k-Transmitter Watchman Routes (and Some Guarding Problems)

Christiane Schmidt

NYU Geometry Seminar, December 06, 2022

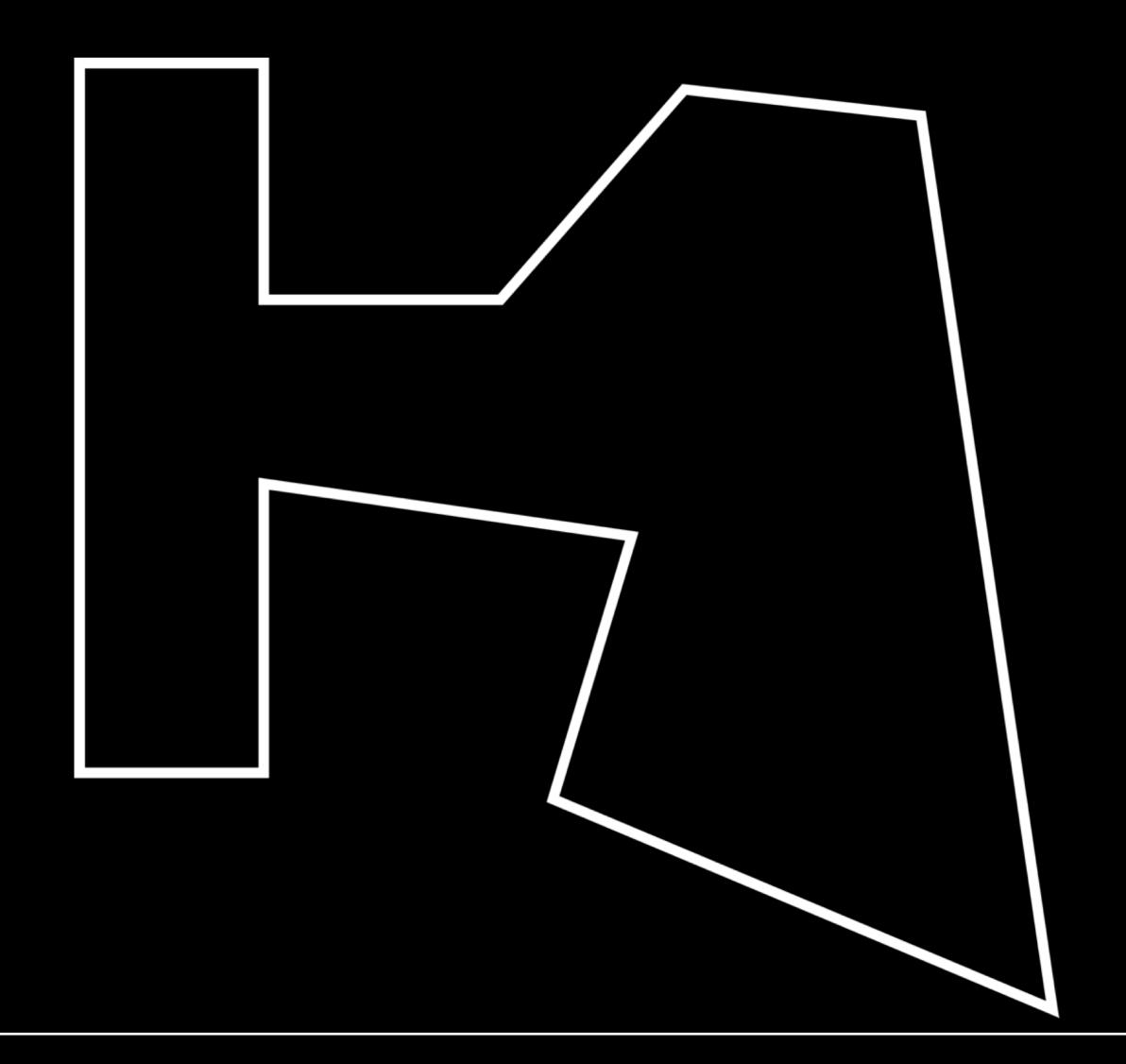
k-Transmitter Watchman Routes (and Some Guarding Problems)

Christiane Schmidt

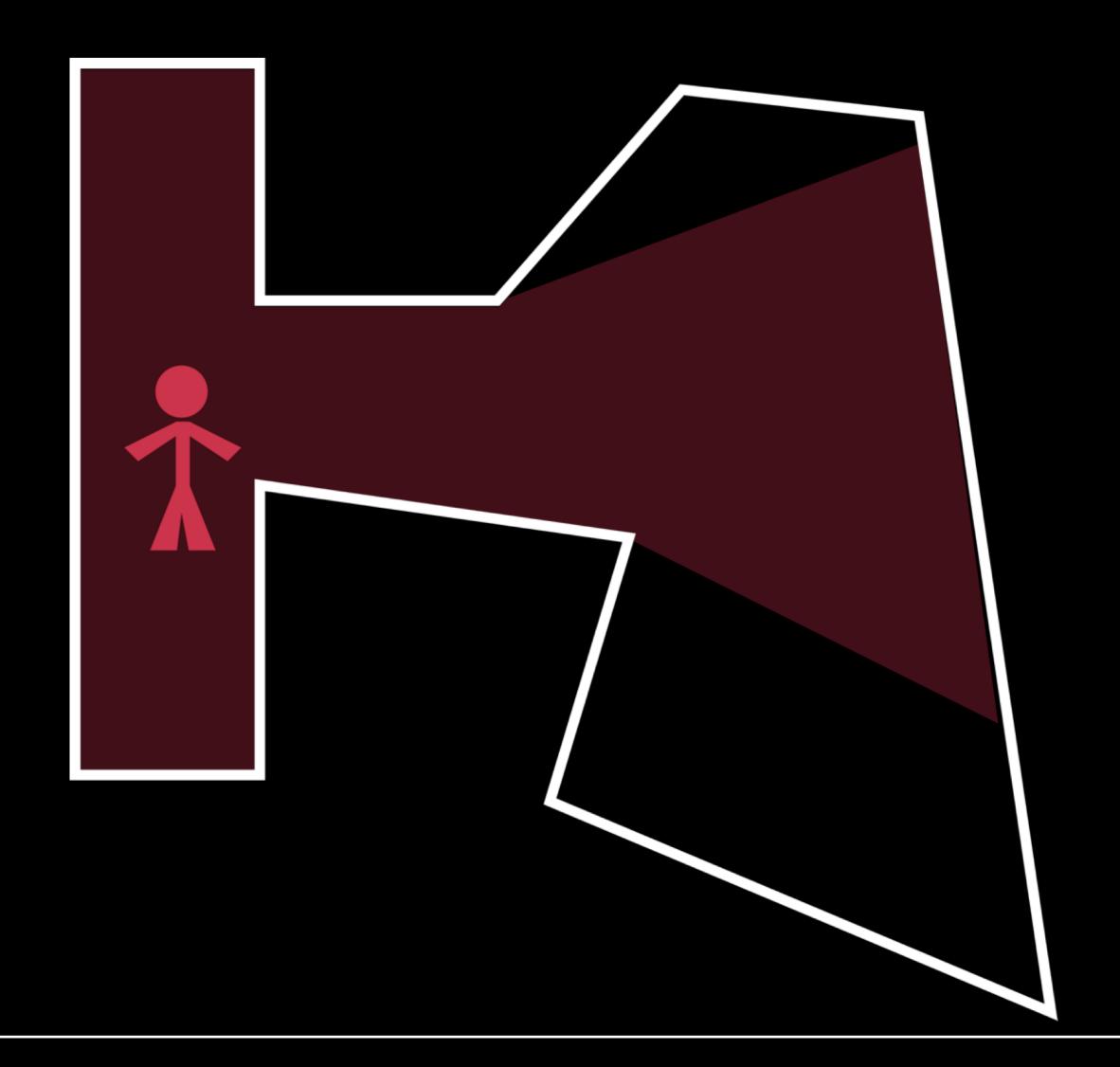
NYU Geometry Seminar, December 06, 2022

Agenda

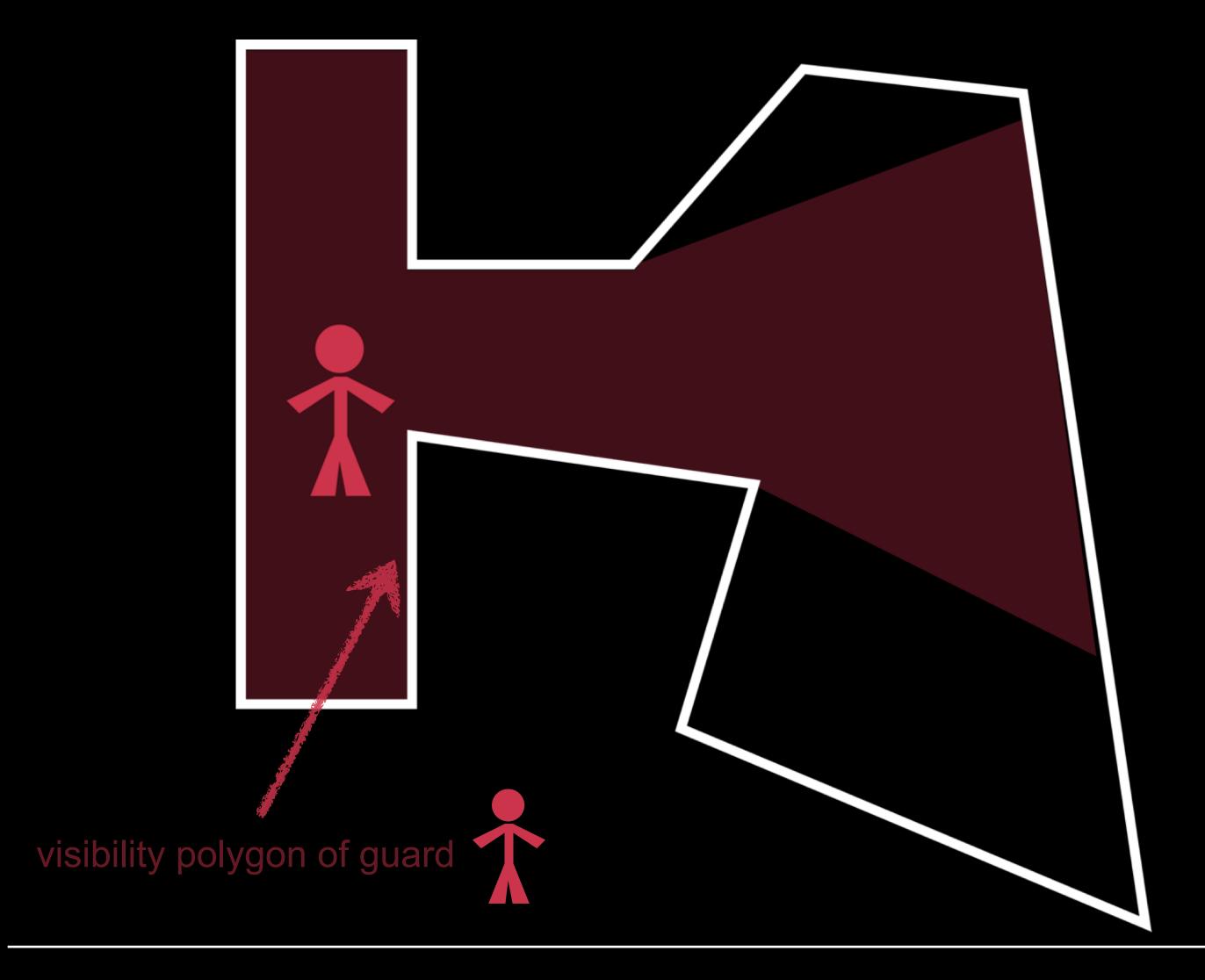
- k-Transmitters
- The Watchman Route Problem (WRP)
- k-Transmitter Watchman Routes
- Open Problem: *k*-Transmitters
- Outlook



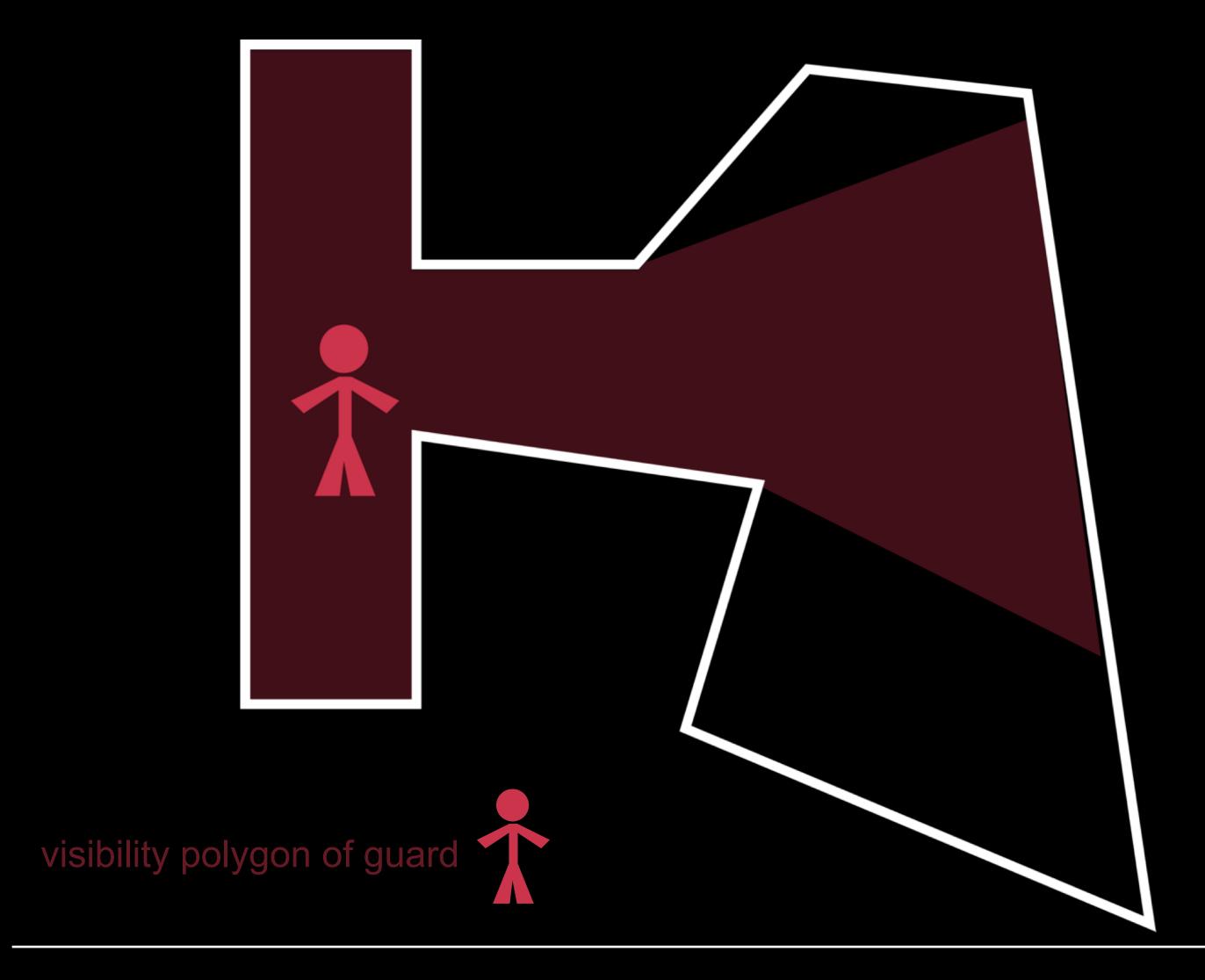
Given: Polygon P



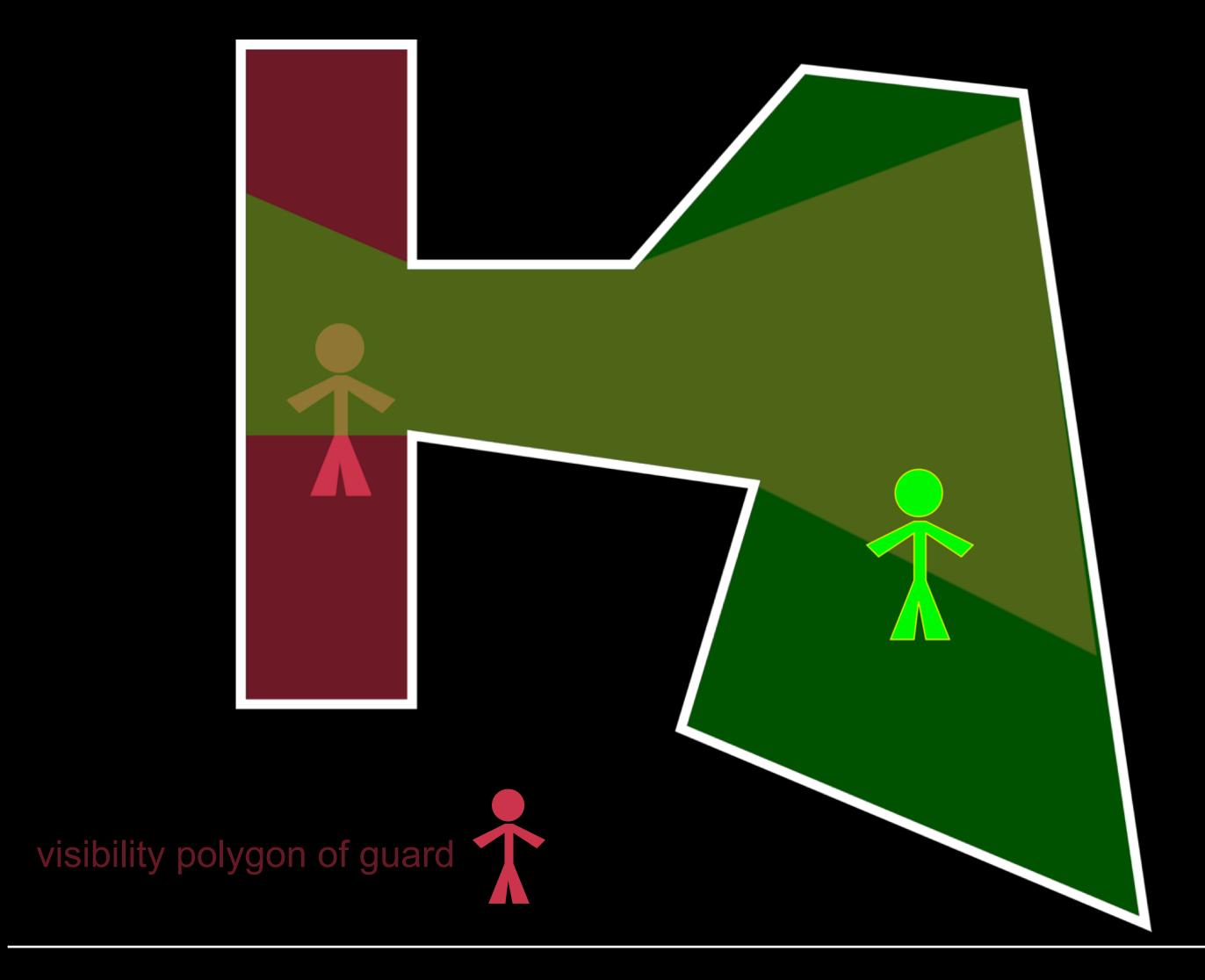
Given: Polygon P



Given: Polygon P

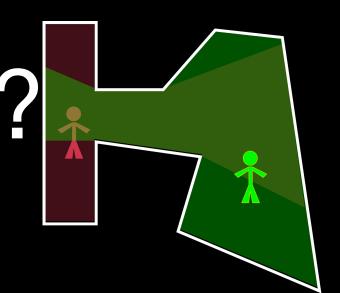


Given: Polygon P



Given: Polygon P

We can alter:



We can alter:

Capabilities of the guards

Environment to be guarded

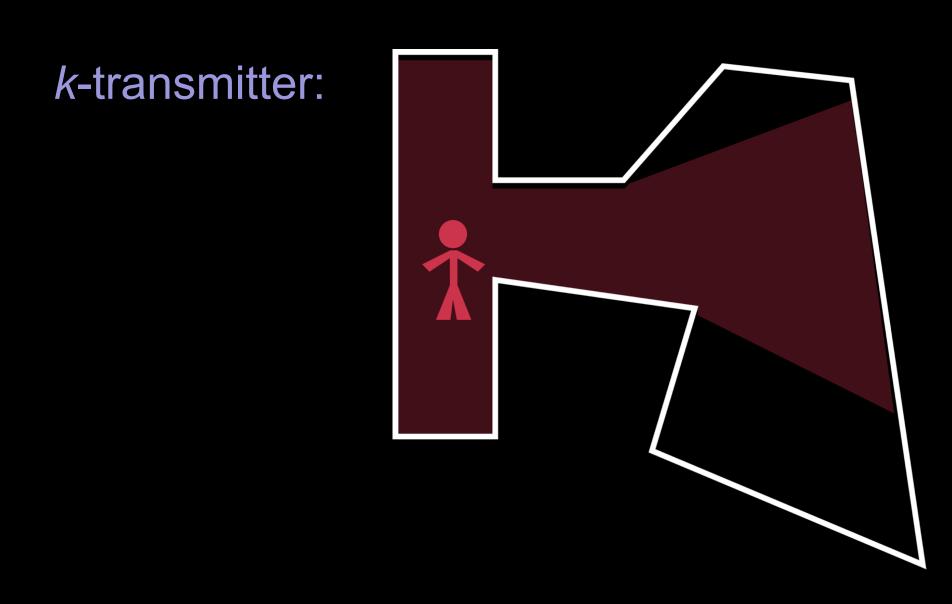
We can alter:

Capabilities of the guards

Environment to be guarded

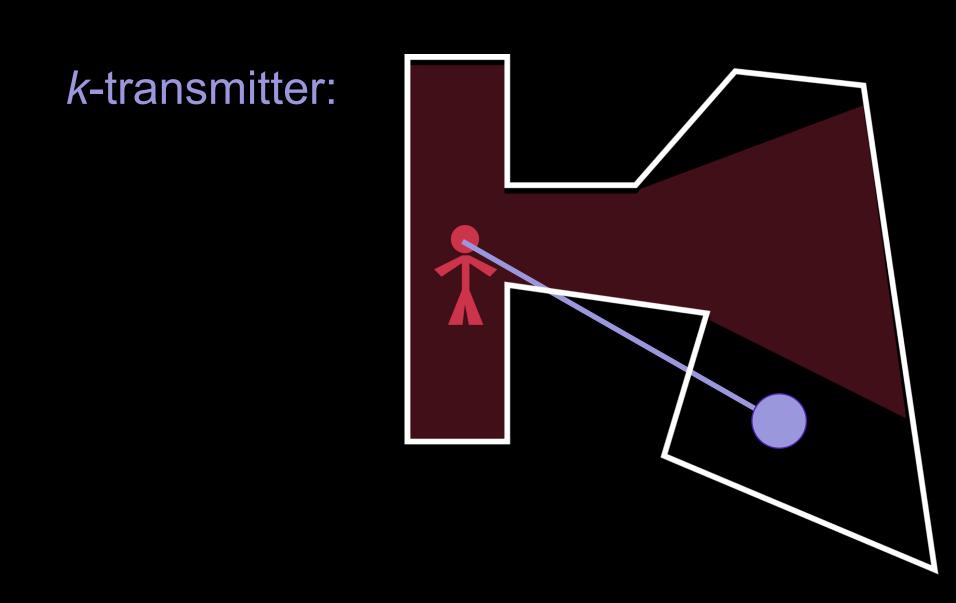
We can alter:

Capabilities of the guards



We can alter:

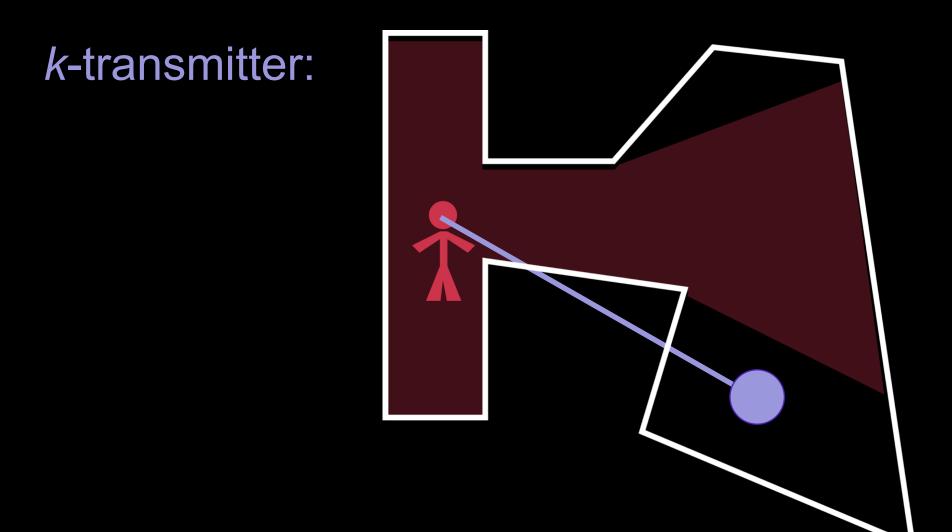
Capabilities of the guards



We can alter:

Capabilities of the guards

Environment to be guarded



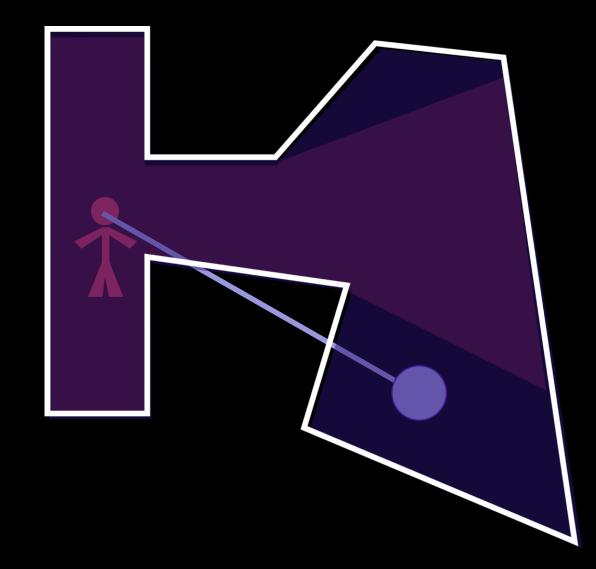
Line crosses at most 2 walls ⇒visible from the 2-transmitter

nts?

