
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computational complexity and bounds for Norinori and LITS

Michael Biro ∗ Christiane Schmidt †

Abstract

Norinori (aka Dominnocuous) and LITS (aka Nu-
ruomino) are pencil-and-paper puzzles played on m×
n square grids. In this paper we show that both Nori-
nori and LITS are NP-complete and that their asso-
ciated counting problems are #P-complete. Further-
more, we display m × n boards for each game that
have unique solutions using the minimal number of
polyomino regions.

1 Introduction

Norinori and LITS are a pair of related pencil-and-
paper puzzles, made popular by the Japanese pub-
lisher Nikoli [3, 4]. The games are each played on
an m × n square grid that has been partitioned into
connected polyomino regions. To solve each puzzle,
the player is required to place black squares in the
polyomino regions to satisfy certain conditions.

In Norinori, the solver places black squares in the
polyominos such that the final board satisfies the fol-
lowing two properties:

1. Each black square has exactly one black neighbor.
2. There are exactly 2 black squares in each poly-

omino region.

See Figure 1(a)/(b) for an example Norinori board
and its solution. When discussing placing black
squares, it is often useful to think of the player as
placing black dominos as a basic move, with no two
dominos adjacent, see Figure 2(a). A domino may
span two polyomino regions, see Figure 1(b).

In LITS, the solver places black squares in the re-
gions such that the final board satisfies the following
properties:

1. The black squares form a connected polyomino.
2. Each polyomino region contains a connected black

tetromino.
3. No two congruent tetrominos are adjacent.
4. Black squares may not build 2× 2 squares.

See Figure 1(c)/(d) for an example LITS board and
its solution. For LITS, it is useful to think of the
player as placing one of the four legal black tetro-
minos, see Figure 2(b), which resemble the letters in

∗Department of Mathematics and Statistics, Swarthmore
College, mbiro1@swarthmore.edu.

†Communications and Transport Systems, ITN, Linköping
University, christiane.schmidt@liu.se.

(a) (b) (c) (d)

Figure 1: Example Norinori board (a) and LITS board
(c) with solution in (b) and (d), respectively.

(a)
(b)

Figure 2: Basic shapes for Norinori (a) and LITS (b),
circles give white squares that may not be filled in.

LITS. A variant of LITS, without the condition that
no two congruent tetrominos are adjacent, was con-
sidered by McPhail [2] and shown to be NP-complete.

In this paper we will show that the problem of solv-
ing Norinori and LITS boards is NP-complete and
that the problem of counting the number of solu-
tions to a Norinori or LITS board is #P -complete.
For our reductions, we will use the PLANAR 1-IN-
3-SAT PROBLEM, a well known NP-complete and
#P -complete problem [1].

Definition 1 An instance F of the PLANAR 1-IN-3-
SAT problem is a Boolean formula in 3-CNF consist-
ing of a set C = {C1, C2, . . . , Cm} of m clauses over n
variables V = {x1, x2, . . . , xn}. Clauses in F contain
variables and negated variables, denoted as literals.
A clause is satisfied if and only if it contains exactly
one true literal, and the formula F is true if and only
if all its clauses are satisfied. The variable-clause inci-
dence graph G is planar and it is sufficient to consider
formulae where G has a rectilinear embedding.

In addition, we explore combinatorial questions on
both puzzles: the smallest number of regions in an
n × m board that has a unique solution. We show
that for most boards only 3 regions are required.

2 NP-completeness of Norinori

Theorem 1 Determining if a Norinori board is solv-
able is NP-complete and counting the number of so-
lutions is #P-complete.

Proof. The proof is by reduction from PLANAR
1-IN-3-SAT. Given an instance F of planar 1-in-3-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



33rd European Workshop on Computational Geometry, 2017

Figure 3: Gadget to fix the 2 filled-in squares in each
whitespace (here, for clarity, indicated in light gray): at
one corridor we add the region in U-shape.

(a) (b) (c) (d)

Figure 4: (a) Variable loop, with the two feasible solu-
tions (b)/(c). We associate the solution in (b) and (c)
with a truth setting of “false” and “true”, respectively.
The 2×5 region in the center face ensures that for (b) and
(c) the filled-in squares are fixed, and it renders the third
solution for the loop of the 1×3 rectangles infeasible (d).

(a) (b) (c)

Figure 5: (a) Corridor gadget with enforced white/black
pixels. The connected variable gadget is located within the
red boundary. If the variable is set to “false”, only a 2×1-
block pushed to the end of the corridor is a feasible fill-in
(b). If the variable is set to “true”, it is possible to place a
2×1-block directly at the connection to the variable loop,
leaving the last pixel of the corridor white (c).

SAT with incidence graph G, we show how to turn
a rectilinear planar embedding of G into a Norinori
board B such that a solution to B yields a solu-
tion to F , thereby showing NP-completeness. Fur-
thermore, there will be a one-to-one correspondence
between solutions of B and solutions of F , showing
#P-completeness.

