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The aim of the four-year Vinnova-funded project NEtworK Optimization
for CarSharing Integration into a Multimodal TRANSportation System (EkoCS-
Trans) is to research conditions which can increase the number of people that
become members of carsharing (CS) organizations and actively use the service.
To this end, we will develop a decision support tool combining optimization
and simulation for the design of a CS network. We will add CS usage to an
existing transport model system, and we will develop a precise mathematical
framework for the optimization of the design of a CS system.

We will show how the optimal design of a CS system depends on the
demand structure, and where CS stations should be located, which size and
fleet mix they should have, and how we can integrate CS-based one-way trips
into the urban transportation system such that a broader spectrum of customer
requests can be served without invoking too high operational cost and energy
consumption of re-allocating empty vehicles. Given different scenarios of
a service-level dependent CS demand in the transport model system, this
will lead to an iterative process of demand-sensitive service optimization and
service-sensitive demand re-estimation.

The first steps in the project plan are:

(i) A literature review
(ii) Development of an optimization model for a CS system

(iii) Addition of the transport mode CS in to an existing transport model
system

With this report, we mainly aim to give an overview on (i), the literature
review. For (ii), we have developed a model that allows for optimization of
station location, station size, and demand fulfillment. We have also started
the model development for the case that one-way and round-trips are mixed
within a single CS system (allowing certain stations, like train stations, to be
accessed by one-way trips only). The trip demand estimation (with trip start
and end position and time, and, in case of fixed stations, stations used) will be
the output of a MATSim multi-agent transport simulation (www.matsim.org).

1http://webstaff.itn.liu.se/~chrsc91/projects/EkoCS-Trans/
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The CS model representation (iii) is the ongoing work in the project, the CS
system will be connected to a public transport modeling component, which
is readily available within MATSim. Additionally, this modeling effort will
make use of the rich model components for mobility-on-demand services
that are already available within MATSim. A concrete instance of the model
system will be implemented for Stockholm, where MATSim instances for road
traffic [1, 2, 3] and public transport (developed in the ongoing project Water-
borne Urban Mobility, funded by SLL and Trafikverket, and the completed
European project SMART-PT) are already available. The optimization output
(station locations, fleet size, type of stations) will be the input for the transport
simulation.

CS Systems

CS is a service, which allows the user to benefit from the advantage of a
private car without owning one. The increased number of privately-owned
cars also heightens their negative side effects like the amount of greenhouse-
gas emissions, road congestion, and a lack of parking spaces. From the user
point of view, CS can reduce the cost of using a car in comparison to the cost
associated with car ownership, like cost of purchasing, maintenance, fuel,
parking charges etc., while the user can still get the benefit of the car according
to the user’s need. There are different types of CS systems: one-way, round-
trip and free-floating system. In one-way CS, the user can pick up a car at one
CS station and drop it at another, in round-trip CS, the user has to return to the
same station where he/she started; and in free-floating CS, the user can park
the car in all parking spots in a specified area. At present, there are only round-
trip services operated by the CS companies in Sweden (e.g., Sunfleet/M),
and we estimate that the constraint that the users need to return to the start
station contributes to only a small proportion of the population using this
service—as it restricts the type of trips. With round-trips no flexibility in the
choice of the station is offered, as the user has to return to the same station.
However, if a user is going to work or the city centre, using a CS car from a
round-trip systems would mean to pay for the complete working day (during
which the car would also be idle). Similarly, trips to airports, train stations
etc. are prohibited in these systems. Hence, we think that there should be a
shift from round trips to mixed trips, where round trips and one-way trips
to certain destinations are combined. The disadvantage of one-way trips is
that the vehicles have to be relocated as the system may have imbalances in
the car distribution: for example, more cars will be in the city center/around
working facilities during the day, and more cars in residential areas during
the evening/night. This may lead to shortage of parking spaces and shortage
of vehicles at different stations. In this case relocation of vehicles is necessary.
This relocation can be expensive for the CS company. Two main approaches
of relocation were taken: user-based and operator-based. In operator-based
relocation methods, the staff members of the company help to relocate the
vehicles, whereas in user-based relocation, the users do this job by various
methods like trip joining where multiple users share a ride in a single vehicle
when they want to travel from a station with a shortage of vehicles to one with
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an oversupply.
CS systems also vary according to the type of usage: peer-to-peer (P2P)