We can alter:

Capabilities of the guards

Environment to be guarded

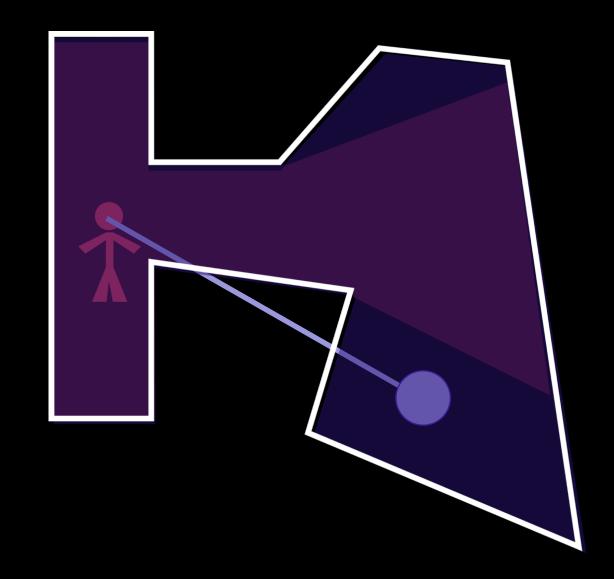


Line crosses at most 2 walls ⇒visible from the 2-transmitter

We can alter:

Capabilities of the guards

Environment to be guarded

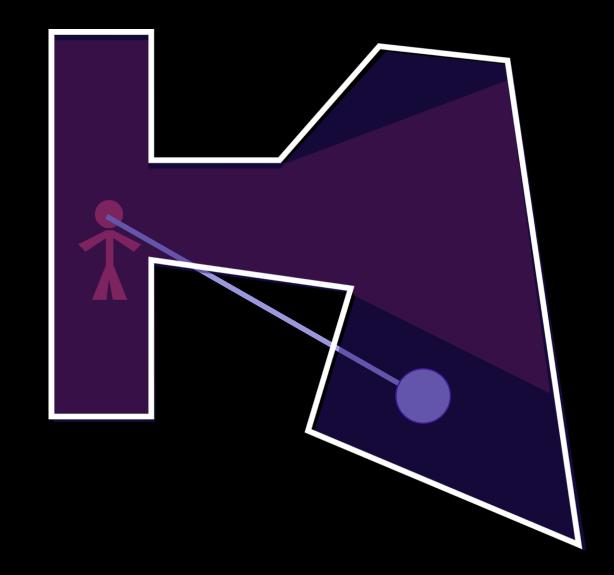


Line crosses at most 2 walls ⇒visible from the 2-transmitter

Formally: a point p is 2(k)-visible from a point q, if the straight line connection pq intersects P in at most two (k) connected components.

We can alter:

Capabilities of the guards



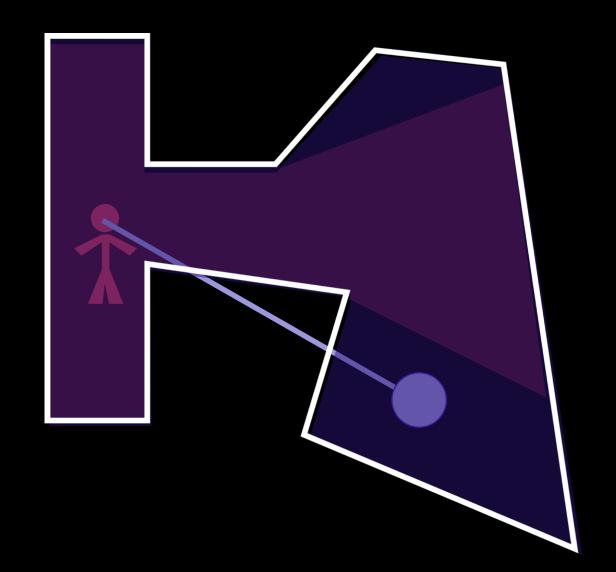
Line crosses at most 2 walls ⇒visible from the 2-transmitter

Formally: a point p is 2(k)-visible from a point q, if the straight line connection pq intersects P in at most two (k) connected components.

2VR(p) = set of points in P, 2-visible from p kVR(p) = set of points in P, k-visible from p

We can alter:

Capabilities of the guards



Line crosses at most 2 walls ⇒visible from the 2-transmitter

Formally: a point p is 2(k)-visible from a point q, if the straight line connection pq intersects P in at most two (k) connected components.

2VR(p) = set of points in P, 2-visible from p kVR(p) = set of points in P, k-visible from p

Stationary:

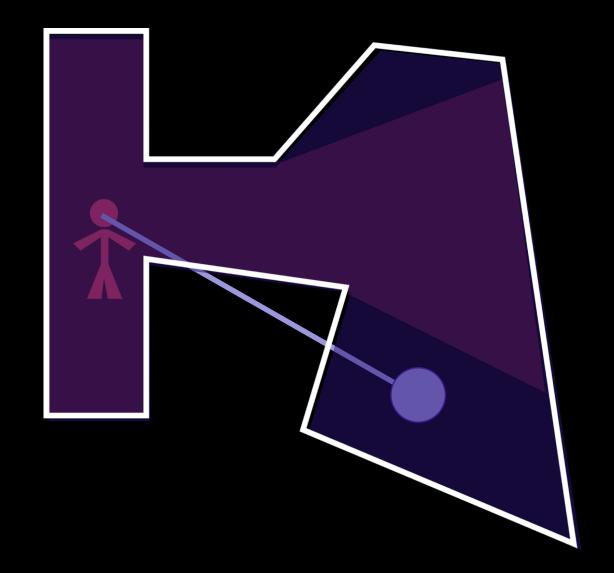
?

We can alter:

Capabilities of the guards

Environment to be guarded

k-transmitter:



Line crosses at most 2 walls ⇒visible from the 2-transmitter

Formally: a point p is 2(k)-visible from a point q, if the straight line connection pq intersects P in at most two (k) connected components.

2VR(p) = set of points in P, 2-visible from p kVR(p) = set of points in P, k-visible from p

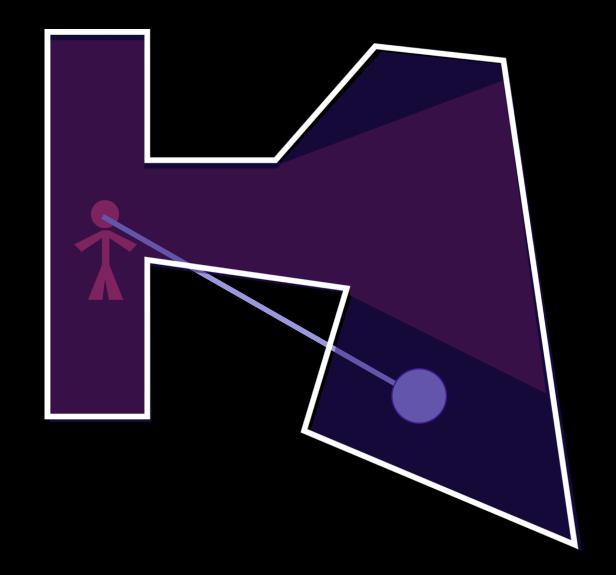
Stationary:

A set C is a 2-transmitter cover: $2VR(C) = \bigcup_{p \in C} 2VR(p) = P$

We can alter:

Capabilities of the guards

Environment to be guarded



Line crosses at most 2 walls ⇒visible from the 2-transmitter

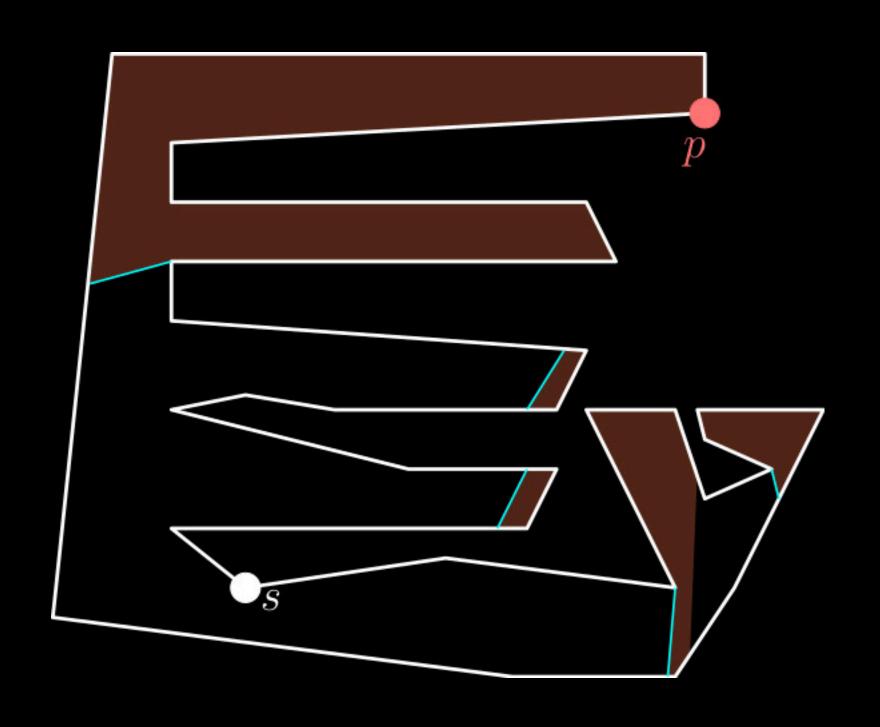
Formally: a point p is 2(k)-visible from a point q, if the straight line connection pq intersects P in at most two (k) connected components.

2VR(p) = set of points in P, 2-visible from p kVR(p) = set of points in P, k-visible from p

Stationary:

A set C is a 2-transmitter cover: $2VR(C) = \bigcup_{p \in C} 2VR(p) = P$ A set C is a k-transmitter cover: $kVR(C) = \bigcup_{p \in C} kVR(p) = P$

k-/2-Transmitter



2VR(p)/kVR(p) can have O(n) connected components.

• "Art Gallery Theorems"

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

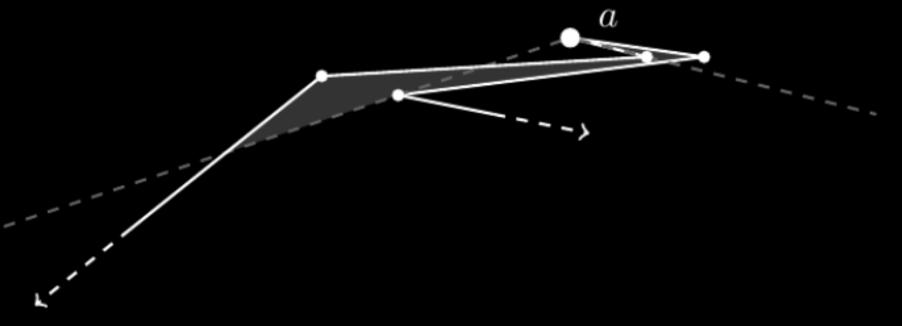
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon

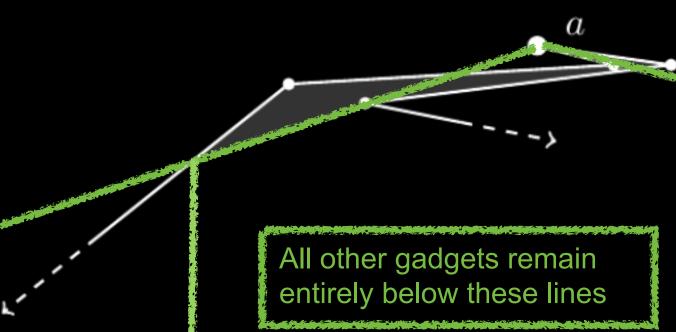
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon

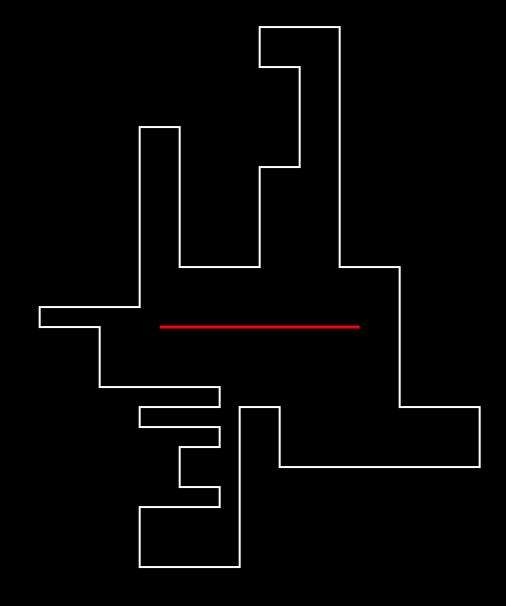


- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon



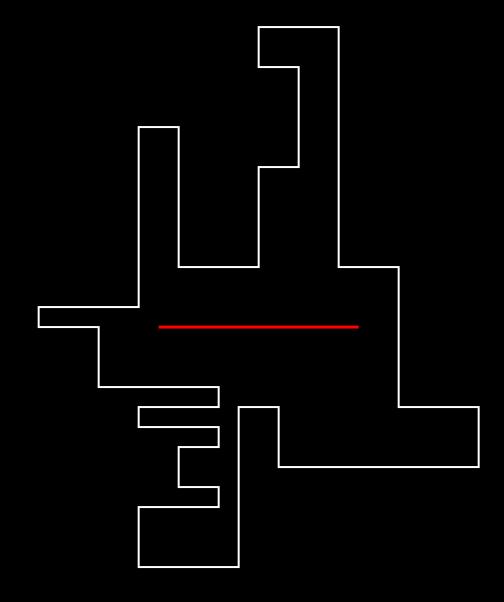
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon
- Minimum 2-/k-transmitter cover:

- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple *n*-gon
 - CFIL**S**2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon
- Minimum 2-/k-transmitter cover:
 - CFILS 2018: NP-hard to compute point 2-transmitter/point k-transmitter/edge 2-transmitter cover in simple polygon, point 2-transmitter also for orthogonal polygons

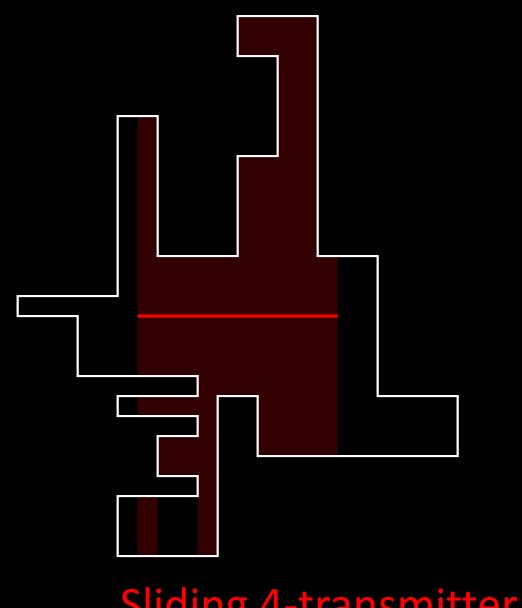


BCLMMVY2019: Therese Biedl, Timothy M. Chan, Stephanie Lee, Saeed Mehrabi, Fabrizio Montecchiani, Hamideh Vosoughpour, and Ziting Yu. Guarding orthogonal art galleries with sliding ktransmitters: Hardness and approximation MSG2020: Salma Sadat Mahdavi, Saeed Seddighin, and Mohammad Ghodsi. Covering orthogonal polygons with sliding k-transmitters. LINKÖPING
MSG2020: Salma Sadat Mahdavi, Saeed Seddighin, and Mohammad Ghodsi. Covering orthogonal polygons with sliding k-transmitters.
UNIVERSITY BBBDM19: Yeganeh Bahoo, Bahareh Banyassady, Prosenjit K. Bose, Stephane Durocher, Wolfgang Mulzer. A time-space trade-off for computing the k-visibility region of a point in a polygon.

• Minimum 2-/k-transmitter cover for sliding k-transmitters:

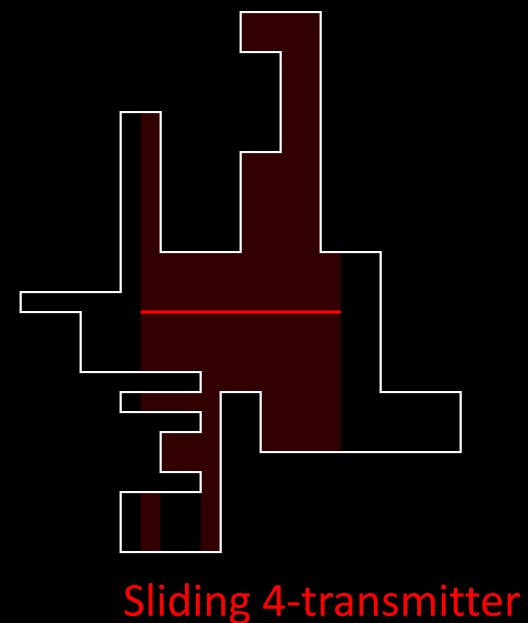


• Minimum 2-/k-transmitter cover for sliding k-transmitters:

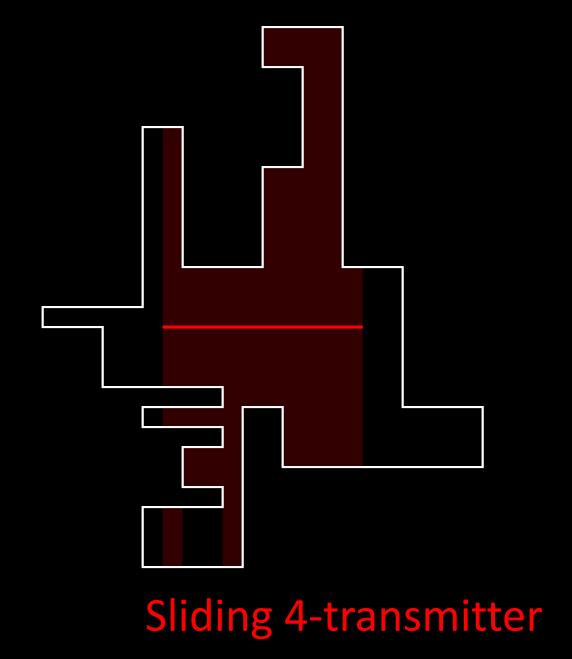


Sliding 4-transmitter

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters

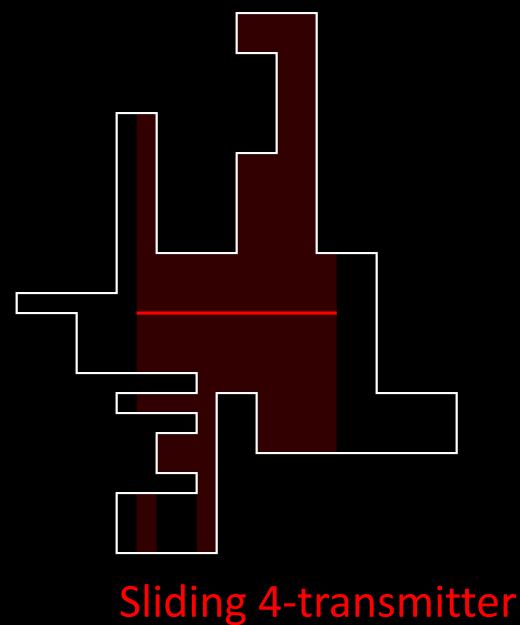


- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2

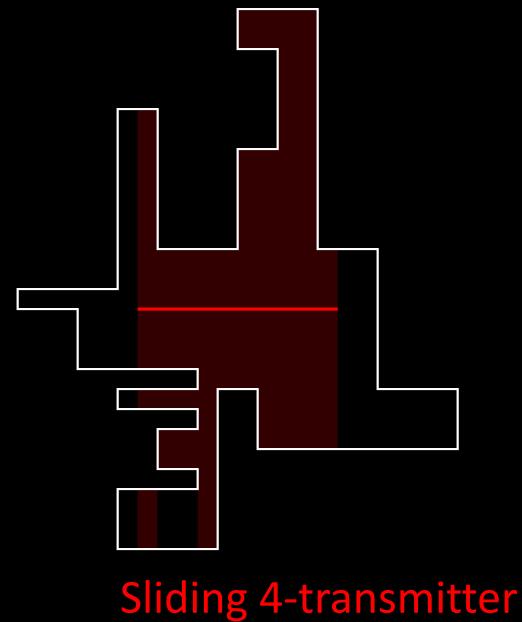


BCLMMVY2019: Therese Biedl, Timothy M. Chan, Stephanie Lee, Saeed Mehrabi, Fabrizio Montecchiani, Hamideh Vosoughpour, and Ziting Yu. Guarding orthogonal art galleries with sliding ktransmitters: Hardness and approximation

