period (we use task load (train movements) to approximate workload)
The objective: produce a schedule using as less dispatchers as possible

Methodology

- Literature review and interviews: Legal and operational constraints
- MILP model based on Josefsson et al.*

Area Combinations

- Areas could be combined if task load allows it
- Only adjacent areas could be assigned to a dispatcher

The Model's Constraints

- Limit max task load per dispatcher
- Assign area to dispatchers with corresponding endorsement
- Limit length of a shift
- Limit min rest between shifts
- Limit size of area combinations

$\sum_{j \in A} x_{i, j, k} \cdot T L_{j, k}$	\leq	$T L^{\max }$	$\forall i \in D, \forall k \in P$
$x_{i, j, k}$	\leq	$e_{i, j}$	$\forall i \in D, \forall j \in A, \forall k \in P$
$v_{i, k}$	\geq	$y_{i, k}-y_{i,(k-1)(\bmod p)}$	$\forall i \in D, \forall k \in P$
$v_{i, k}$	\leq	$y_{i, k}$	$\forall i \in D, \forall k \in P$
$\sum_{\mu=k+1-T^{\min }}^{k} v_{i, \mu(\bmod p)}$	\leq	$y_{i, k}$	$\forall i \in D, \forall k \in P$
$\sum_{\mu=k+1-T^{\max }}^{k} v_{i, \mu(\bmod p)}$	\geq	$y_{i, k}$	$\forall i \in D, \forall k \in P$
$v_{i, k}$	\leq	q_{i}	$\forall i \in D, \forall k \in P$
$\sum_{k \in P} v_{i, k}$	\geq	q_{i}	$\forall i \in D$
$y_{i, k}$	\leq	$\sum_{j \in A} x_{i, j, k}$	$\forall i \in D, \forall k \in P$
$y_{i, k}$	\geq	$x_{i, j, k}$	$\forall i \in D, \forall j \in A, \forall k \in P$
$\sum_{\mu=k+1}^{k+R^{\min }} v_{i, \mu(\bmod p)}$	\leq	$q_{i}-y_{i, k}$	$\forall i \in D, \forall k \in P$
$\sum_{i \in D} x_{i, j, k}$	$=$	1	$\forall j \in A, k \in P$
$x_{i, j, k}$	\geq	$c_{i, \ell, k}$	$\begin{array}{r} \forall i \in D, \forall k \in P, \\ \forall \ell \in C, \forall j \in \ell \end{array}$
$\sum_{\ell \in C} c_{i, \ell, k}$	$=$	$y_{i, k}$	$\forall i \in D, \forall k \in P$
$x_{i, j, k}$	\leq	$1-c_{i, \ell, k}$	$\begin{array}{r} \forall i \in D, \forall \ell \in C, \\ \forall j \in A \backslash\{\ell\}, \forall k \in P \end{array}$

Decision Variables

- The assignment of each area during each time period for which dispatcher
$x_{i, j, k} \in\{0,1\} \quad=1$ if dispatcher i is assigned area j during period k
$\begin{array}{ll}x_{i, j, k} \in\{0,1\} \\ c_{i, \ell, k} \in\{0,1\} & =1 \text { if dispatcher } i \text { is assigned area combination } \ell \text { during period } k\end{array}$
$y_{i, k} \in\{0,1\} \quad=1$ if dispatcher i is at work during period k
$v_{i, k} \in\{0,1\} \quad=1$ if dispatcher i starts a shift during period k
$q_{i} \in\{0,1\} \quad=1$ if dispatcher i is used during some period
- Whenever a dispatcher has been used

The objective: Minimize the number of used dispatchers
min .

Experimental Study

Base scenario:

- Artificial data based on info from TrV
- Task load based on train movements
- 22 dispatchers to cover 15 areas
- Min and max shift length: [4h-11h]

- Max task load: 30 mo
- Max size of area coml
- Endorsement ration:

Results Base Scenario

Results Base Scenario

- Used 21 dispatchers
- Min shift length: 4 h
- Max shift length: 11 h
- Avg. shift length: 10.23 h
- Avg. nr. Assigned areas: 1.67
- Run time: 57 s

Changing Endorsement Ratio

	Base scenario (100%)	$E_{1 / 2}$	$E_{1 / 3}$
nr dispatchers	21	21	22
min shift length	4 h	9 h	10 h
max shift length	11 h	11 h	11 h
avg. shift length	10.23 h	10.86 h	10.95 h
avg. nr. assigned areas	1.67	1.67	1.49
run time	57 s	20 s	19 S

Changing Allowed Size of Area Combinations

	Base scenario (3 areas)	M_{4}	M_{2}	M_{1}
nr dispatchers	21	21	22	33
min shift length	4 h	5 h	4 h	10 h
max shift length	11 h	11 h	11 h	11 h
avg. shift length	10.23 h	10.09 h	10.57 h	10.91 h
avg. nr. assigned areas	1.67	1.7	1.55	1
run time	57 s	97 s	39 s	29 s

Removing Areas with High Degree in the Adjacency Graph

	Base scenario (15 areas)	A_{10}	$A_{7,10}$	$A_{5,7,10}$
nr dispatchers	21	20	19	18
min shift length	4 h	8 h	10 h	11 h
max shift length	11 h	11 h	11 h	11 h
avg. shift length	10.23 h	10.05 h	10.95 h	11 h
avg. nr. assigned areas	1.67	1.6	1.5	1.45
run time	57 s	39 s	25 s	21 s

Removing Areas with Low Degree in the

 Adjacency Graph| | Base scenario
 (15 areas | A_{13} | $A_{13,15}$ | $A_{13,14,15}$ |
| :--- | :--- | :--- | :--- | :--- |
| nr dispatchers | 21 | 20 | 18 | 17 |
| min shift length | 4 h | 8 h | 5 h | 5 h |
| max shift length | 11 h | 11 h | 11 h | 11 h |
| avg. shift length | 10.23 h | 10.55 h | 10.05 h | 10.58 h |
| avg. nr.
 assigned areas | 1.67 | 1.59 | 1.72 | 1.6 |
| run time | 57 s | 305 s | 245 s | 252 s |

Conclusion and Future Work

- IP for automating shift scheduling
- Run time between 19 and 305s
- Surprisingly, the run time doesn't necessary decrease with a lower nr of areas
- The avg and min shift length is independent of the different parameters (need to be controlled explicitly)
- Next: alternative objectives (min nr switches, min area assignments/disp), expanding time horizon, improve the model

Email: rabii.zahir@liu.se