CS, where owners of private cars share their vehicles with other people; and
business-to-consumer (B2C) CS, where there is a CS company and users
(customers) [4]. Our work will mostly deal with the B2C CS.

In general, three main levels of decisions can be distinguished: strategical,
tactical, and operational decisions. For CS, these relate to, e.g., the num-
ber, size and location of station; the fleet size, vehicle distribution, and staff
number; and the daily management of the system, especially, the relocation
management; respectively.

The first CS company,"Selbstfahrergenossenschaft", was founded in 1948
in Zurich, Switzerland ([5]). Sharing transportation is a way to maximise the
use while decreasing the cost imputed to each user so that people can also
afford to use expensive items (which was a case in earlier days as common
man could not afford a private car). Even these days, expenses are quite high
for owing a vehicle, so CS can be a cheaper alternative.

Literature Review

Our focus in this report is mostly on mathematical models for problems related
to our CS systems, and the simulation of these systems.

Station Location. One of the problems that we consider is setting up stations
so as to increase CS usage. A similar work is done by Rickenberg et al. [6]
who provide decision support for planning stations optimally for round-trip
systems. In order to enhance usability, a decision support system (DSS) helps
the user to import, edit, export and visualize data. The DSS allows parameter
setting and visual optimization results that enable instant validation, compari-
son and assessment of results and scenarios. The objective of the optimization
model is to find the best location and size of CS stations while satisfying con-
sumer demand and preferences, and minimizing the total cost. To show the
applicability, the DSS and the underlying model were validated as an example
for a CS company in Hanover, Germany, with a defined data set.

Yoon et al. [7] used an iterative, simulation-based approach to evaluate
the potential of zones in a service area for a dynamic, pooled ride-hailing
service. The demand for transport is modeled with an individual agent. Each
agent holds one or more plans, which describes the daily activity schedule
as well as travel in between activities by transport mode. Initial plans have
to be provided and these may be modified during the process of demand
adaptation and supply.

Homem et al. [8] also developed an optimization model—a mixed-integer
linear program (MILP)—for solving the one-way CS problem which they also
used for a case study in Lisbon. Homem et al. [8] concluded that the trip
imbalance situation may lead to very high cost for the company. Another
conclusion was that the financial losses could be reduced through appropriate
choice with respect to the number, location and the size of the stations, but
positive profits could be achieved if the CS trips were optimally selected from
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the total demand, either by previous reservation or by rejecting the trips when
there are no vehicles available at the stations.

Vehicle Relocation. Repoux et al. [9] mostly focused on how to model and
simulate system’s operations to analyse the way the vehicle distribution and
service rate evolves with time for one-way CS systems for electric cars. The
objective was to maximize customer satisfaction, i.e., minimize unserved
demands while offering most flexible service to the customers. Repoux et
al. [9] designed a simulator to analyze the behavior to understand how any
change in the system impacts its efficiency and forecast the performance after
the modification.

The simulator, an event-based simulator, is composed of different real
physical entities of CS such as stations, spots, vehicles and relocation personnel.
For instance, a vehicle can be available, occupied, under service or under
relocation. Other classes describe action and movements of personnel and
vehicles such as demand, trip and relocation. The authors take various factors
into account:

• Request type— short-term or reservations: In-advance reservations are
automatically accepted by the system. The CS organization is reminded
two hours before the trip, such that the vehicle can be relocated to the
specific location. Short-term demand is always examined by the system
but the trips can be refused if they cannot be served. After the trip, the
vehicle is available again for the next user.
• Vehicle allocation in rentals: Vehicle allocation depends on demand type.