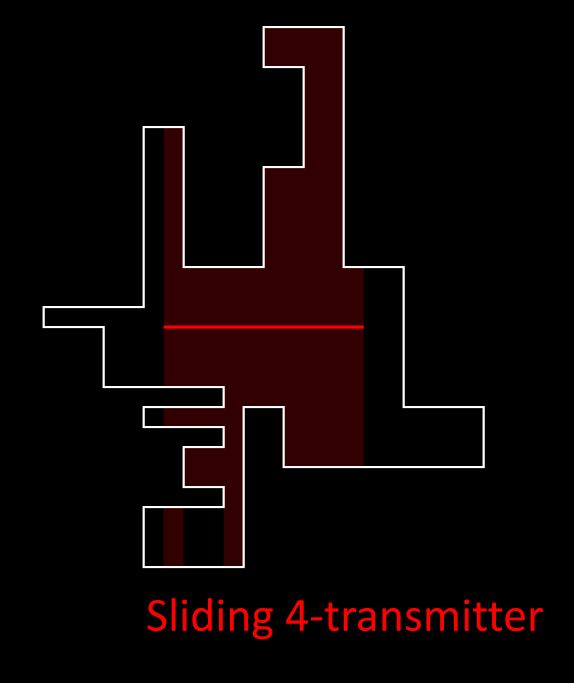
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation



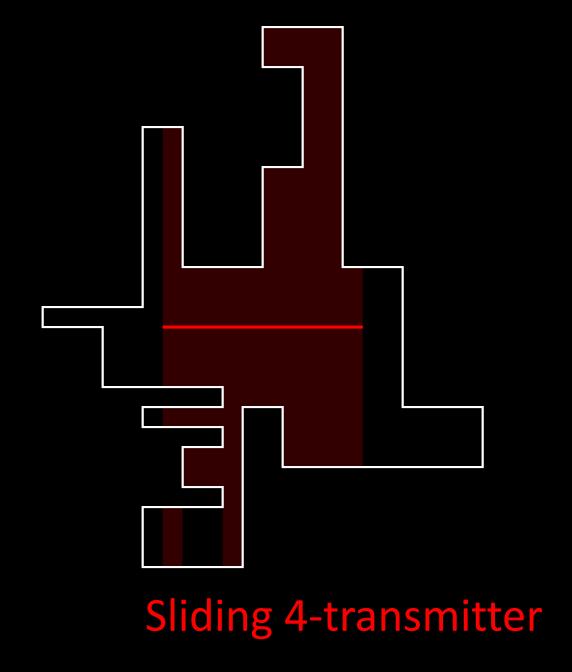
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - ► BCLMMVY2019: minimize #sliding *k*-transmitters



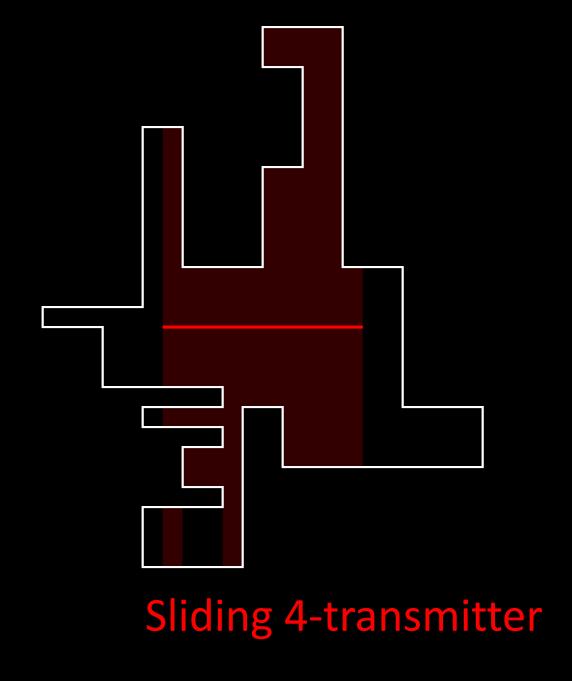
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - ► BCLMMVY2019: minimize #sliding *k*-transmitters
 - NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed



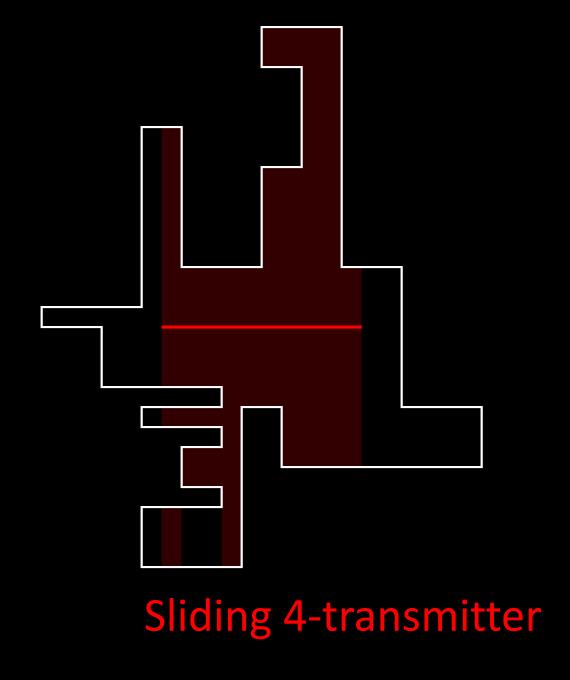
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - BCLMMVY2019: minimize #sliding k-transmitters
 - NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
 - Constant-factor approximation



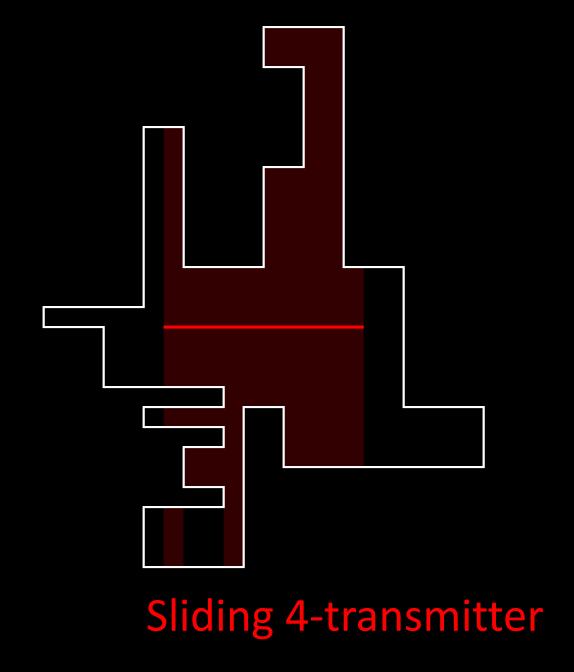
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - BCLMMVY2019: minimize #sliding k-transmitters
 - NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
 - Constant-factor approximation
- Computation of *k*-visibility region



- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - ► BCLMMVY2019: minimize #sliding *k*-transmitters
 - NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
 - Constant-factor approximation
- Computation of *k*-visibility region
 - BBBDM19: computation in limited-workspace model



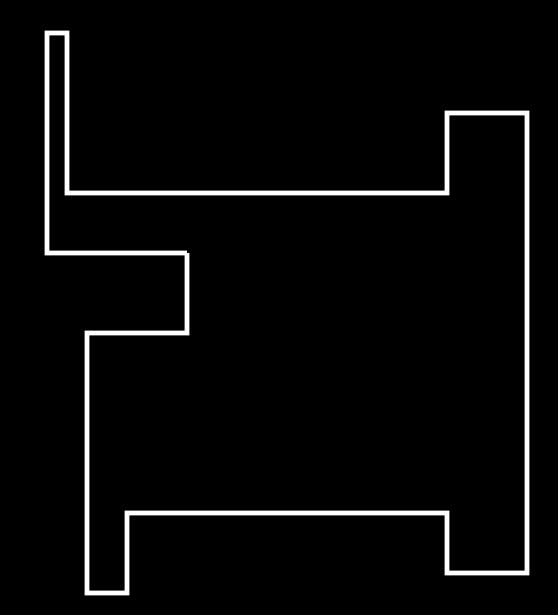
- Minimum 2-/k-transmitter cover for sliding k-transmitters:
 - MSG2020(/2014): minimize total length of the k-transmitters
 - NP-hard for k=2
 - 2-approximation
 - BCLMMVY2019: minimize #sliding \overline{k} -transmitters
 - NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
 - Constant-factor approximation
- Computation of *k*-visibility region
 - BBBDM19: computation in limited-workspace model
 - BBDS20: O(nk) algorithm



So far our guards were (mostly) stationary

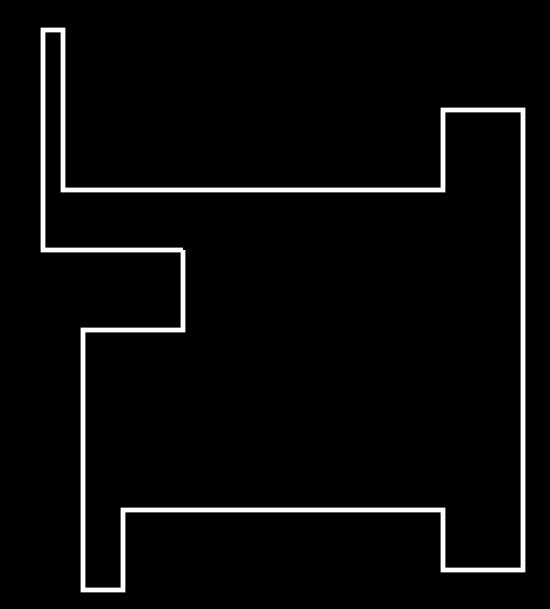
- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move

- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move



Given: Polygon P

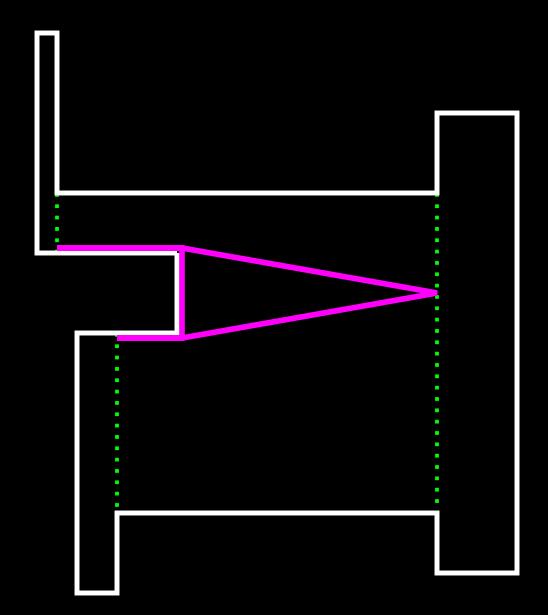
- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move



Given: Polygon P

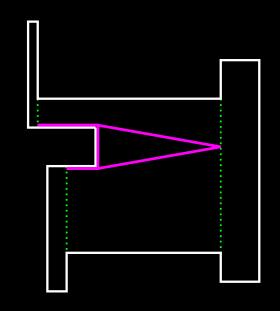
What is the shortest tour for a watchman along which all points of P become visible?

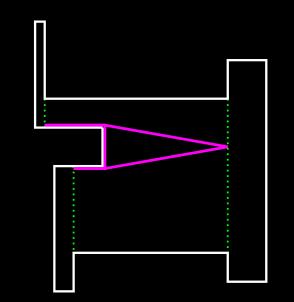
- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move



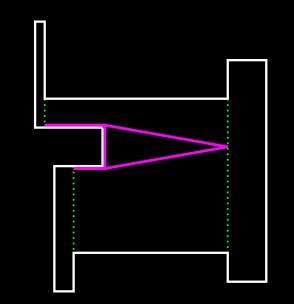
Given: Polygon P

What is the shortest tour for a watchman along which all points of P become visible?

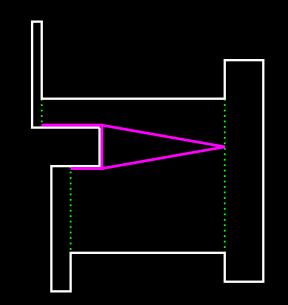




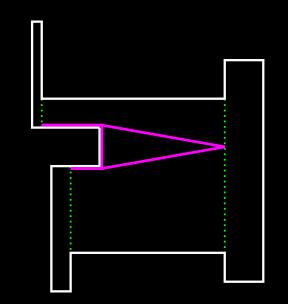
• Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]



- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]



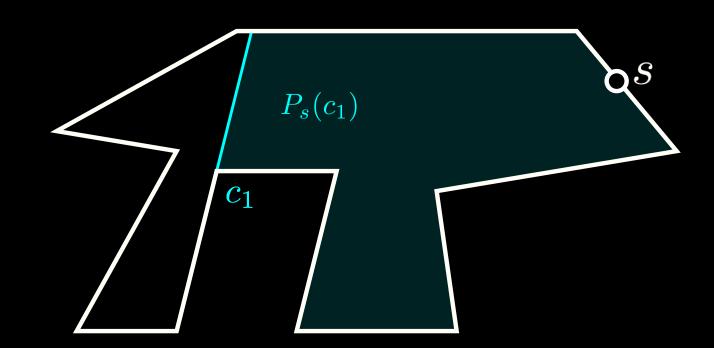
- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
- Central concept: extensions



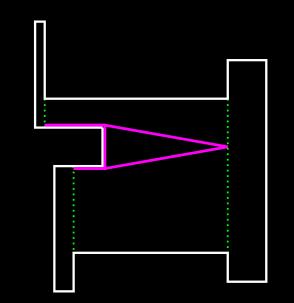
- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
- Central concept: extensions

A cut c partitions polygon into two subpolygons:

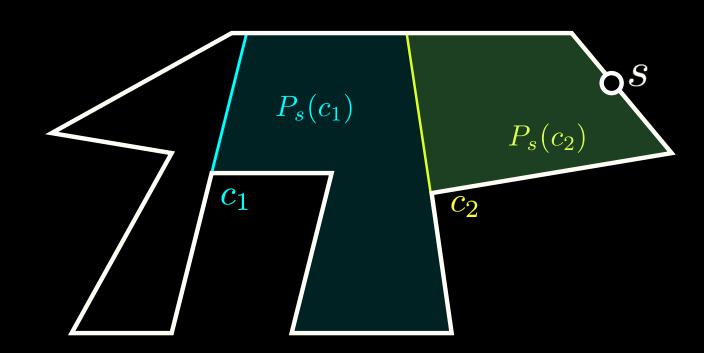
- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
- Central concept: extensions



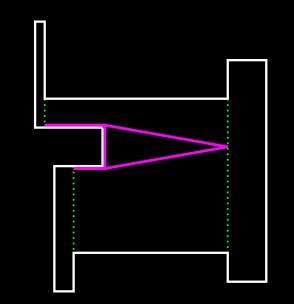
A cut c partitions polygon into two subpolygons: $P_s(c)$ —subpolygon that contains starting point s



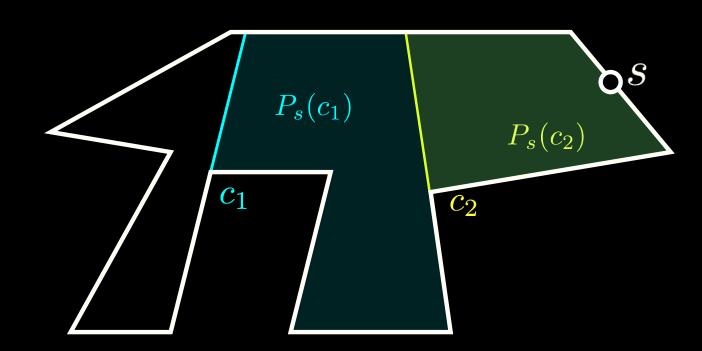
- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
- Central concept: extensions



A cut c partitions polygon into two subpolygons: $P_s(c)$ —subpolygon that contains starting point s A cut c_1 dominates c_2 if $P_s(c_2) \subseteq P_s(c_1)$



- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
- WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
- Central concept: extensions



A cut c partitions polygon into two subpolygons: $P_s(c)$ —subpolygon that contains starting point s A cut c_1 dominates c_2 if $P_s(c_2) \subseteq P_s(c_1)$ Essential cut: not dominated by other cut

[Nilsson, S., 2022]

Mobile k-transmitter

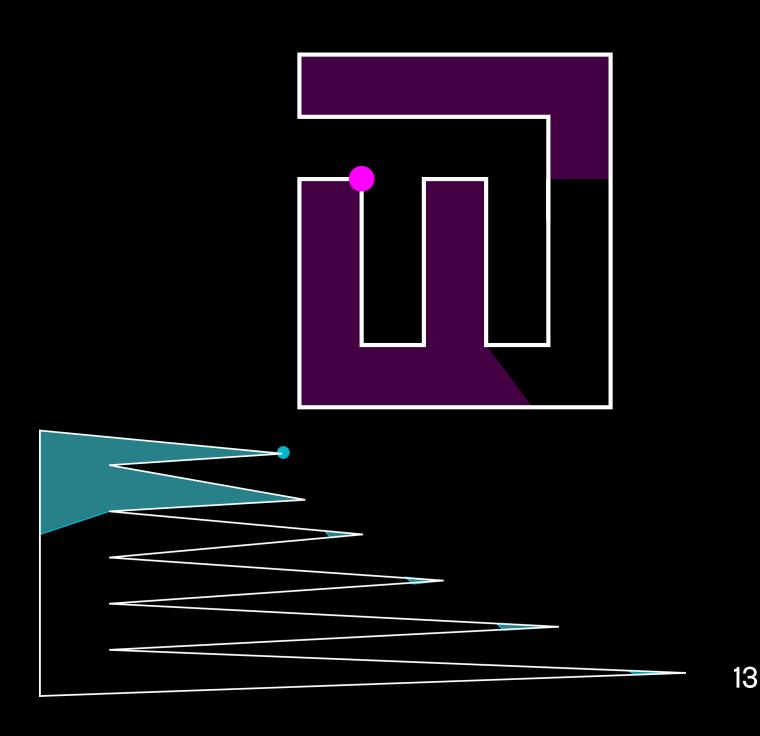
- Mobile k-transmitter
- Goal:
 - Establish a connection with all (or a discrete subset S⊂P of the) points of a polygon P ("sees" all of S or P)

- Mobile k-transmitter
- Goal:
 - Establish a connection with all (or a discrete subset S⊂P of the) points of a polygon P ("sees" all of S or P)
 - Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)

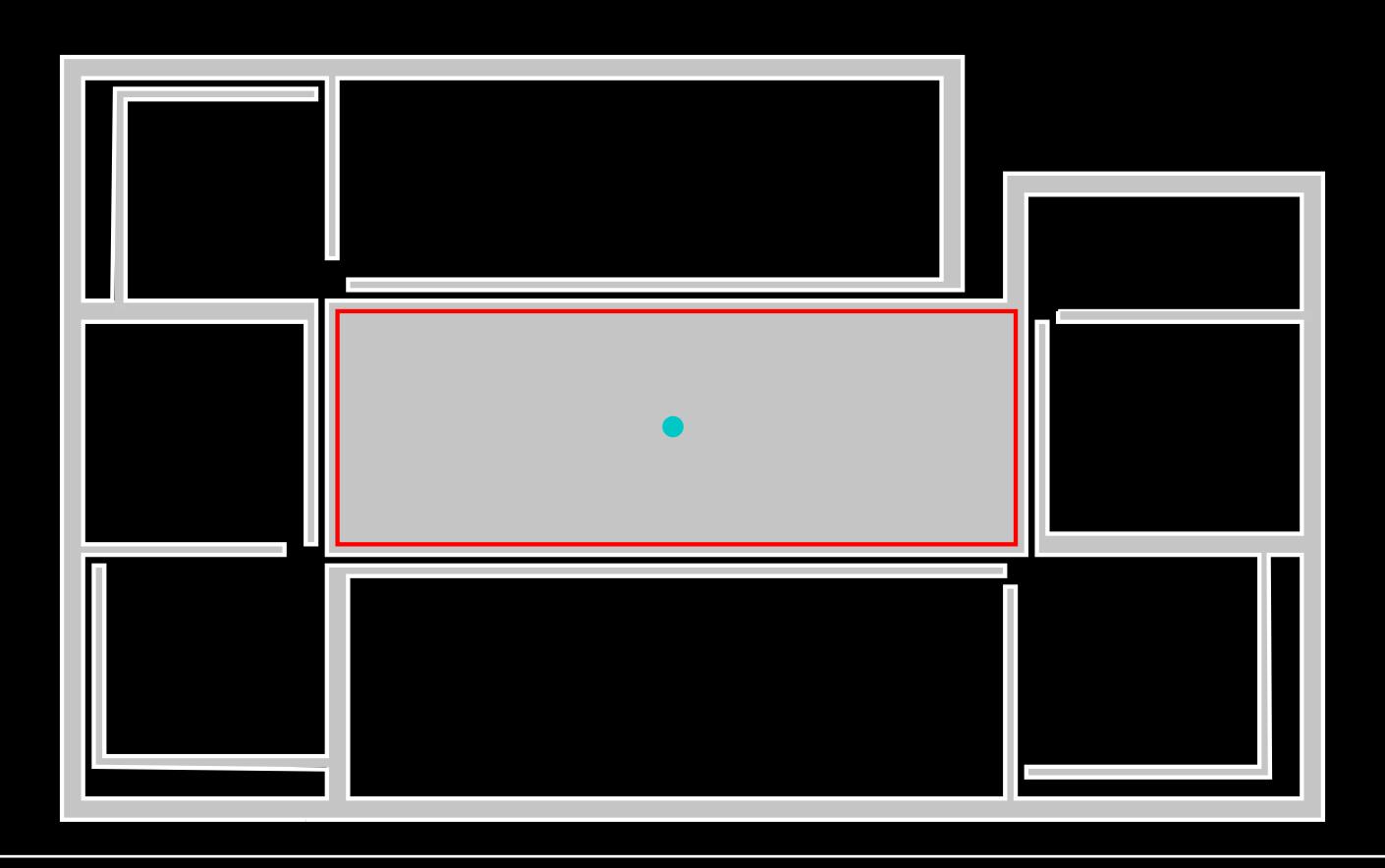
- Mobile k-transmitter
- Goal:
 - Establish a connection with all (or a discrete subset S⊂P of the) points of a polygon P ("sees" all of S or P)
 - Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)
 - With or without a given starting point s
 k-TrWRP(S,P,s) or k-TrWRP(S,P)

13

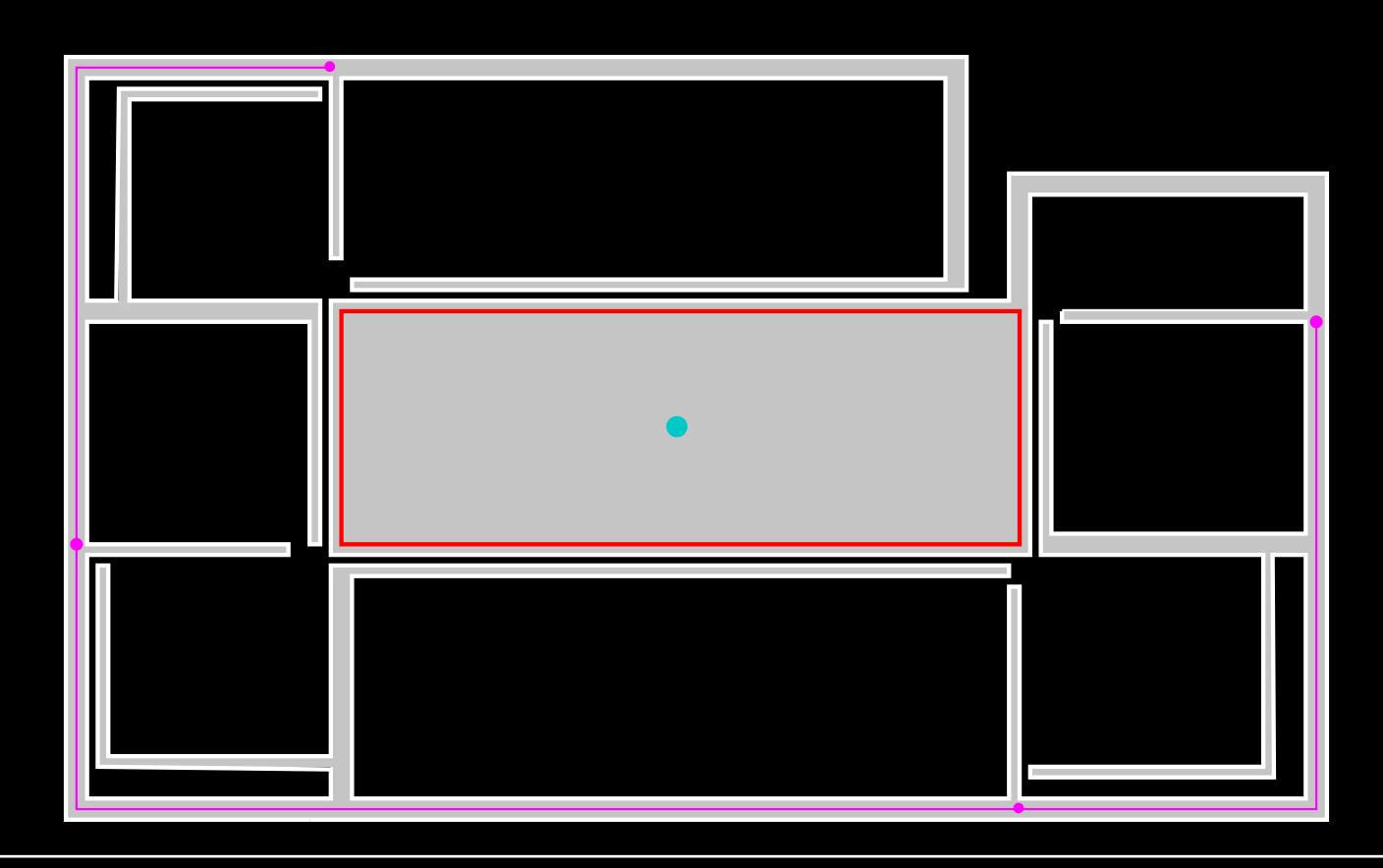
- Mobile k-transmitter
- Goal:
 - Establish a connection with all (or a discrete subset S⊂P of the) points of a polygon P ("sees" all of S or P)
 - Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)
 - With or without a given starting point s
 k-TrWRP(S,P,s) or k-TrWRP(S,P)
- Extensions do not translate to k-transmitters for k≥2 (no longer local!)