We begin by constructing a representation of vari-
ables and their negations, then show how to propagate
and bend the variable values using ’wires’ and com-
bine the wires to form clauses. Note that throughout,
the constructed gadgets have a single solution for any
given variable assignment, which will make this re-
duction parsimonious.

The polyomino regions not incorporated into our
gadgets will not affect the gadget solutions, as for any
open region we use a face gadget, shown in Figure 3,
to force the region to contain two black squares, which
disallows any others. Therefore, there can be no in-
terference between our gadgets and the polyomino re-
gions surrounding them.

The basic variable gadget is created out of 1 × 3
polyominos, and forms a variable loop, shown in
Figure 4. Each variable loop has two possible solu-
tions, corresponding to setting the variable as ”true”
or ”false”, and the domino placement is completely
determined by the variable assignment. (A third solu-

(a) (b) (c)

Figure 6: (a) The bend gadget with enforced white and
black pixels. The connected variable gadget is located
within the red boundary. (b) “false”, (c) “true’.

(a) (b)

Figure 7: 1-in-3 gadget construction for Norinori (a) and
LITS (b). The red, dotted lines indicate the connectors
from the “at most”-gadget.

(a) (b) (c) (d)

Figure 8: (a) The at-most gadget: corridors from two
negated variables enter. If both corridors enter with a
setting of “true” (variable setting of “false”) (b), or if the
corridors have different truth settings (c), there exists a
feasible solution. (d) If both corridors enter with a variable
setting of “true” the board cannot be completed.

tion placing the dominoes over the region boundaries

From each variable loop, we can propagate the vari-
able value, creating a corridor gadget, shown in Fig-
ure 5. Note that a ”false” assignment for a variable
forces a domino to be placed at the far end of the
corridor, while a ”true” assignment leaves open the
possiblity of placing a domino at either end. This will
be accounted for in the final clause gadget.

By choosing the appropriate place to connect the
corridor gadget to the variable loop, we can gener-
ate wires for both the variable value and its negation.
That is, no separate negation gadget is needed. In ad-
dition, we can connect several corridor gadgets to the
variable loop. Furthermore, we can create 90◦ turns
in the corridor gadget using the bend gadget, shown
in Figure 6.

To combine the corridor gadgets into clauses, we use
the 1-in-3 gadget in Figure 7(a), where the at-most
and the clause gadget is shown in Figure 8 and 9, re-
spectively. The 1-in-3 gadget uses two negated copies
of each variable assignment and combines them with
the at-most gadgets. This forces at most one of the
variables’ truth assignments to be true, while the cen-
ter clause gadget requires at least one true assign-
ment. Together, this forces exactly 1 true assignment,
giving a solution to the instance F .

Given a solution to an m×n Norinori board, it can
obviously be verified in polynomial time. �



EuroCG 2017, Malmö, Sweden, April 5–7, 2017

(a) (b) (c) (d)

Figure 9: Norinori clause gadget (a): if all variables do
not fulfill the clause, the clause region cannot be filled
(b). (c), (d): feasible solutions for three and one variable
fulfilling the clause.

(a) (b)

Figure 10: Gadget for each face of the arrangement: at
one corridor of the whitespace (here, for clarity, indicated
in light gray) we add a T in distance 4 from an S (a), this
enforces the placement of an I to connect the T.

(a) (b)

(c)

Figure 11: Variable gadget (a), with the two possible
feasible solutions (b),(c). We associate one with a truth
setting of “false” (b) and the other with “true” (c).

3 NP-completeness of LITS

Theorem 2 Determining if a LITS board is solvable
is NP-complete and counting the number of solutions
is #P-complete.

Proof. The proof is again by reduction from PLA-
NAR 1-IN-3-SAT. The structure of the LITS reduc-
tion is the same as in the previous proof for Norinori.
The properties of a final LITS board enforce unique
feasible solutions for the following gadgets.

We begin by noting that the polyomino regions not
incorporated into our gadgets will not affect the gad-
get solutions, as for any open region we use a face
gadget, shown in Figure 10, to force the region to
contain a connecting 4× 1 tetromino, which disallows
any others. Therefore, there can be no interference
between our gadgets and the polyomino regions sur-
rounding them.

The basic variable gadget is created out of a re-
peating pattern of polyominos, shown in Figure 11.
Each variable gadget has two possible solutions, cor-
responding to setting the variable as ”true” or ”false”,
which are completely determined by the tetromino
placement. The variables are connected by 4×1 tetro-
minos, similar to the face gadget. This ensures that
the resulting set of black squares can be connected.

(a) (b) (c)

Figure 12: (a) The NOT gadget. (b),(c) The wires con-
nected by the NOT gadget always satisfy opposite truth
assignments.

(a) (b) (c)

Figure 13: (a) The bend gadget. As the 3x2 rectangle
is adjacent to an enforced L, S and I (length of the 2x4
rectangle), it must be filled in with a T. In (b) the other T
would not connect to the incoming I; the other outgoing I
would leave the S unconnected. In (c) the other T would
not connect to the incoming I; the other outgoing I would
result in a filled 2x2 square shown in dashed pink.