When a reservation arrives, the operator should be able to bring a car to
a specific location. To check short term demand, the simulator checks
at the station closest to the demand if the vehicle is available and the
whether it is charged. If yes, the vehicle is assigned to the user and if
not, the nearby stations are checked (within a range of 500 meters). If a
vehicle is available, the customer is assigned that or else the demand is
rejected.
• Vehicle allocation in relocation: The choice process is the same as for

vehicle allocation for short term rentals except that it is limited to the
station from which the relocation must be done and the minimum battery
level to allow relocation is equal to the minimum value to allow rental
plus some additional battery equal to the consumption of the relocation
trip. If battery is too low according to this criterion or no vehicle is to be
found due to other changes in the simulator, the relocation is not done
and the optimization reruns to be able to task the personnel.
• Partial floating: A vehicle can be dropped off outside a station in a close

range if the station is already full. The vehicle will however not be
charged which may be problematic if its battery level is already low. In
the simulator, this feature is managed by adding another category of
spots, named extra-spots. They do not allow charging of vehicles, but
link the vehicles to the station.

Performing relocation has two main objectives: relocate vehicles in order
to serve a demand which was planned in advance and that the operator has
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to serve, and to balance the system so that the demand in the short-term
has a higher chance to be served without penalizing in-advance reservation.
Choosing relocations corresponds to finding the shortest path between the two
distributions, i.e., reaching the ideal distribution of the system with minimum
effort and cost from personnel. The ideal distribution comprises of many
criteria like a station should be in the minimum range for the user (within 500
metres), for short-term demand, we do not know which vehicles have to be
available at the station, so a range for this number can be set arbitrarily or
based on historical data, a minimum value can be defined equal to the number
of reservations beginning at a station in the two coming hours; and to avoid
accumulation of vehicles at one station, the vehicles should be spread equally
enough among stations inside the same cluster.

To find an optimal vehicle relocation, when a system already exists, mathe-
matical programming is one of the best ways to solve the problem. Carlier et
al. [10] modeled the problem as an optimization problem using an integer lin-
ear program (ILP). They use a time extended graph, which comprises of a set
of nodes, a set of arcs, and arc capacities. After the input is taken into consid-
eration, the optimization problem is modeled with the objective to maximize
the number of demands and minimize both the number of relocations and the
total number of vehicles. In order to test the linear mathematical model Carlier
et al. [10] generated data using a random generator implemented to emulate
real demand data over time. All data depending on the time are generated
over a 24 hours period, segmented into T time steps. The total number of time
steps is user-settable and can vary form 24 to 1440 hours. The generator is
based on two phases: station and demand generation. The following instance
is taken into consideration, N=10 stations, T=144 time steps and a demand of
M=500. The upper bound of relocation operations and the number of vehi-
cles ∈ {0, 10, .., 80}. The observation is that computation time remains quite
low, in order of half a second for Linear Programs (LPs) and two seconds for
ILPs. Building the mathematical program takes longest with 34 sec. For each
non-integer optimal value Carlier et al. [10] gets by solving the LP model, its
integer part is always equal to the optimal value of the corresponding ILP
model.

Febbraro et al. [11] developed a CS simulator, with the use of an innovative,
user-based technique to relocate vehicles across stations for one-way trip CS
systems. The aim was to minimize the rejection ratio of reservations in any
period through the attempt to have enough vehicles in each zone to satisfy
demand. Here, the vehicles are relocated by users that ended their trips at a
destination close to the zone with a shortage of vehicles. For this purpose, the
system is modeled as a discrete event system (DES), and a relocation method
is proposed on the basis of an ILP. The choice of the DES framework was
driven by the need to model the complex macrodynamics of CS in a stochastic
environment.