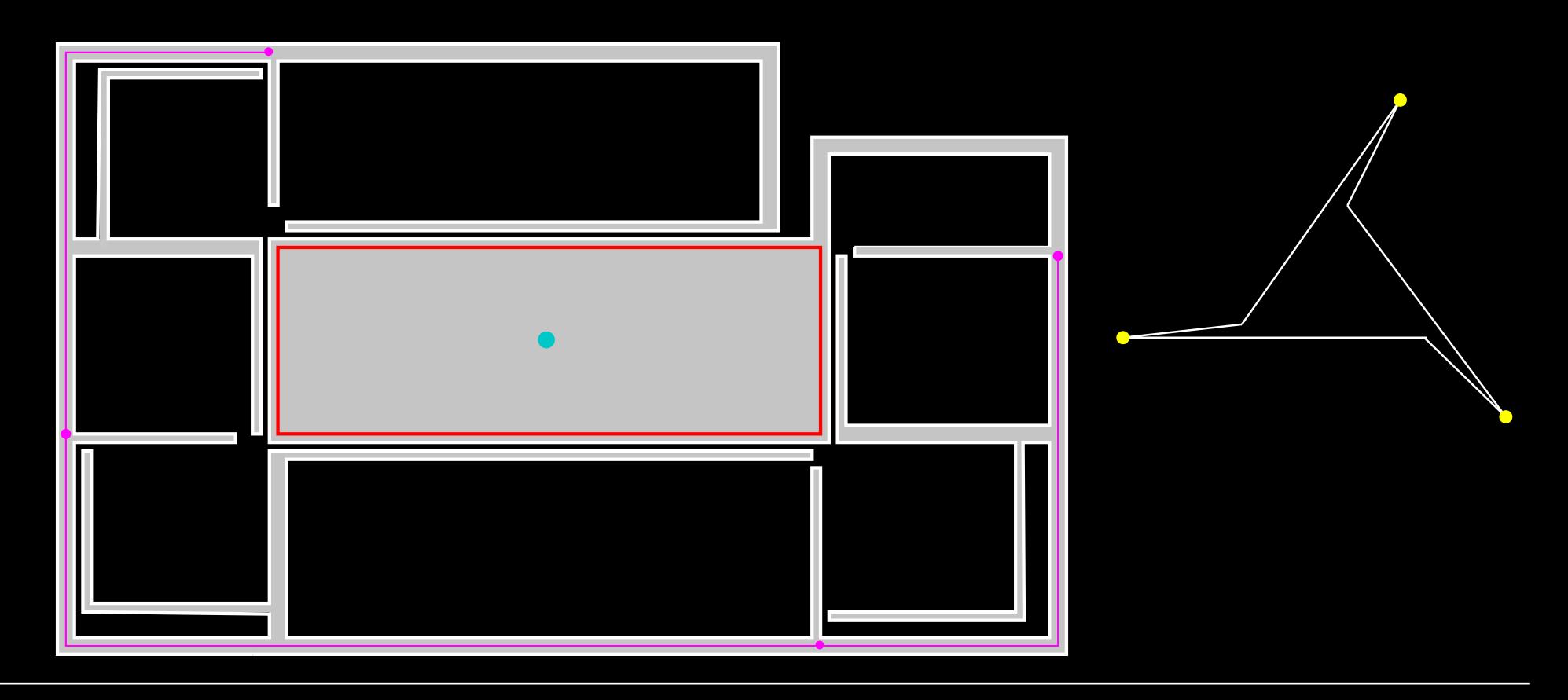
Even for a tour in a simple polygon seeing the boundary is not enough:



Even for a tour in a simple polygon seeing the boundary is not enough:



Even for a tour in a simple polygon seeing the boundary is not enough:



Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In ISI unless P=NP, even for k=2.

Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In |S| unless P=NP, even for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

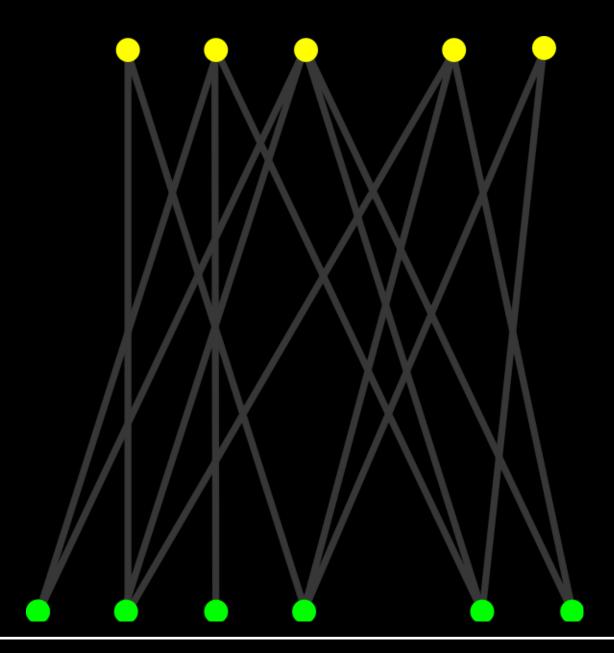
Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In ISI unless P=NP, even for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In IS1 unless P=NP, even for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

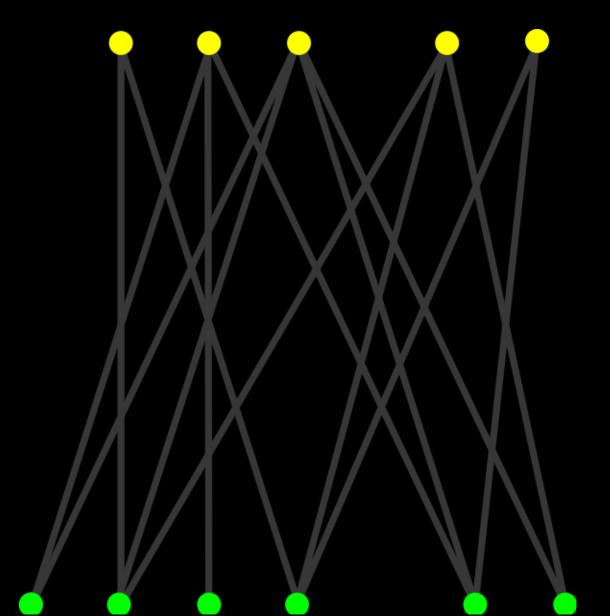
Set Cover instance: universe U and collection of sets C

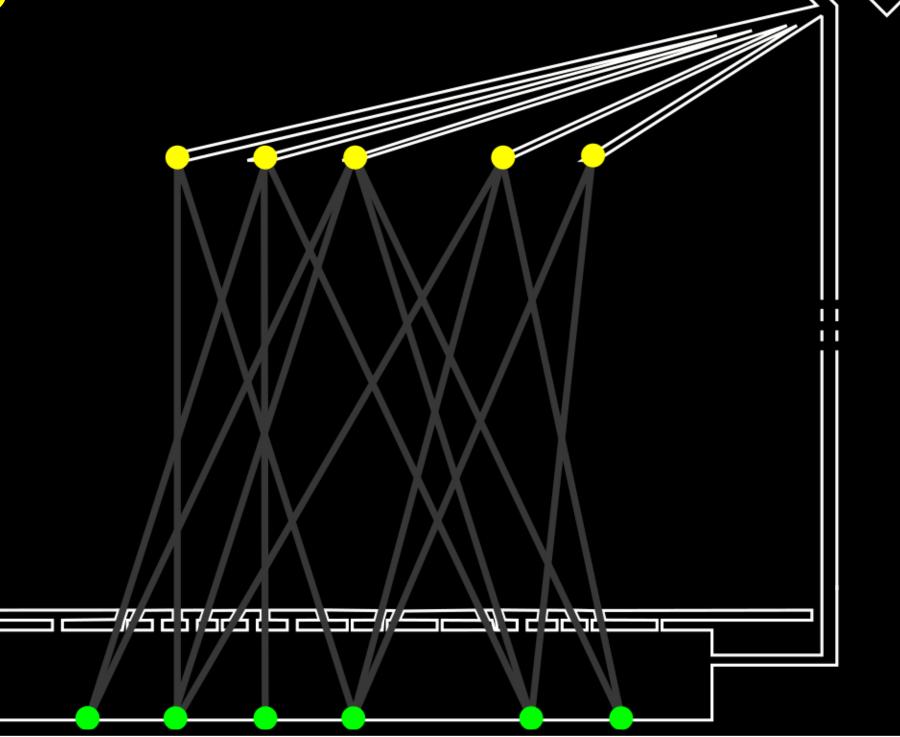


Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In IS1 unless P=NP, even for k=2. \Rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Set Cover instance: universe *U* and collection of sets *C*

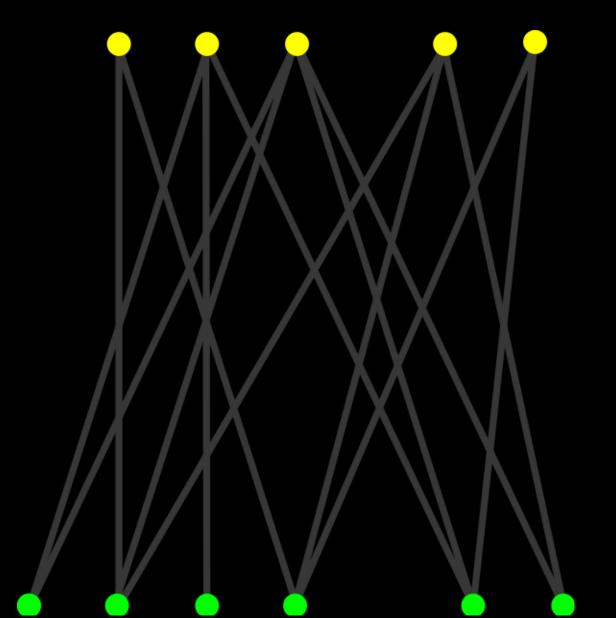


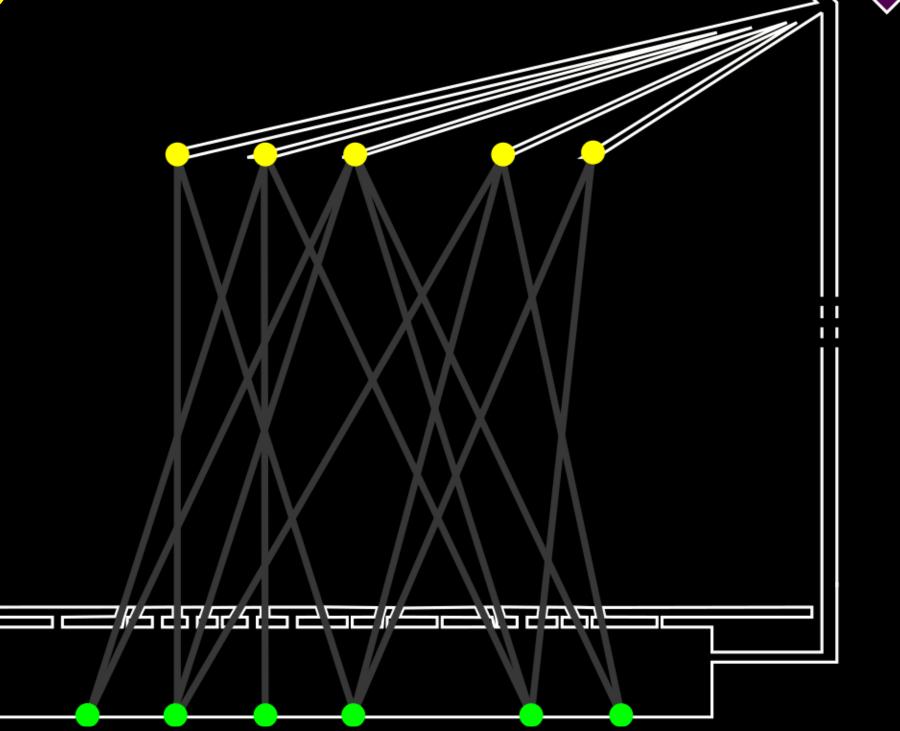


Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In IS1 unless P=NP, even for k=2. \Rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Set Cover instance: universe *U* and collection of sets *C*



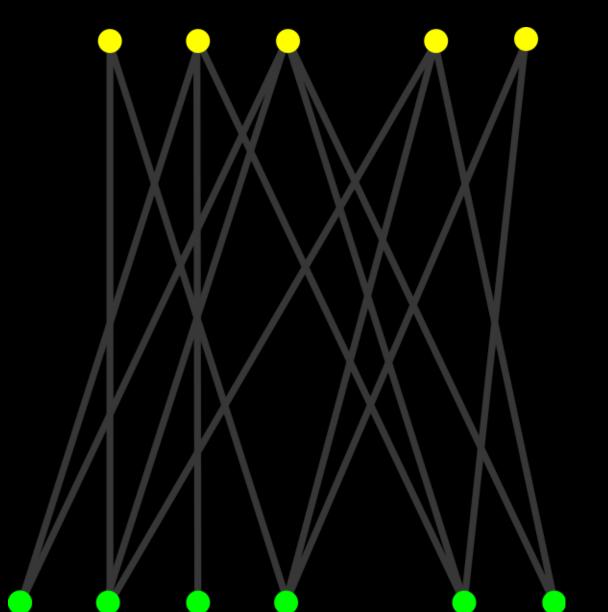


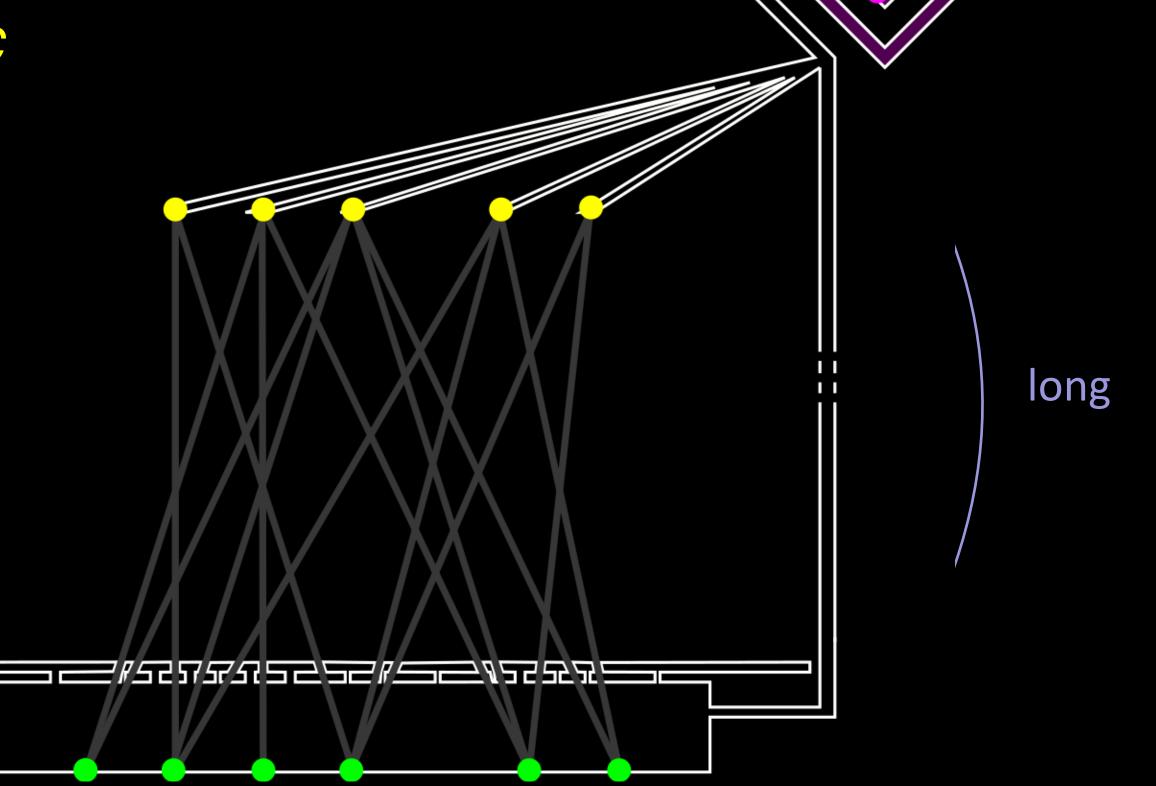
Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In S unless P=NP, even

for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Set Cover instance: universe *U* and collection of sets *C*



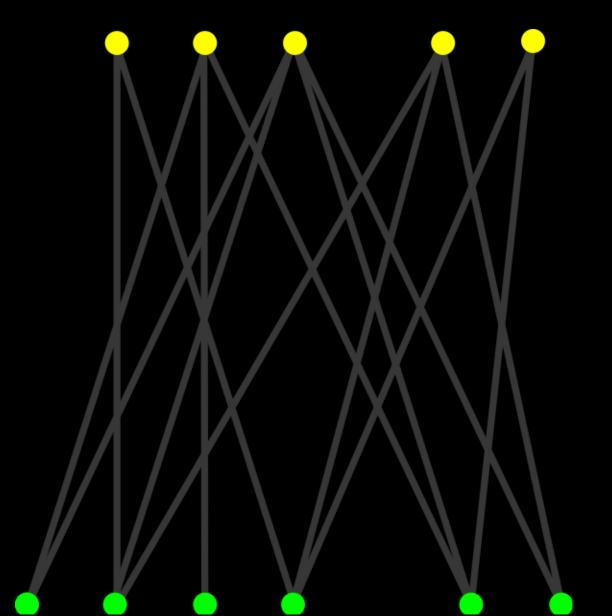


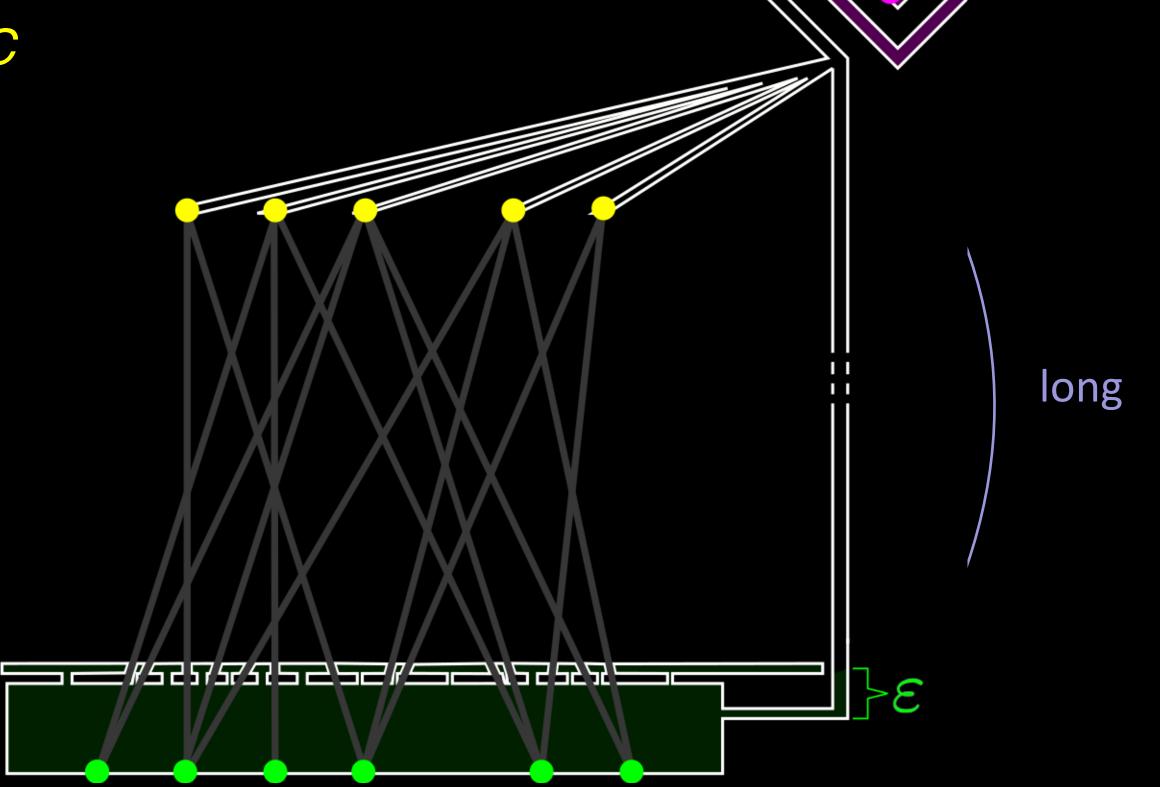
Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In IS1 unless P=IS1.

for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Set Cover instance: universe *U* and collection of sets *C*