(a) (b) (c)

(d) (e) (f)

Figure 14: (a) The split gadget, with the two different
truth settings (b), (c). The central shape (adjacent to an
L and an I) must contain either a S or a T. No position of
the T is possible (d)-(f).

We can propagate the variable assignment, creat-
ing a corridor gadget, by linearly repeating the pat-
tern in the variable gadget. Negating a variable corre-
sponds to inserting a NOT gadget into the corridor,
as in Figure 12. To create 90◦ turns in the corridor
gadget, we use the bend gadget, shown in Figure 13,
and to create copies of the variable assignment we use
the split gadget, shown in Figure 14.

To combine the corridor gadgets into clauses, we
use the 1-in-3 gadget in Figure 7(b), where the at-
most and the clause gadget is shown in Figure 15
and 16, respectively. The 1-in-3 gadget combines two
copies of each variable’s assignment with the others
using the at-most gadgets. This forces at most one
of the variables’ truth assignments to be true, while
retaining the connectivity condition. Then, the cen-
ter clause requires at least one true assignment and
together these force exactly 1 true assignment, giving
a solution to the instance F .

Given a solution to an m × n LITS board, it can
obviously be verified in polynomial time. �



33rd European Workshop on Computational Geometry, 2017

(a) (b) (c) (d)

Figure 15: (a) At-most gadget: the two C-shaped regions
connect to the variable corridors (as in the clause gadget);
the red I is a connector (corridor of (enforced) I- and T-
shapes that connects to an S or L of a corridor on that
face), as indicated by the red lines in Fig. 7(b). If both
variables have a truth setting fulfilling the clause (b), no
T in the central cross can be placed without filling a 2x2-
square. If both variables do not fulfill the clause (c), or
one of them does (d), a T can be placed.

4 Boards with unique solutions

Definition 2 Define UN (n,m) to be the minimal
number of regions among all n ×m Norinori boards
with unique solutions. Similarly, define UL(n,m) to
be the minimal number of regions among all n ×
m LITS boards with unique solutions. Note that
UN (n,m) and UL(n,m) need not exist for all n,m,
in which case we say UN (n,m) = 0 or UL(n,m) = 0.

Theorem 3 The following values for UN (n,m) hold:

(a)

(b)

(c)

Figure 16: (a) The clause gadget: if all variables have
truth settings that do not fulfill the clause (b), no tetro-
mino in the light gray region can be connected; if at least
one variable has a truth setting fulfilling the clause (c), an
I can connect to the other tetrominoes.

(a) (b) (c)

Figure 17: (a) For m = 2,
⌈
n
4

⌉
regions can have a unique

solution. (b)/(c) For m ≥ 3 and n ≥ 5 there exist 3 poly-
omino regions, such that the board has a unique solution.

(a) (b) (c)

Figure 18: For m ≥ 2 and n ≥ 10 there exist 3 polyomino
regions (a), such that the board has a unique solution (b).
An example for m=4, n=14 (c).

1. UN (n, 1) = 0 for n 6≡ 2 mod 3
2. UN (n, 1) = n+1

3 for n ≡ 2 mod 3
3. UN (n, 2) ≤

⌈
n
4

⌉
for n ≥ 3

4. UN (n,m) = 3 for all n ≥ 5,m ≥ 3.

Proof. For the case of an n × 1 board, examine the
leftmost domino in the completed board. Since the
board has a unique solution, it must consist of the
leftmost two squares, as otherwise we could move it
left without making the board infeasible. Further-
more, the leftmost region can consist of either 2 or 3
squares, as otherwise we could move the domino right
without making the board infeasible. Therefore, we
generate an (n−3)×1 board by removing the leftmost
three squares and, if necessary, modifying the second
leftmost region by removing its leftmost square. The
resulting board has the same unique solution as the
original, restricted to its squares. We can then repeat
the process until there is only one region and verify
that the only n × 1 board with one region that has
a unique solution is the 2 × 1 board. Therefore, the
only n× 1 boards with a unique solution have n ≡ 2
mod 3. Moreover, we remove one domino per three
squares, so UN (n, 1) = n+1

3 in this situation.
For the other cases, see Figure 17 for constructions

achieving the given bounds, with the observation that
UN (n,m) > 2 for n ≥ 5,m ≥ 3. �

Theorem 4 UL(n,m) = 3 for all n ≥ 10,m ≥ 2. In
other words, 3 regions suffice to completely determine
an n×m LITS board, as long as n ≥ 10 and m ≥ 2.

Proof. See Figure 18. �

References

[1] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-
complete. Journal of Algorithms, 7(2):174–184, 1986.

[2] B. McPhail. Metapuzzles: Reducing SAT to your fa-
vorite puzzle. CS Theory Talk, 2007.

[3] Nikoli. http://www.nikoli.com/en/puzzles/norinori/,
NIKOLI Co., Ltd. Accessed December 6, 2016.

[4] Nikoli. http://www.nikoli.co.jp/en/puzzles/lits.html,
NIKOLI Co., Ltd. Accessed December 6, 2016.