To evaluate the model and the efficacy of the relocation procedure, the car-
sharing model and optimization procedure were tested in the traffic-restricted
zone of Turin, Italy. With a DES model and a relocation process that had
its basis in the solution of an ILP, it was shown that the number of vehicles
needed to run the system efficiently, as measured by rejected reservations,
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could be reduced significantly, even when vehicle relocation was accomplished
exclusively by users.

The economic success of CS systems has often been associated with a
number of city characteristics as given by Homem et al. [12]:

• Parking pressure: places where parking is scarce and/or expensive make
CS a more attractive option
• High density: high population density brings a large customers basis to

CS
• Mixed uses: business CS uses during the workday can be paired with

residential uses in mornings/evenings/weekends

Homem et al. [12] developed an optimization approach to depot location
in one-way car sharing systems where vehicle stock imbalance issues are
addressed under three trip selection schemes. The objective is to maximise the
profit of car sharing organisations considering all revenue and costs involved.

Three schemes for trip selection in one-way CS systems were considered:

• The first scheme assumes that the CS company has total control over
the selection of trips and is free to accept or reject a trip according to
profit maximization. Such scheme is possible only if there is a central
management agency which can control the decision to accept or reject
trips to maximize the profit.
• The second scheme assumes that all the trips requested by the client will

be accepted.
• The third scheme is a hybrid one, in which there is no obligation of

satisfying all the trips between existing depots, but rather, they can only
be rejected if there are no vehicles at the pick-up depot.

Three optimization models were developed by Homem et al. [12] based
on the above three schemes where the objective was to maximize the profit.
With a case study, Homem et al. [12] observed that the most profitable scheme
was the first scheme where the CS company had the full control over the
acceptance and rejection of trips. The second profitable scheme was number
three and number two was the least profitable.

Carlier et al. [10] investigated the optimization of CS one-way systems
which can be integrated to a one-way multimodal transportation system. The
optimization focuses on fleet dimensioning when station locations and accu-
rate demands are given. They proposed LPs based on flows for maximizing
the overall demand the system can absorb and minimizing the number of
vehicles and relocation operations needed.

Travel Demand. Travel demand estimation of one-way CS can be catego-
rized into: survey and analysis, discrete choice modelling, agent-based sim-
ulation. The discrete choice modelling has been employed widely in travel
demand analysis with the most common application being in choice of the
travel mode, aim and destination. Agent-based simulation (see Vosooghi
et al. [13]) is more sophisticated and a common solution for estimating the
travel demand of one-way CS . The travel demand emerges from interaction
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of four types of agents in the transportation system: node, arc, traveler and
vehicle. There are three major challenges in travel demand estimation: data,
computation time, and calibration and validation. Other than agent-based sim-
ulation, there is also activity-based multi-agent simulation. Here, the demand
estimation framework of one-way CS is structured as follows: a synthetic pop-
ulation is created for demographic data, activity plans and activity locations
are generated for each synthetic individual with mode and route choices, the
traffic simulation and plan execution are done to find performance measures,
activity planning and mode decisions are revised for each individual, and this
is repeated as an iterative process until average performance measures for all
agent stabilize.

It is estimated that shared cars can replace between one and 6.5 personal
vehicles (see [14]); moreover, CS tends to decrease the frequency of trips
carried out by impulse, meaning CS not only makes people more aware of
the cost per trip, but also demands that each trip must be planned. Also the
supply of variety of vehicles, which are often newer and more fuel-efficient
compared to private vehicles, can motivate the optimization of the size and
characteristics of the vehicle, depending on the purposes of the trip.