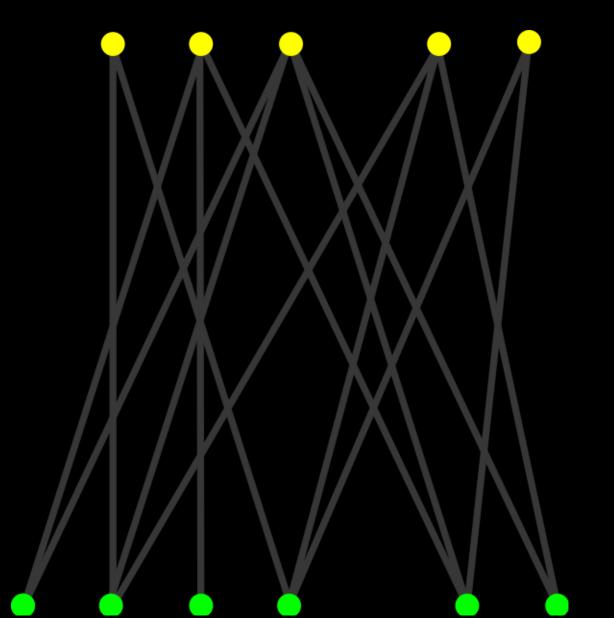


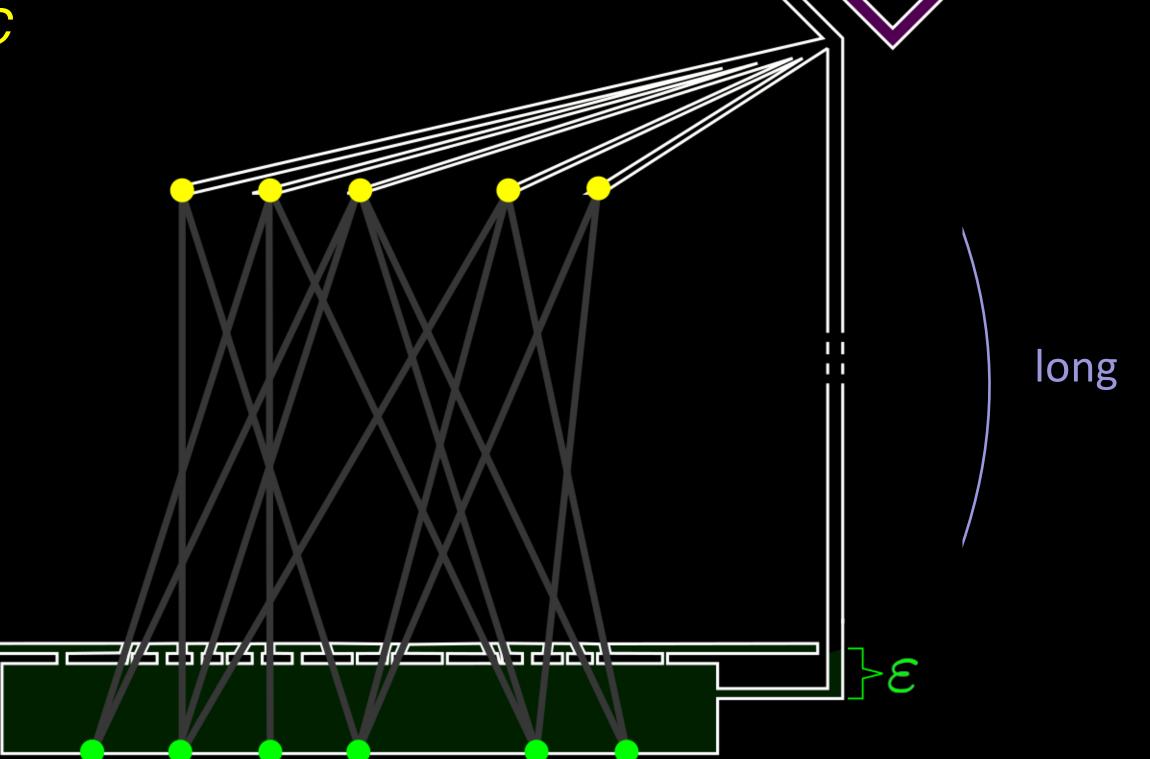
Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio c In IS1 unless P=IS1.

for k=2. \rightarrow Inapproximability: Cannot be approximated to within a logarithmic factor

Proof: reduction from Set Cover

Set Cover instance: universe *U* and collection of sets *C*





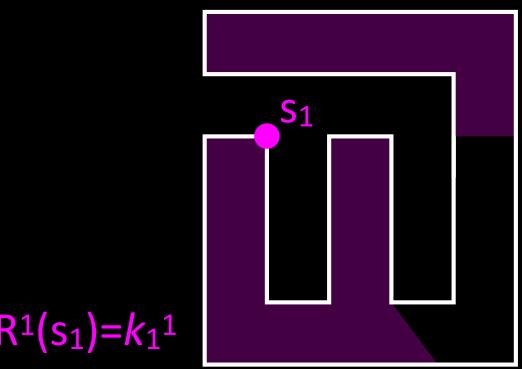
Theorem 2: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). Then R yields an approximation ratio of $O(\log^2(|S| n) \log \log(|S| n) \log |S|)$.

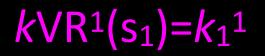
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)

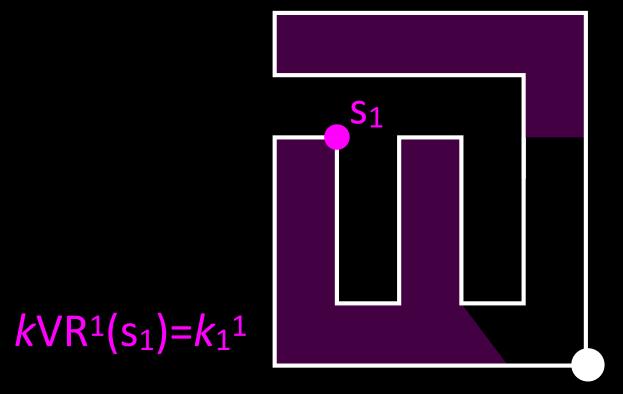
 $kVR^{2}(s_{1})=k_{1}^{2}$

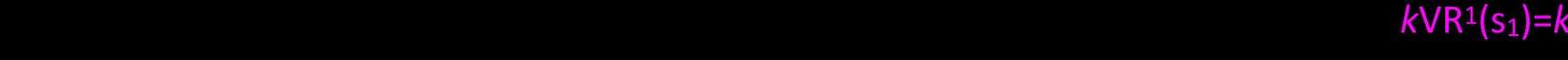




- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)

 $kVR^{2}(s_{1})=k_{1}^{2}$

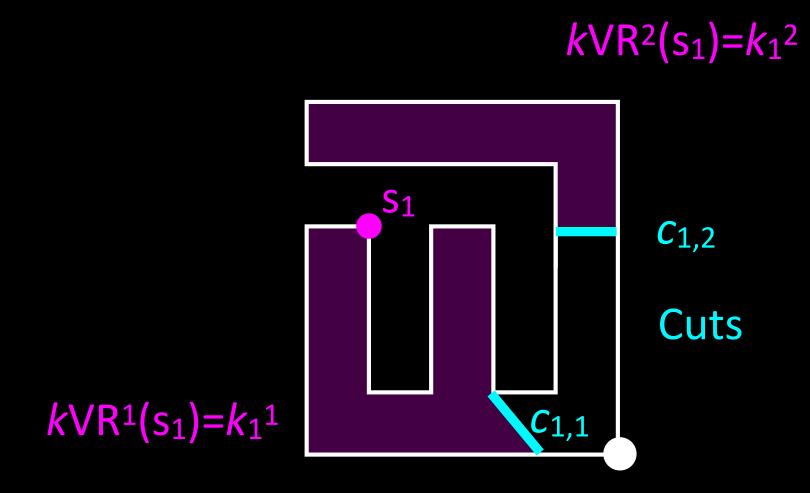




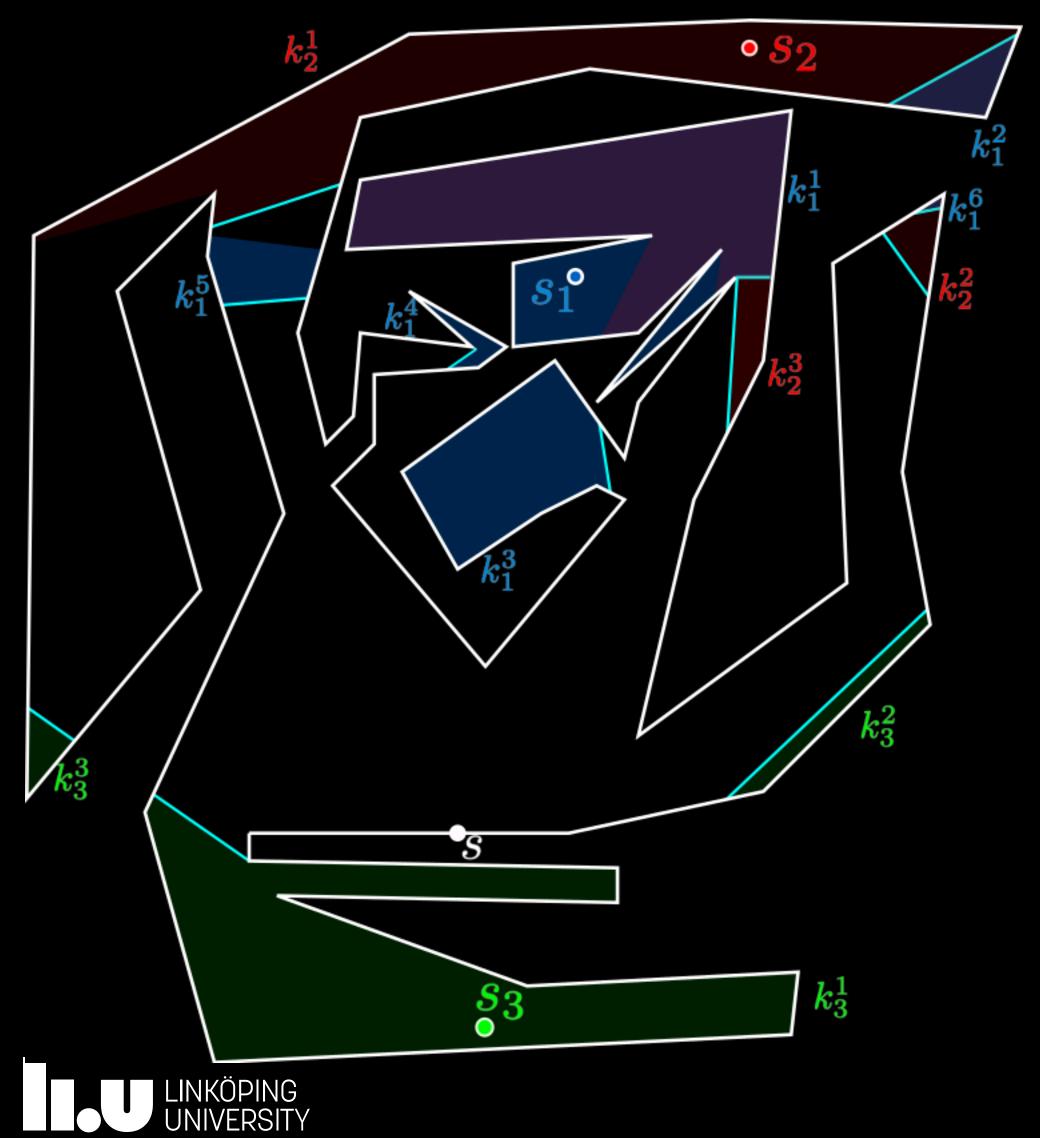
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)

 $kVR^{2}(s_{1})=k_{1}^{2}$ Cuts

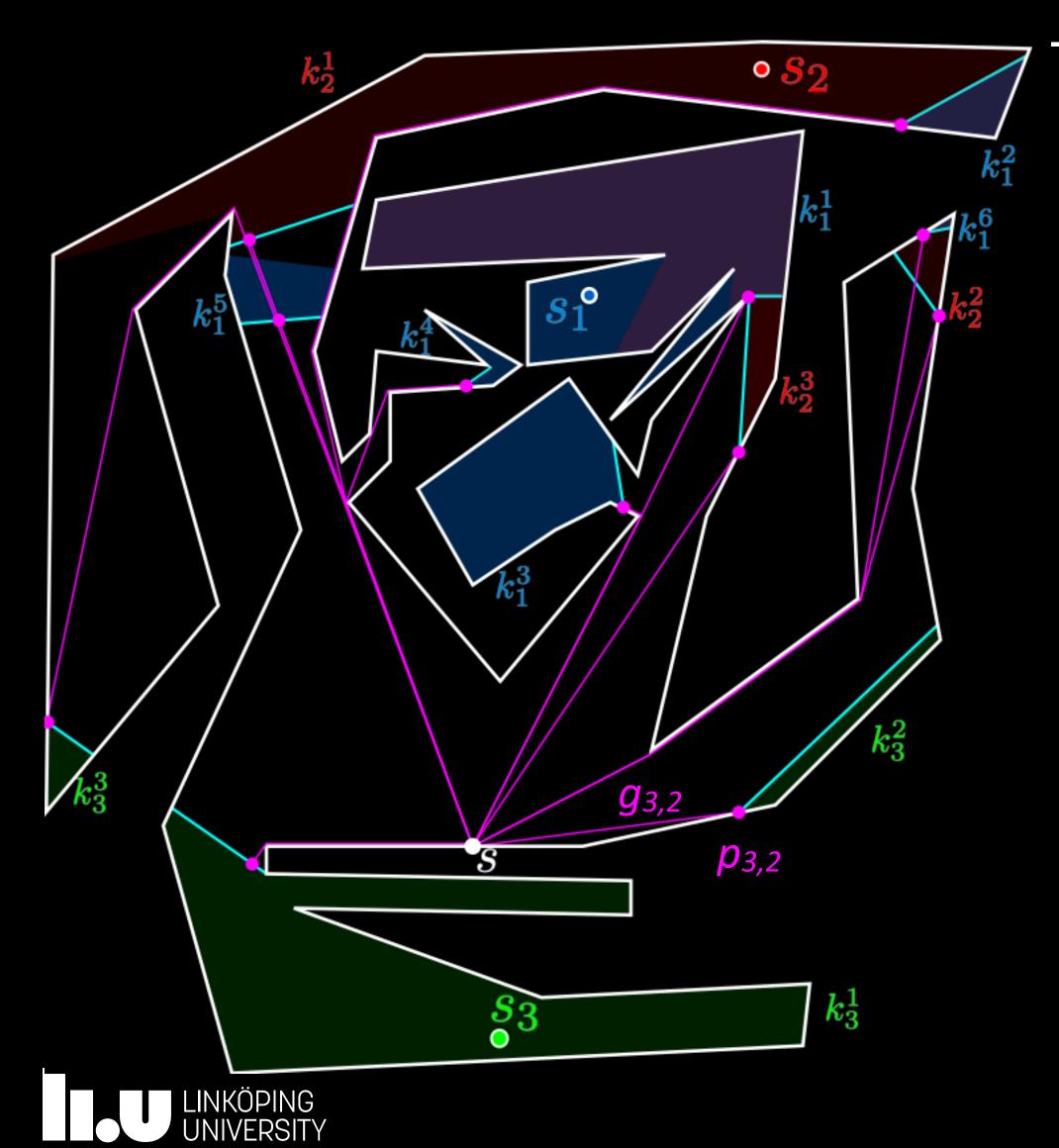
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)



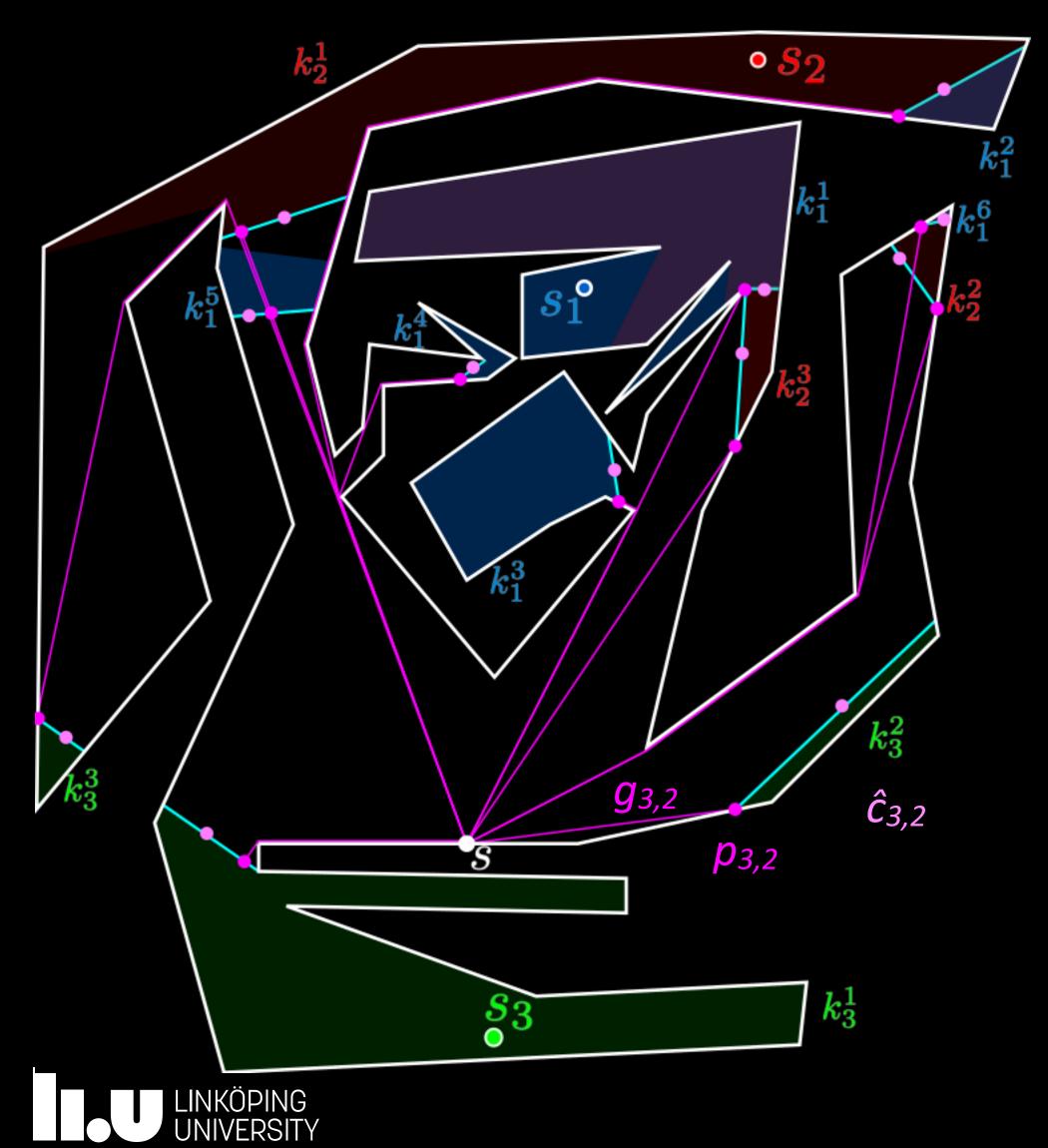
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)



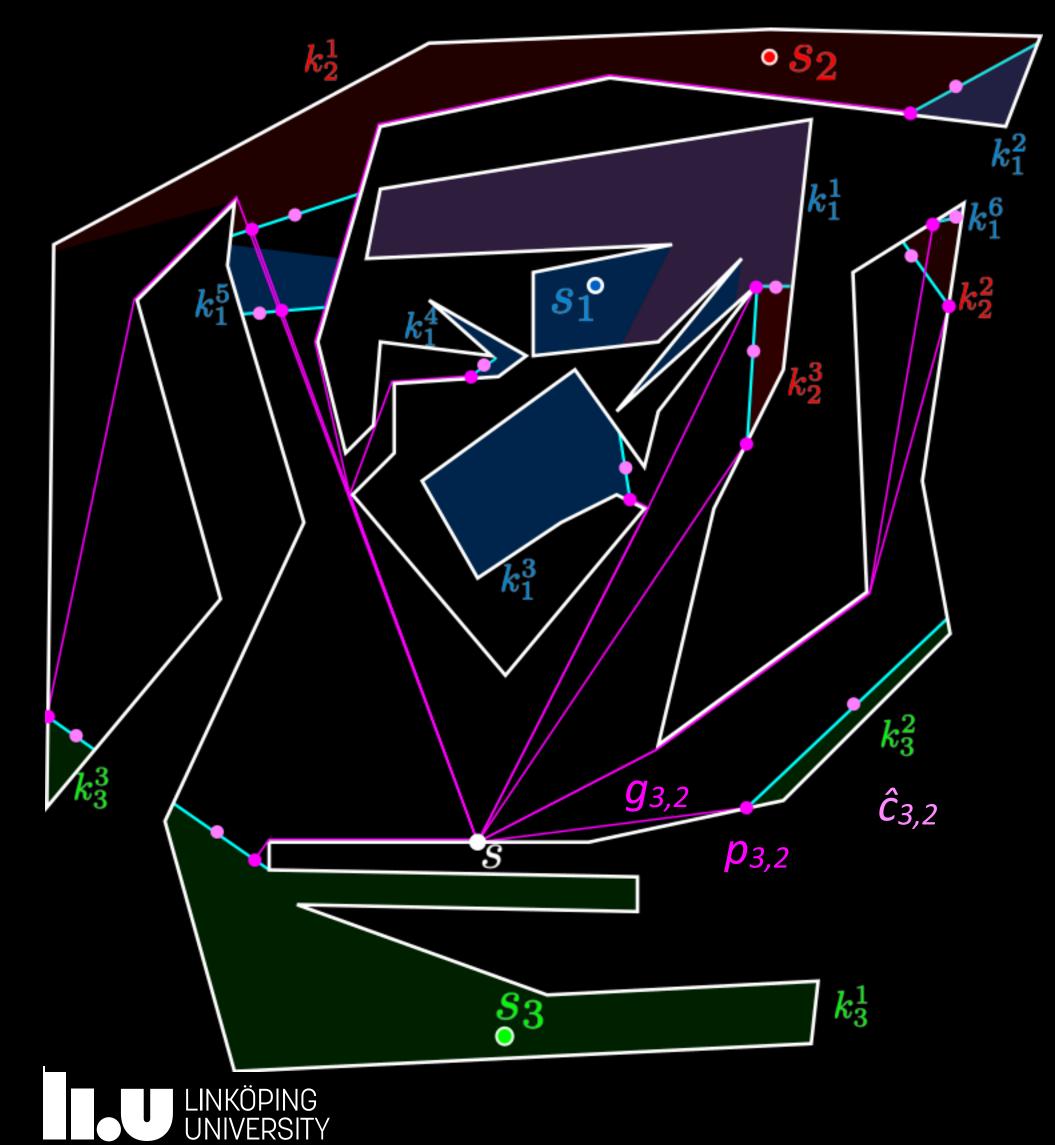
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)

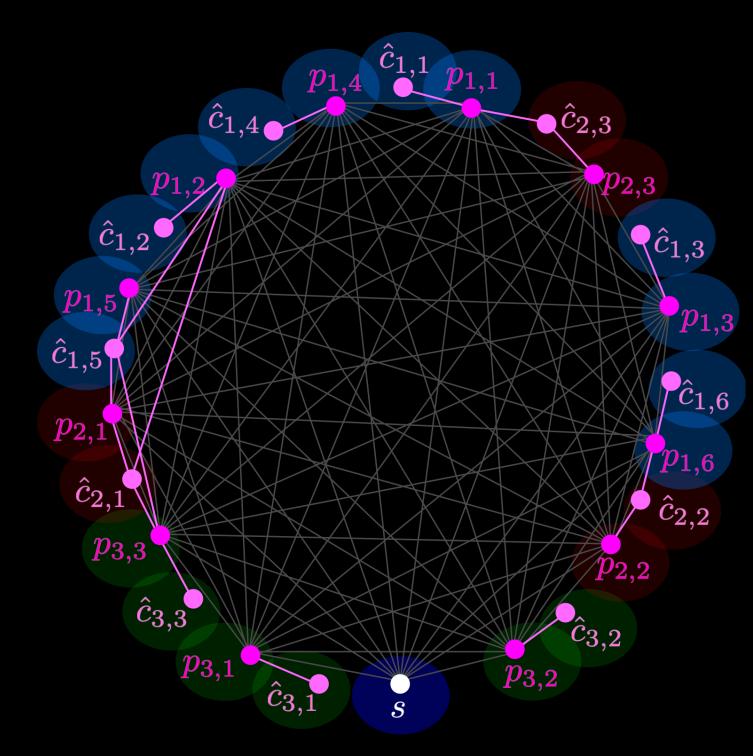


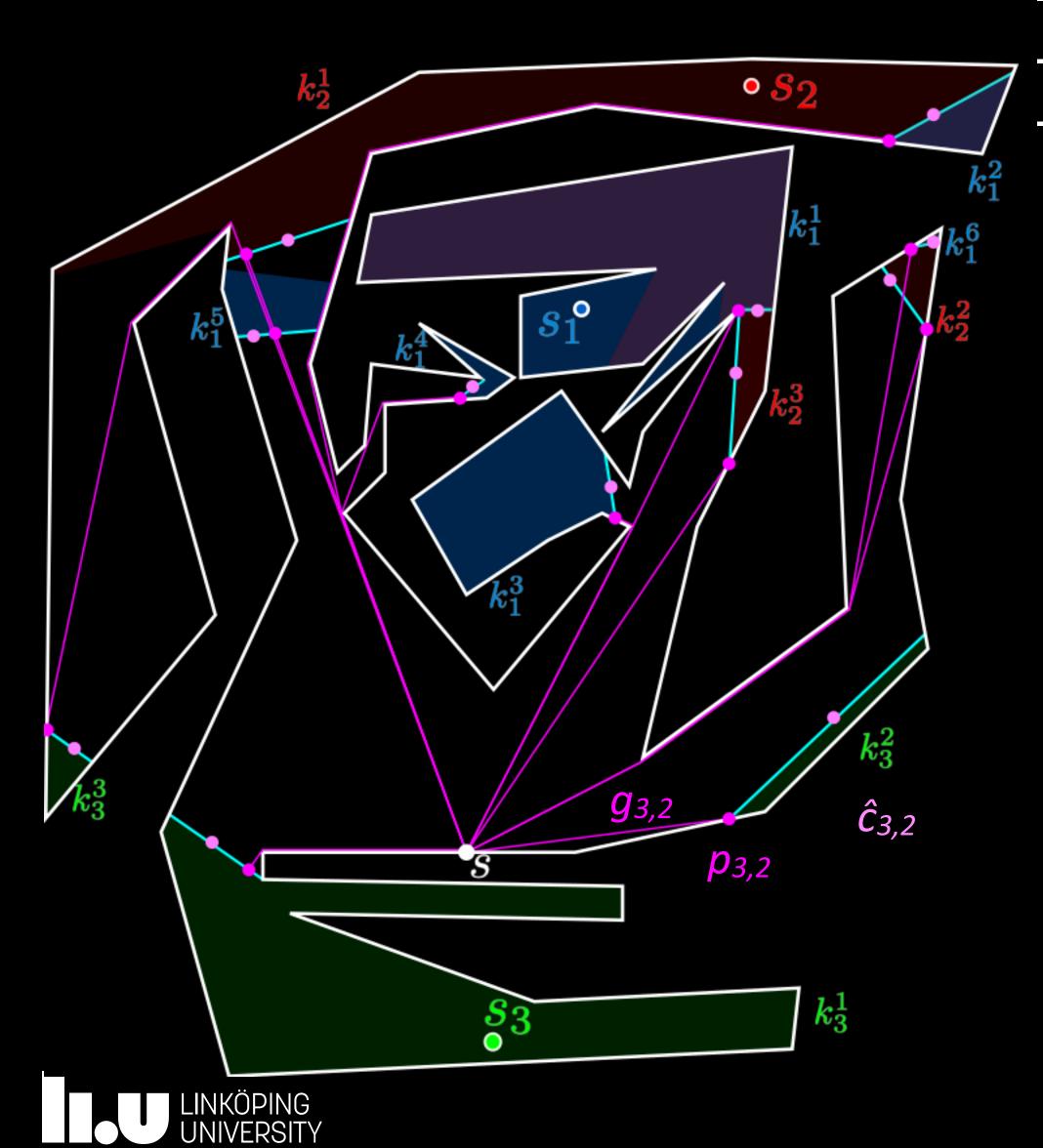
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)



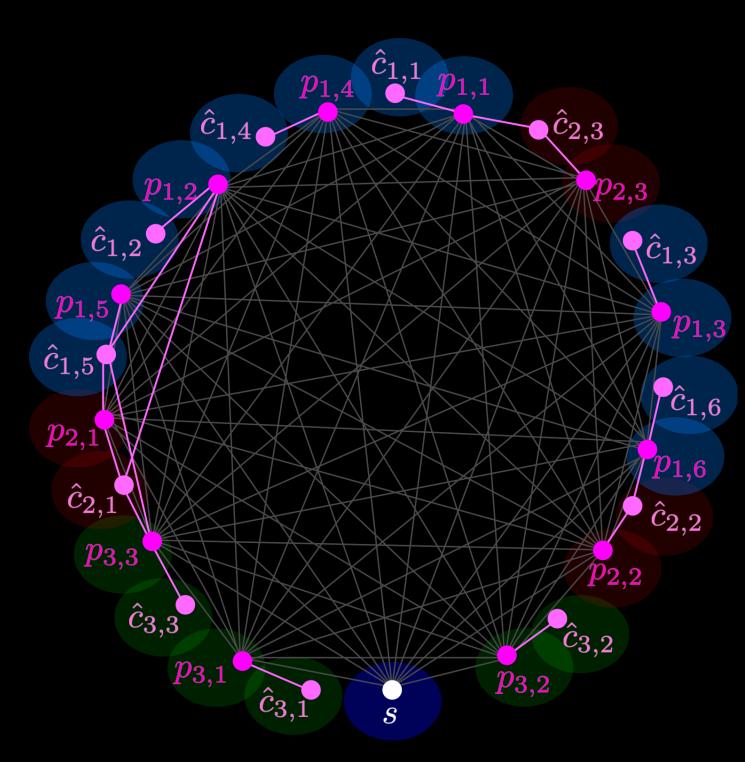
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:

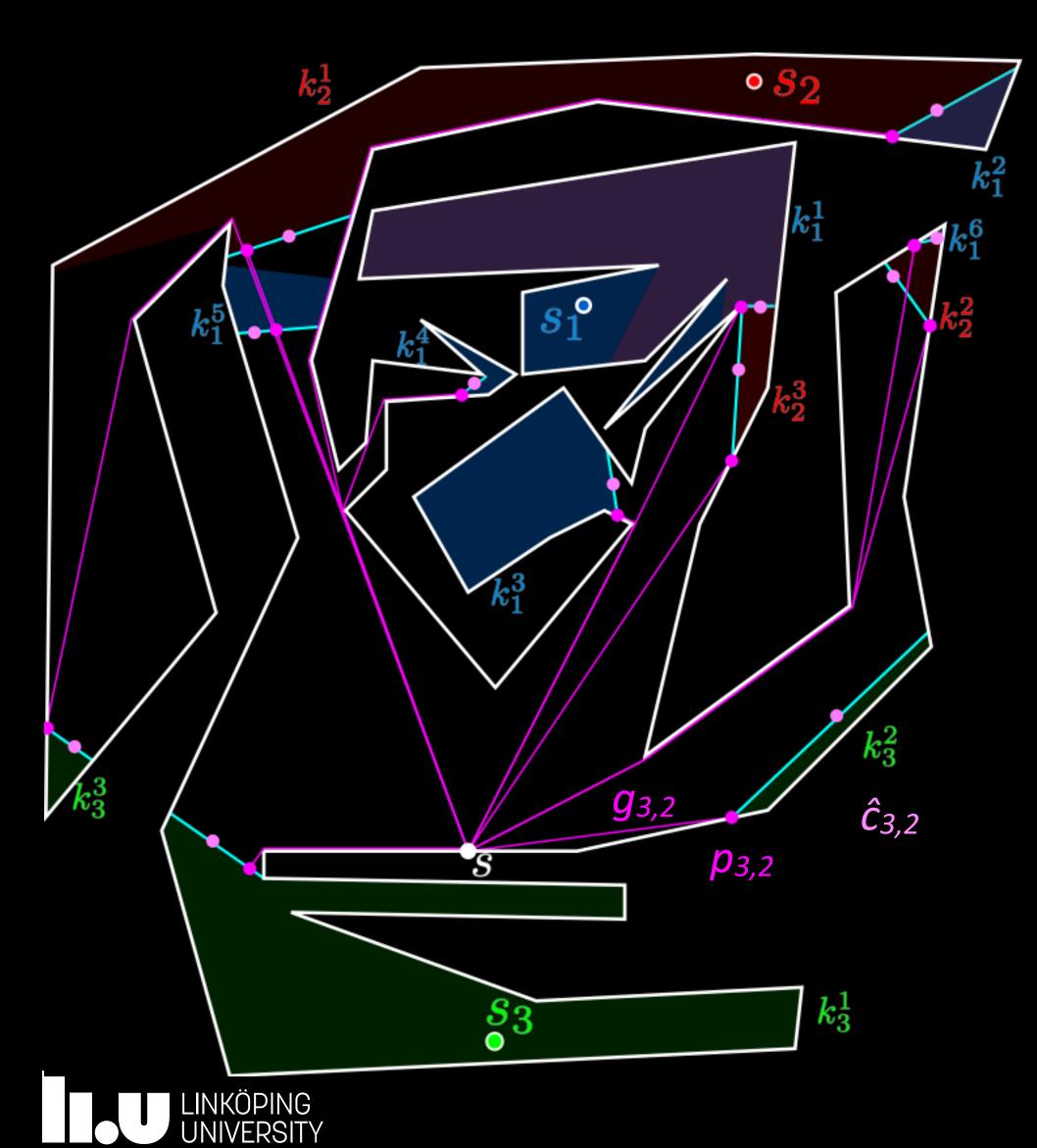




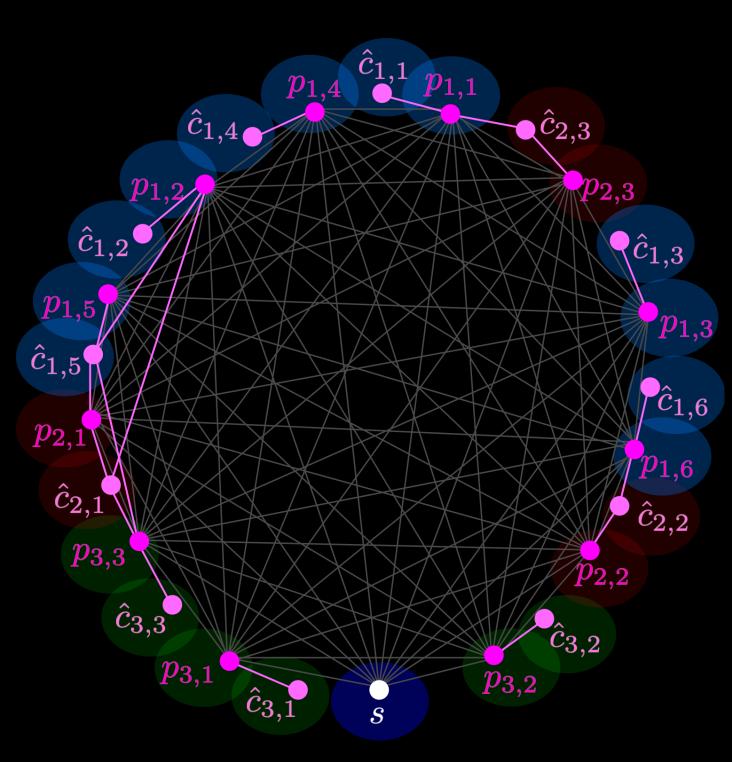


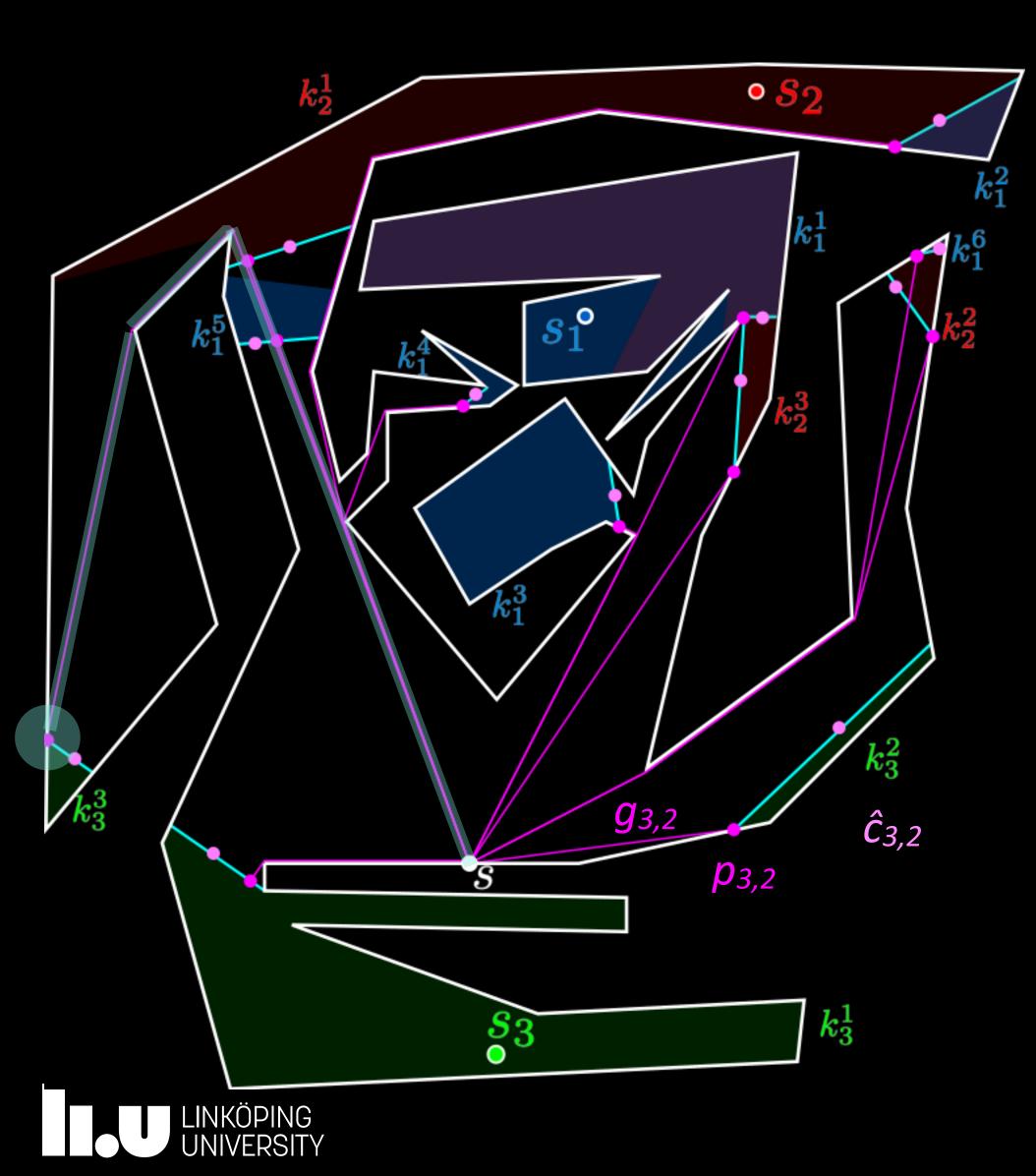
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic





- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

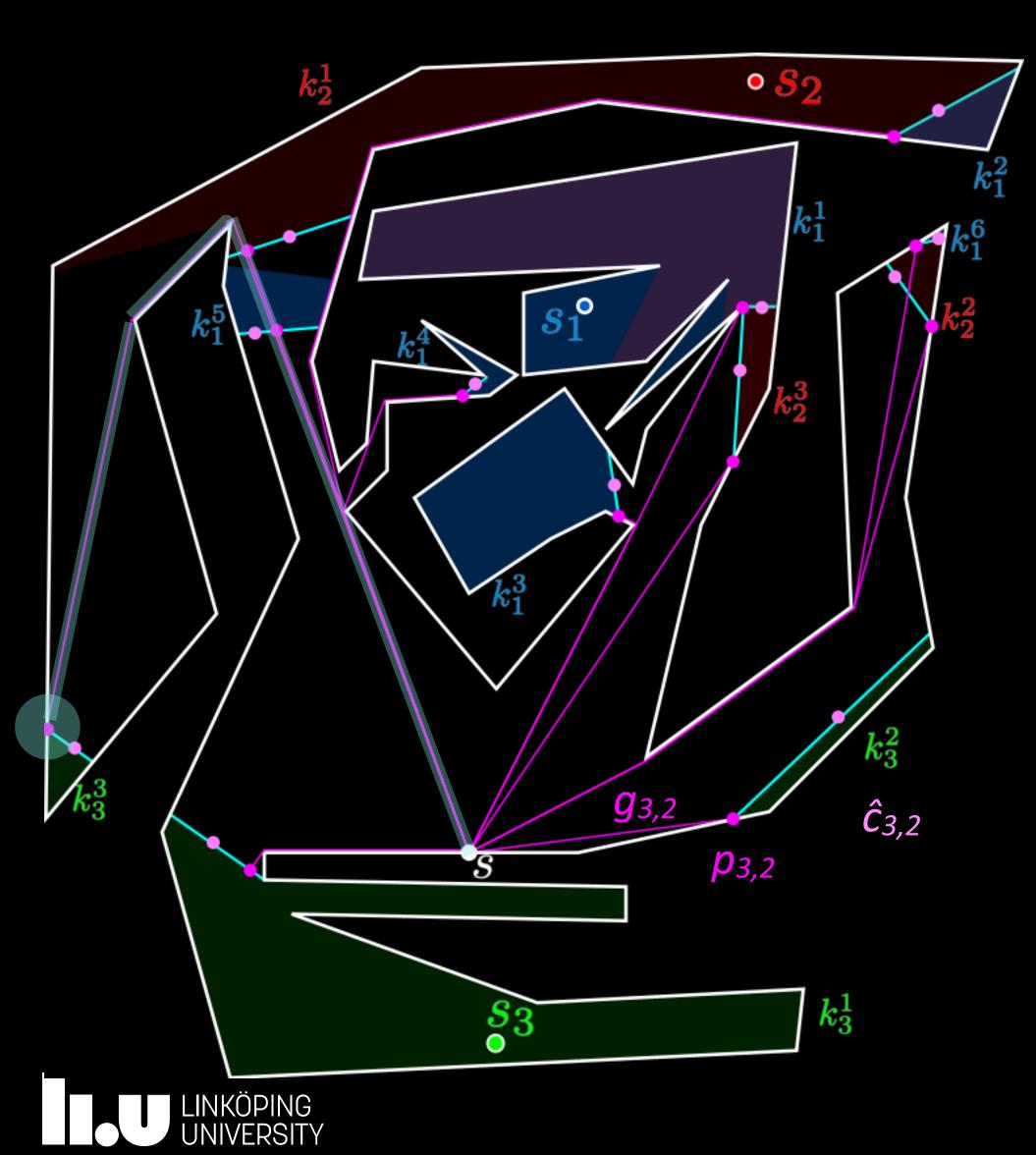




- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting p_{i,j} must visit ĉ_{i,j})

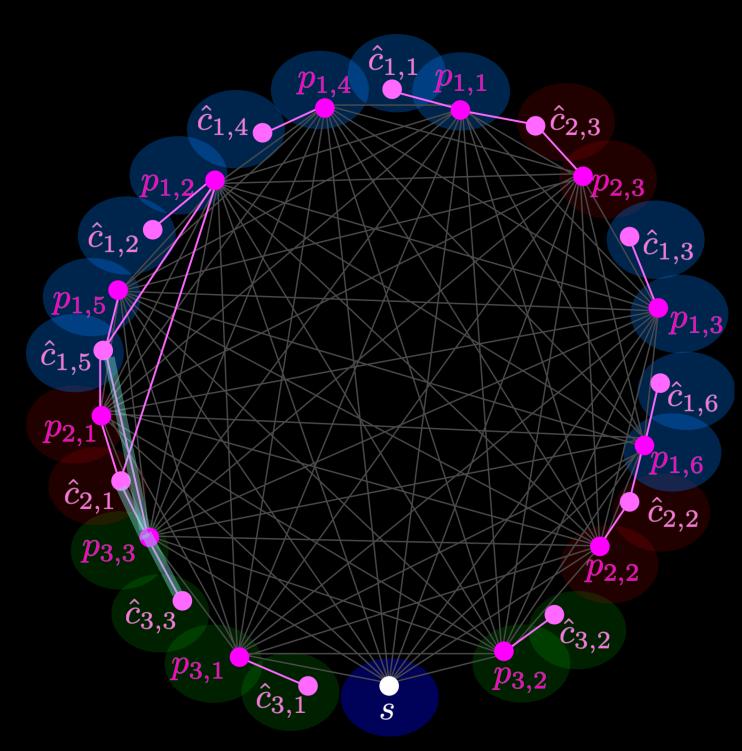
Example: When we visit k_3^3 (in point p_3^3), we also visit the cuts of k_3^3 , k_2^1 and k_1^5 . Thus, we have edges from p_3^3 to \hat{c}_3^3 , \hat{c}_2^1 , and \hat{c}_1^5 .