Lage et al. [14] collected data for the city of Sao Paulo in Brazil from a
public and free database. In order to understand the transport demand in the
city, for each district, socioeconomic, transportation and land-use information
was collected from the database. After the collection, compatibility test and
spatialization of the data, performed in open source Geographic information
system (GIS) software (QGIS), the authors investigated which districts have
the largest number of entities such as train/subway stations, hotels, shopping
malls, leisure and cultural facilities, and so on, which have the potential to
generate trips and—consequently—transport demand. For identifying the
best location, the authors developed a methodology to prioritize the most
relevant information for the implementation of location of the CS stations.
A prioritization matrix based on weights was developed to score the infor-
mation, according to three hypothetical scenarios. In the first scenario the
transportation data was prioritized, in the second scenario, priority was the
flow of people and in the last scenario the land-use data was assigned the
maximum value weight, prioritizing the residential areas and the commercial
and service areas.

Lage et al. [15] also observed different scenarios where different areas were
marked according to various aspects. The analysis made it possible to define
the profile of the potential users of CS systems. Once the profile of targeted
users is known, socioeconomic and spatial data allows mapping of these users
and their destinations while using CS. Once the most popular origins and
destinations were known, the database used in the study made it possible to
identify the locations that are candidates to receive CS stations.

The five major demographic markets for CS are: neighbourhood, busi-
ness, college, low-income and commuter, see Mathew et al. [15]. Univer-
sities have been enthusiastic to partner with CS for several reasons, e.g.,
offering an amenity to faculty, staff, and students; projecting a progressive,
environmentally-conscious image; and reducing on-campus demand. A typi-
cal CS user is in the age group of 21 and 55 years, has a high level of education,
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is professionally employed, is concerned with environmental issues, and lives
alone, compare Mathew et al. [15]Hence, CS operators find that university
markets are easier to target as everyone has the same destination.

Multi-Agent Transport Simulation MATSim MATSim (see Ciari [16]) was
developed jointly at IVT in Zurich and at TU Berlin, and published under
GNU license. MATSim is a fast, dynamic agent-based and activity-based
transport simulation. The idea is to let a synthetic population of agents act
in a virtual copy of the real world. The synthetic population reflects census
data while the virtual world reflects the infrastructure such as road network,
land use, and the available transport services and activity opportunities. Each
agent has a plan which represents a chain of activities which he is supposed to
perform during the simulation day. Agents try to perform optimally according
to a utility function that defines what is useful for them. The performed
activities gives a positive utility while the travel gives negative utility. One
virtual day is iteratively simulated. From iteration to iteration, a predefined
amount of agents are allowed to change some of their daily decisions to search
for a plan with a higher utility. The choice of dimensions are:

• Starting time and duration of the activity
• Location of activities
• Mode of transport
• Route
• Parking

From the transport planning perspective for CS services, it is crucial to rep-
resent availability of vehicles at local level and also the dimensions mentioned
above like trip embedded in the whole activity. The combination of these
features can be found in MATSim, which is therefore a suitable framework for
carsharing modeling.

The simulation model for CS has been calibrated to reproduce actual modal
share for carsharing in the Zurich, Switzerland region (Horni et al. [17]). It
was made using booking data from the Swiss operator Mobility.With the same
data, the results were validated along several dimensions. Since Mobility
offered only round-trip based carsharing until now, only this model could be
validated. Dimensions included in the validation process were: distance from
the last activity to the pick-up station, departure times, purpose of the rental
and temporal length of the rental.

The IHOP project series aims at building Sweden’s next generation strate-
gic transportation model system. Canella et al. [3] (IHOP1) investigated the
feasibility of deploying a dynamic and disaggregate network simulation pack-
age. Canella et al. [2] (IHOP2) developed a technical framework for integrating
travel demand models and network assignment packages through the MAT-
Sim technology. Canella et al [1] (IHOP3) moved on to ensure an economically
consistent analysis of the travel behavior simulated in such a system. We will
integrate our CS model in this Stockholm model.

Autonomous Cars. Some other related work consider autonomous vehicles
and CS. Autonomous vehicle technology is becoming a reality these days.
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Autonomous cars and CS can go hand in hand in a more distant future for
which some of the work is mentioned by Hanan et al [18].
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