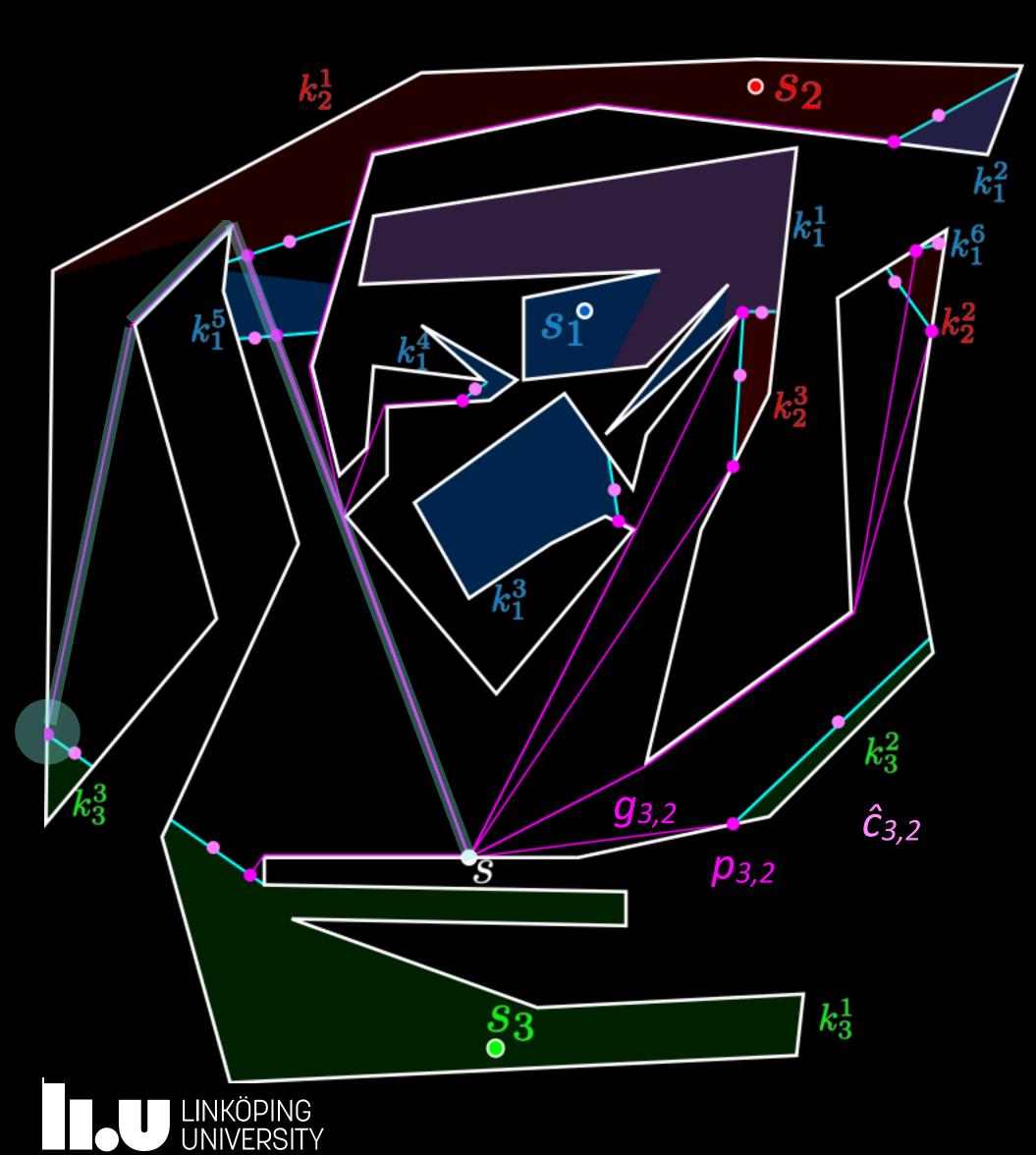




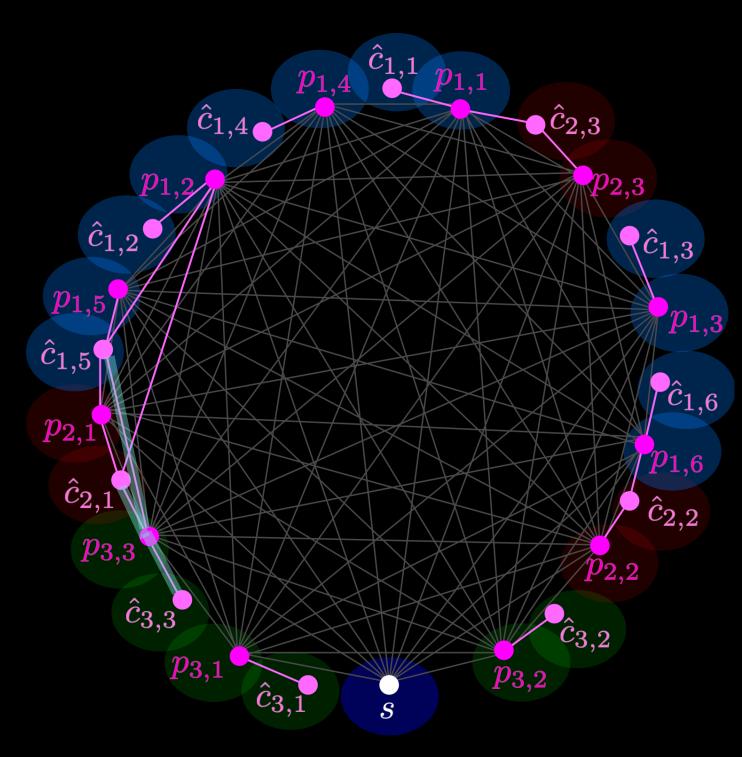
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting p_{i,j} must visit ĉ_{i,j})

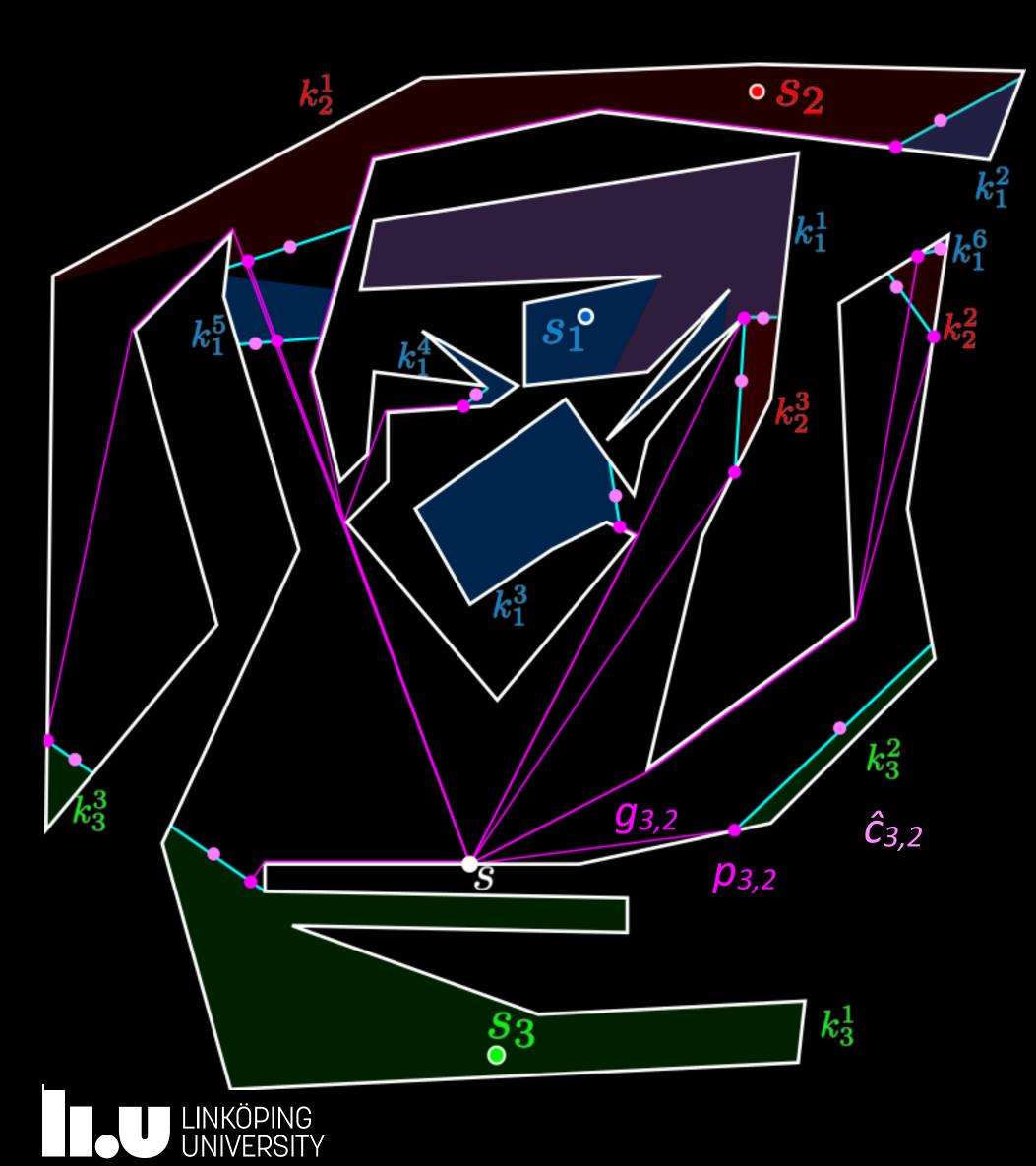
Example: When we visit k_3^3 (in point p_3^3), we also visit the cuts of k_3^3 , k_2^1 and k_1^5 . Thus, we have edges from p_3^3 to \hat{c}_3^3 , \hat{c}_2^1 , and \hat{c}_1^5 .



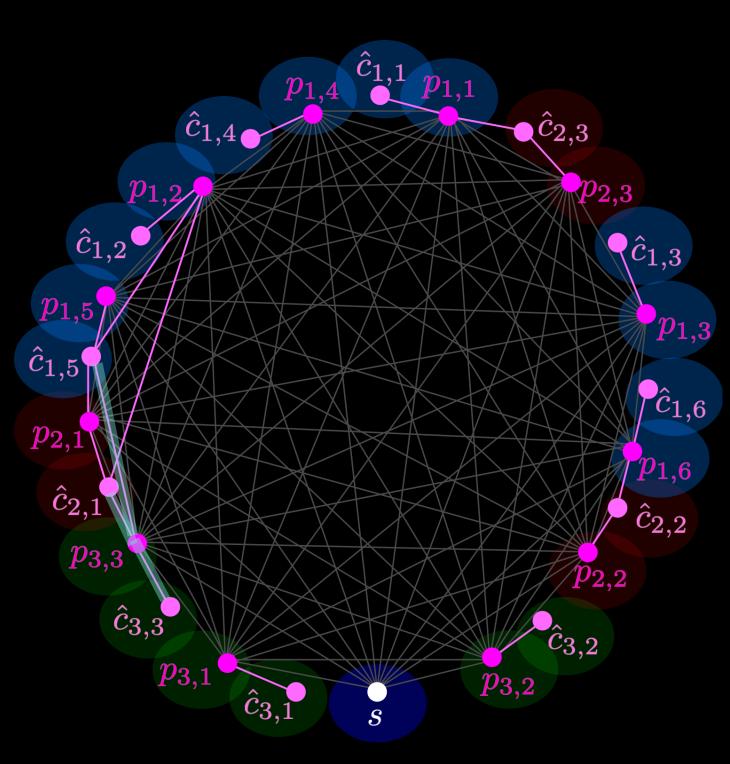


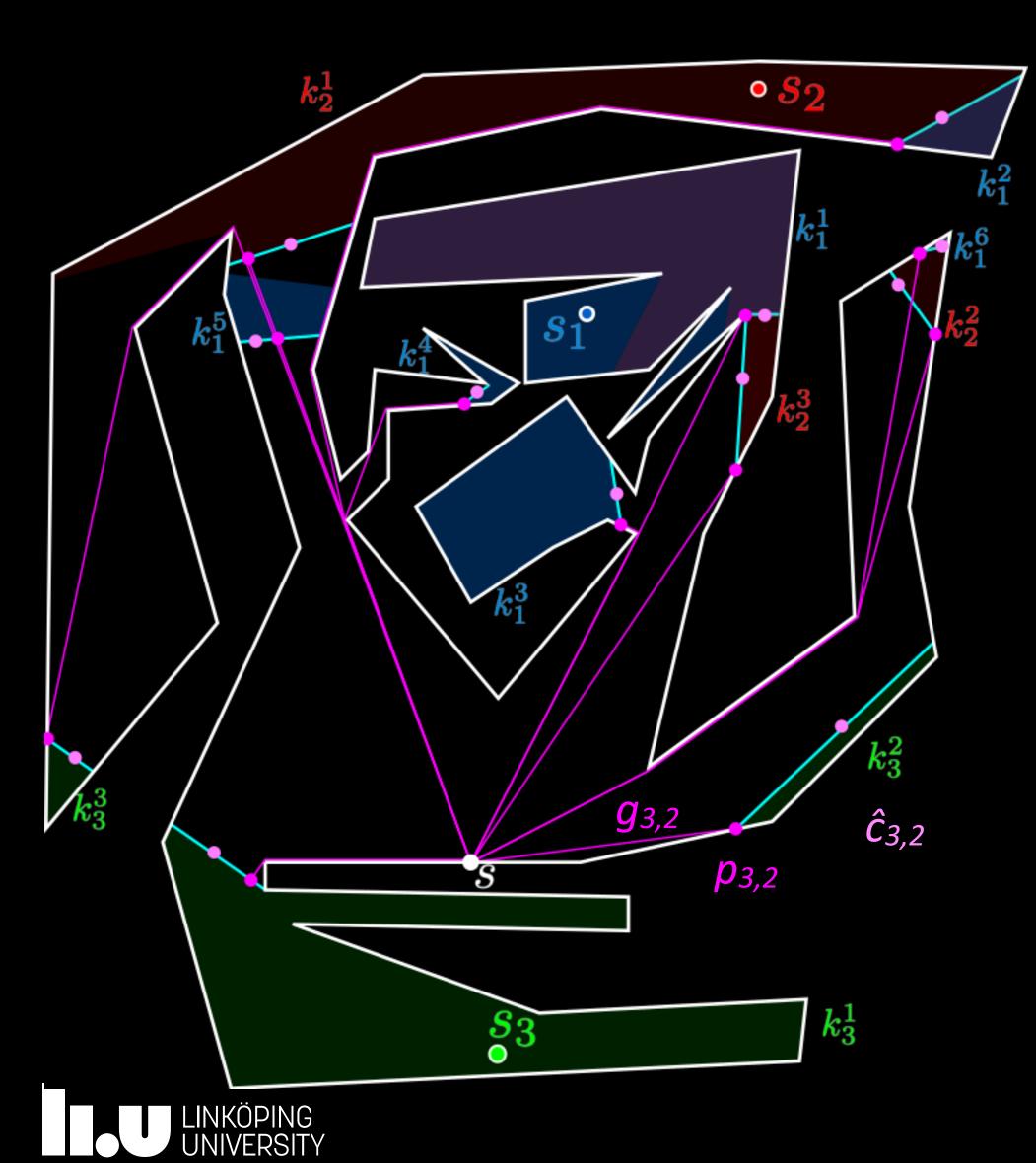
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)



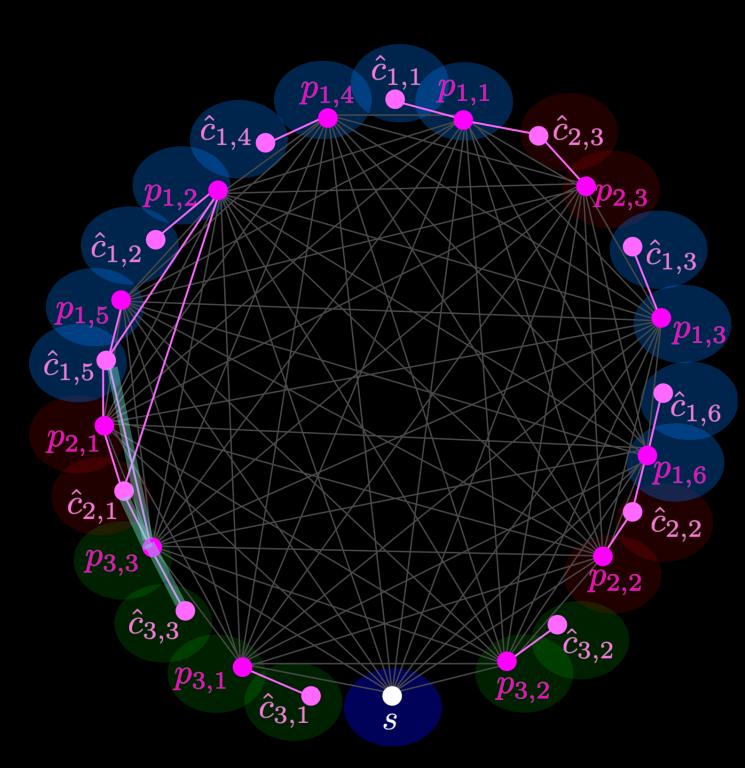


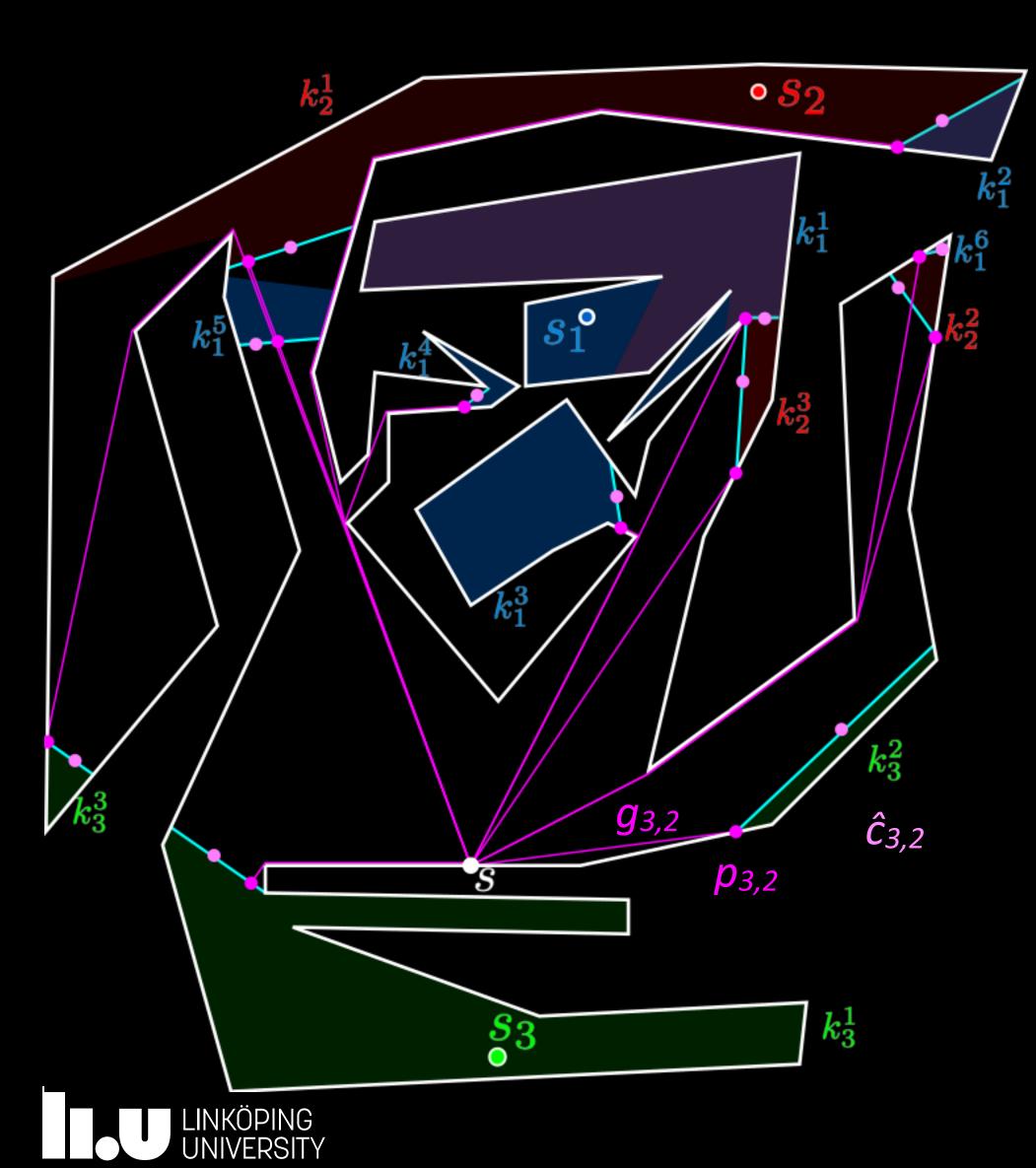
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting p_{i,j} must visit ĉ_{i,j})
 - IV(G)I=O(n |S|)



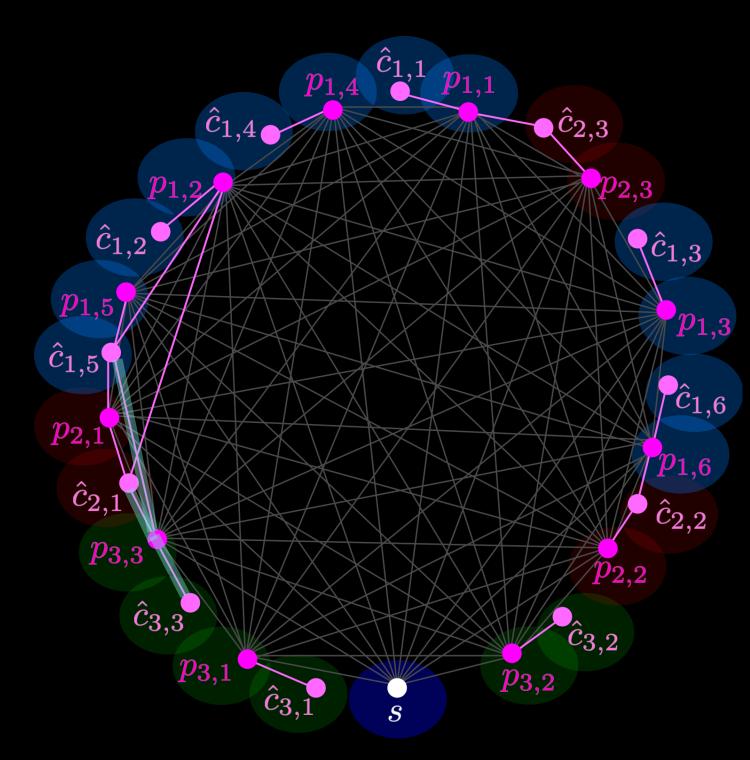


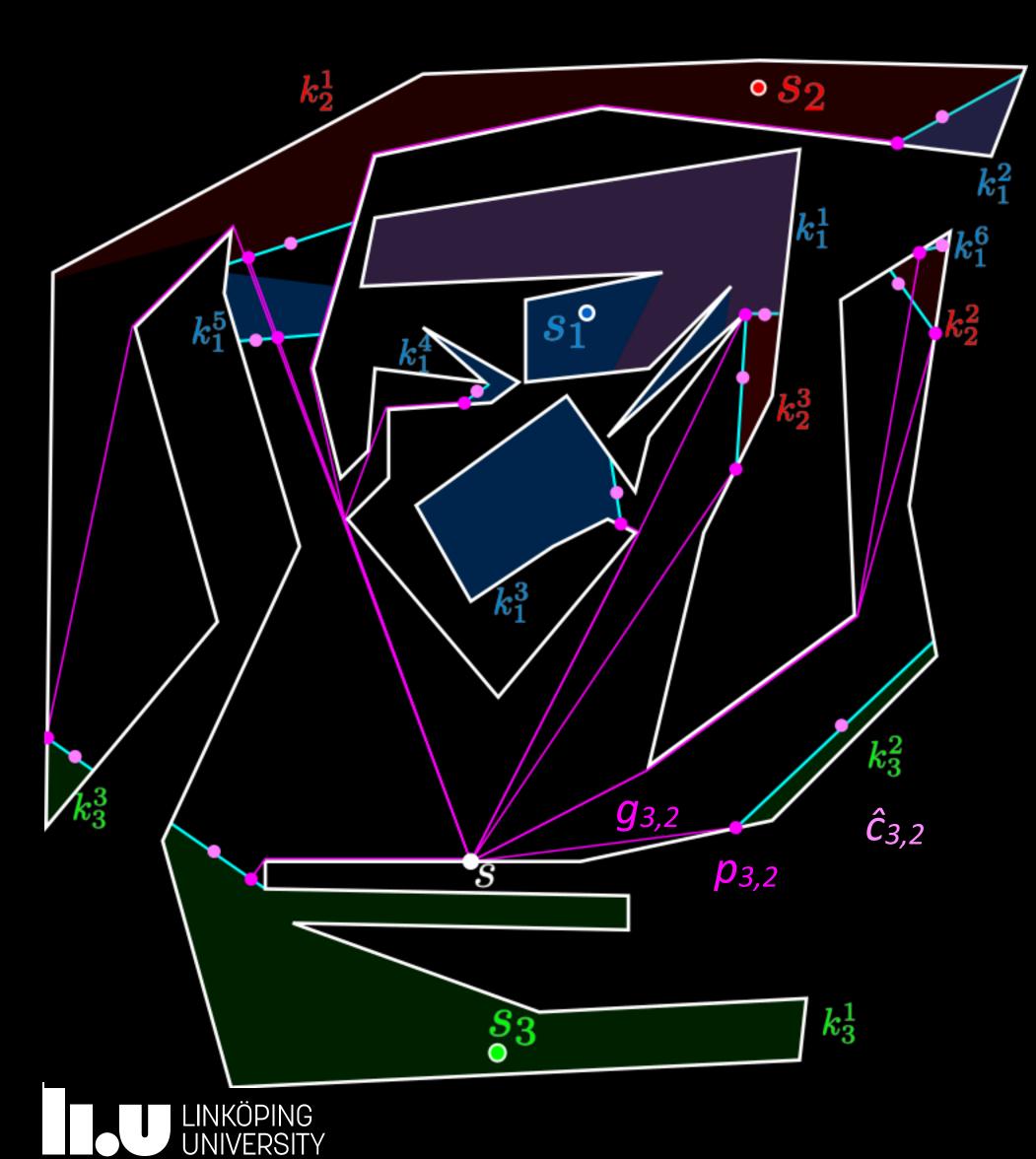
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - IV(G)I=O(n|SI)
- Group all candidate points that belong to the same point in s: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$





- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - |V(G)| = O(n |S|)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$

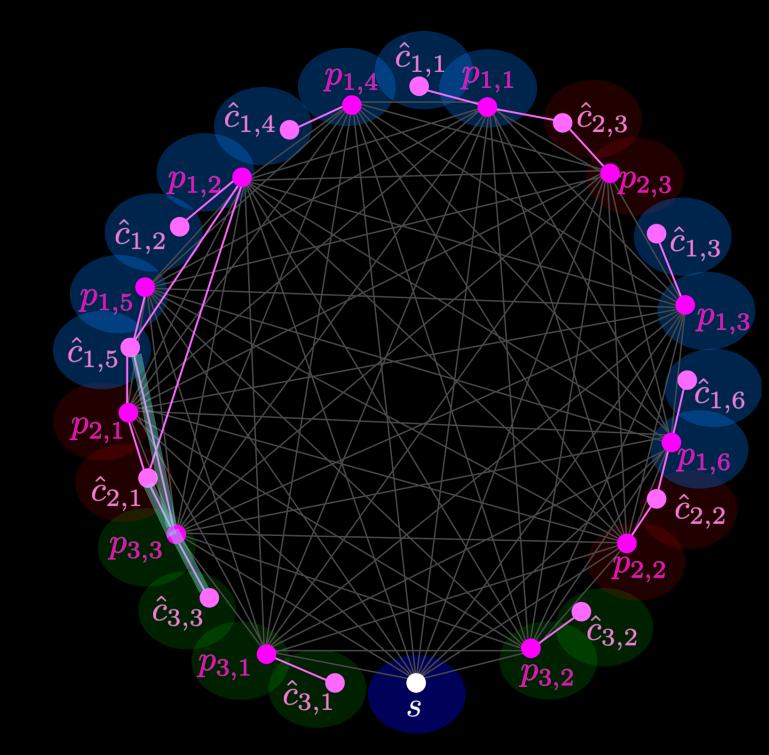


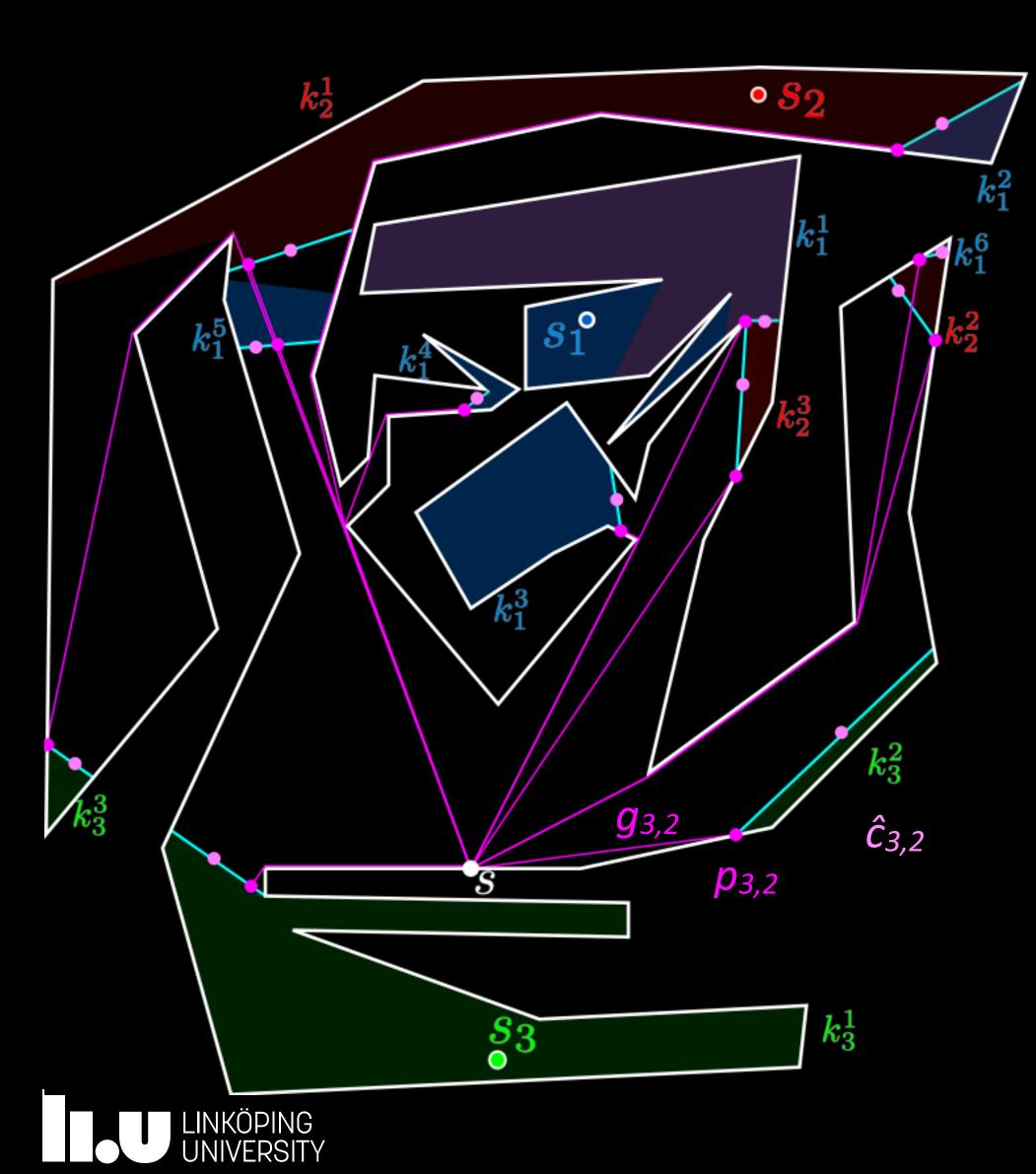


- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - IV(G)I=O(n|SI)
- Group all candidate points that belong to the same point in s: $\gamma_i = \bigcup_{j=1}^{J_i} p_{i,j} \cup \bigcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$

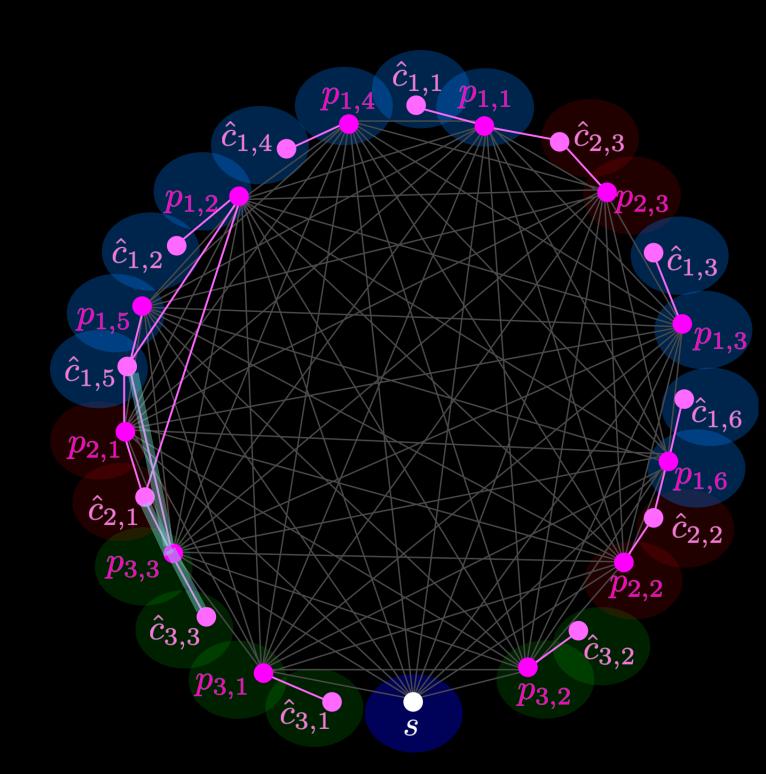
Here:

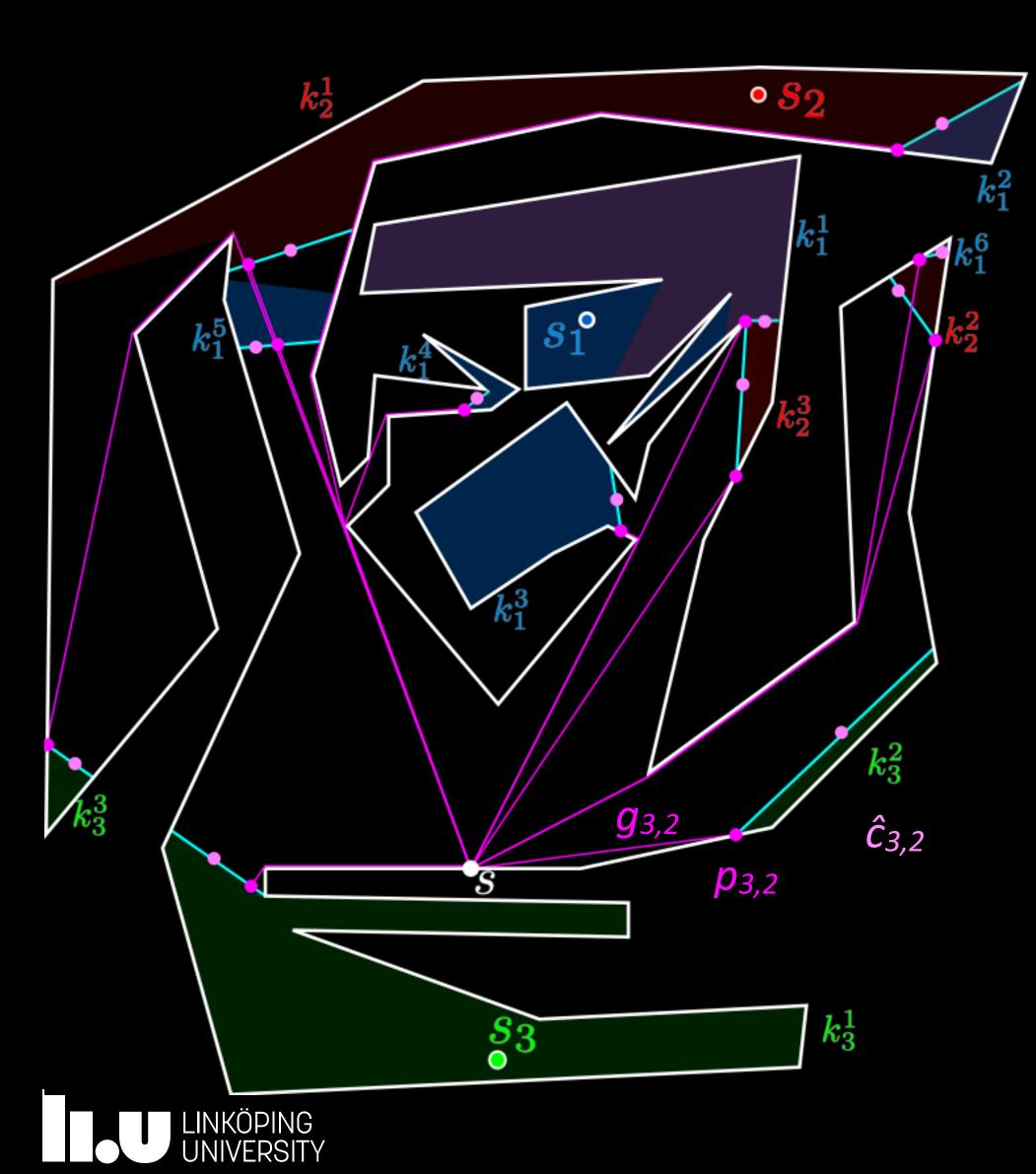
 γ_1 candidate points that belong to s_1 , γ_2 candidate points that belong to s_2 , γ_3 candidate points that belong to s_3 , $\gamma_0 = s$



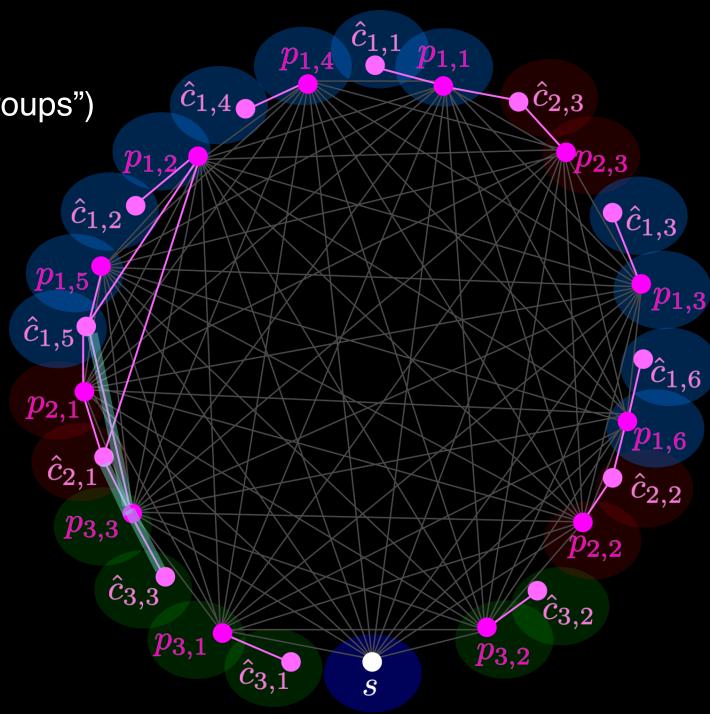


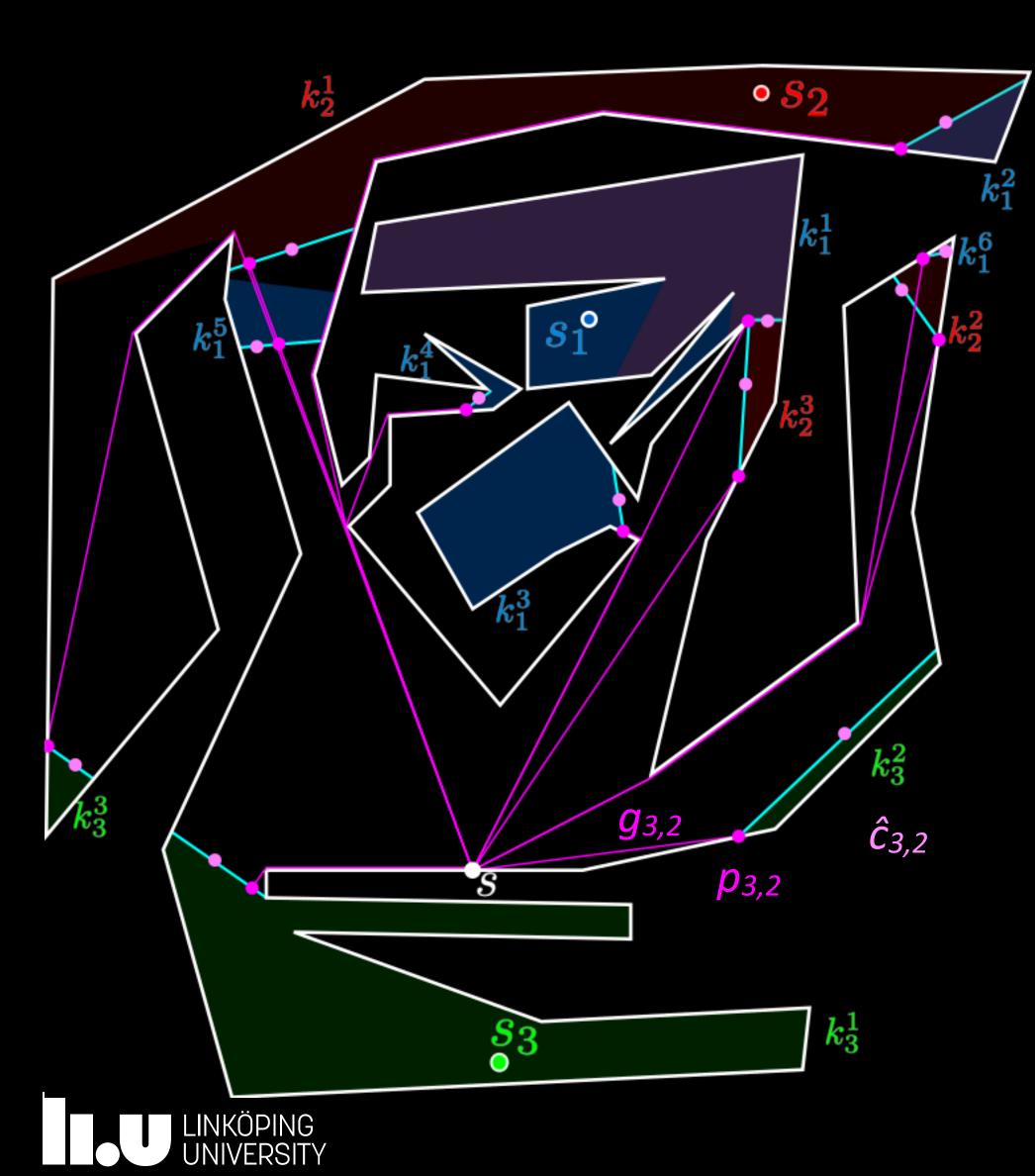
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - |V(G)| = O(n |S|)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:



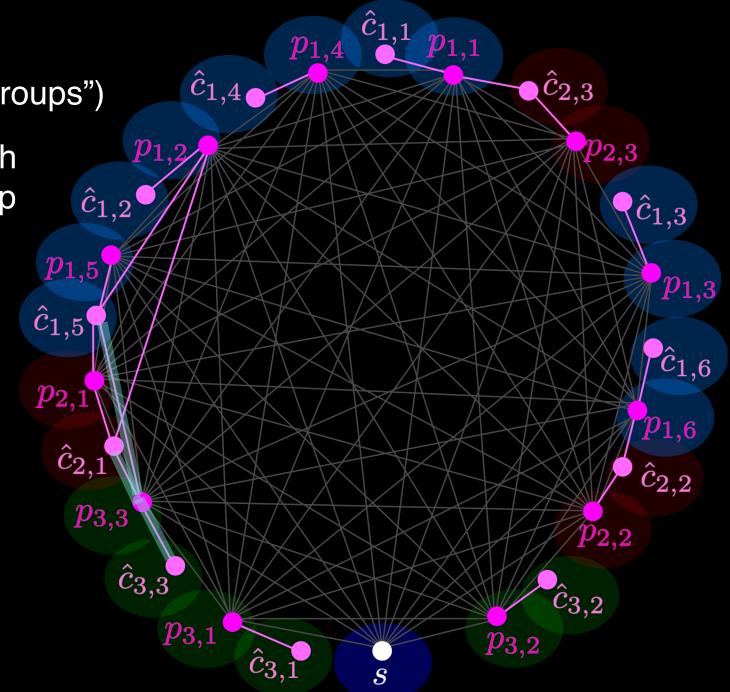


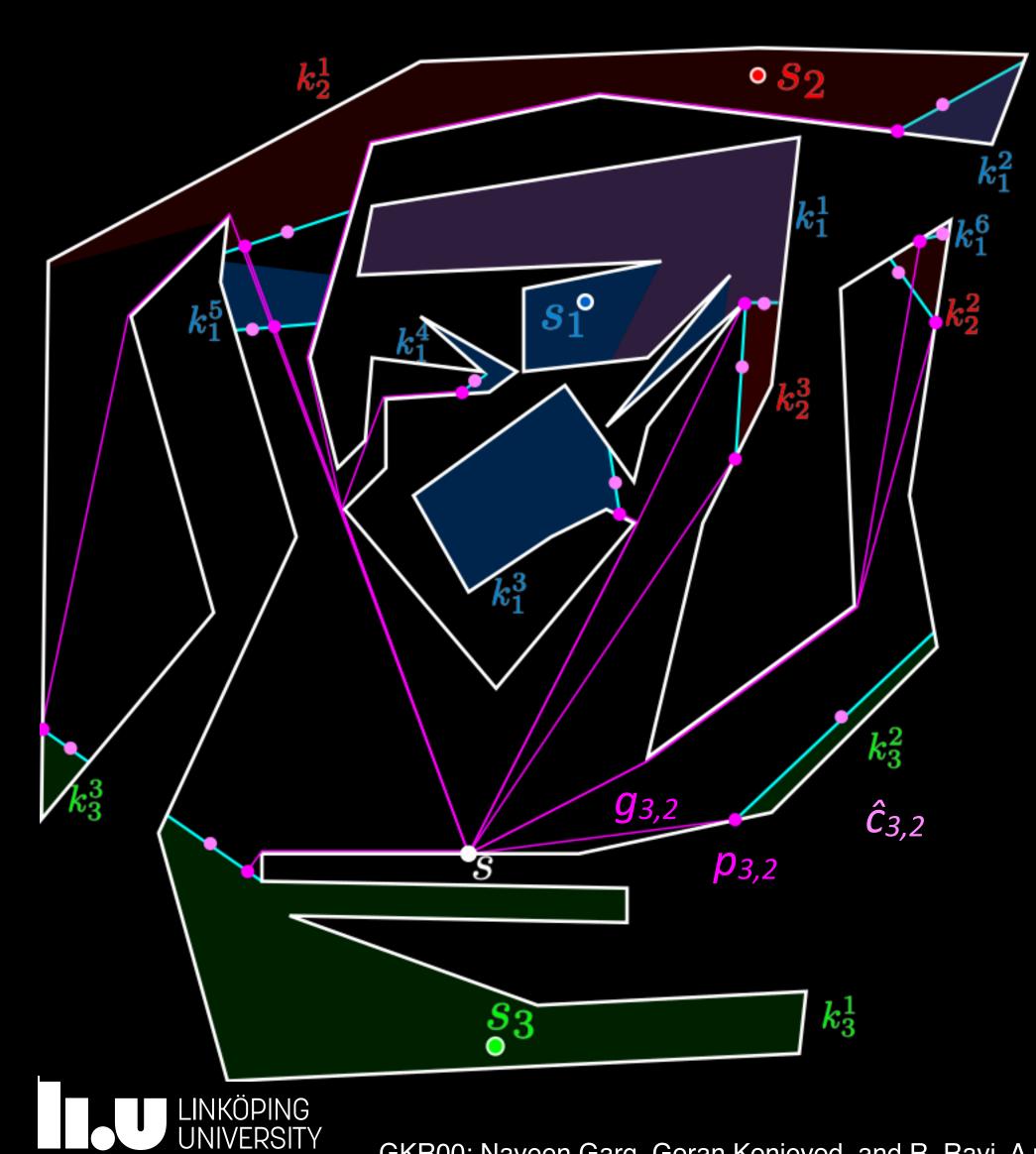
- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - IV(G)I=O(n |SI)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:
 - Graph, with *m* vertices and *Q* vertex subsets ("groups")



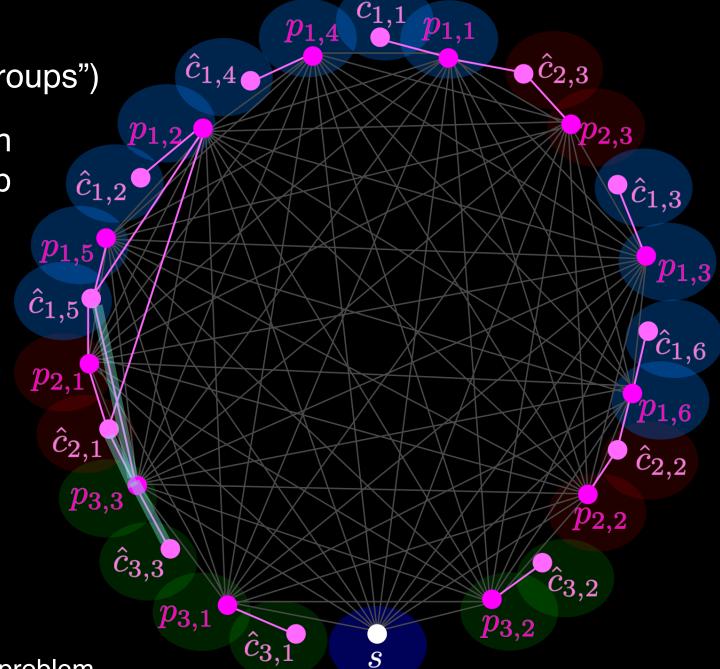


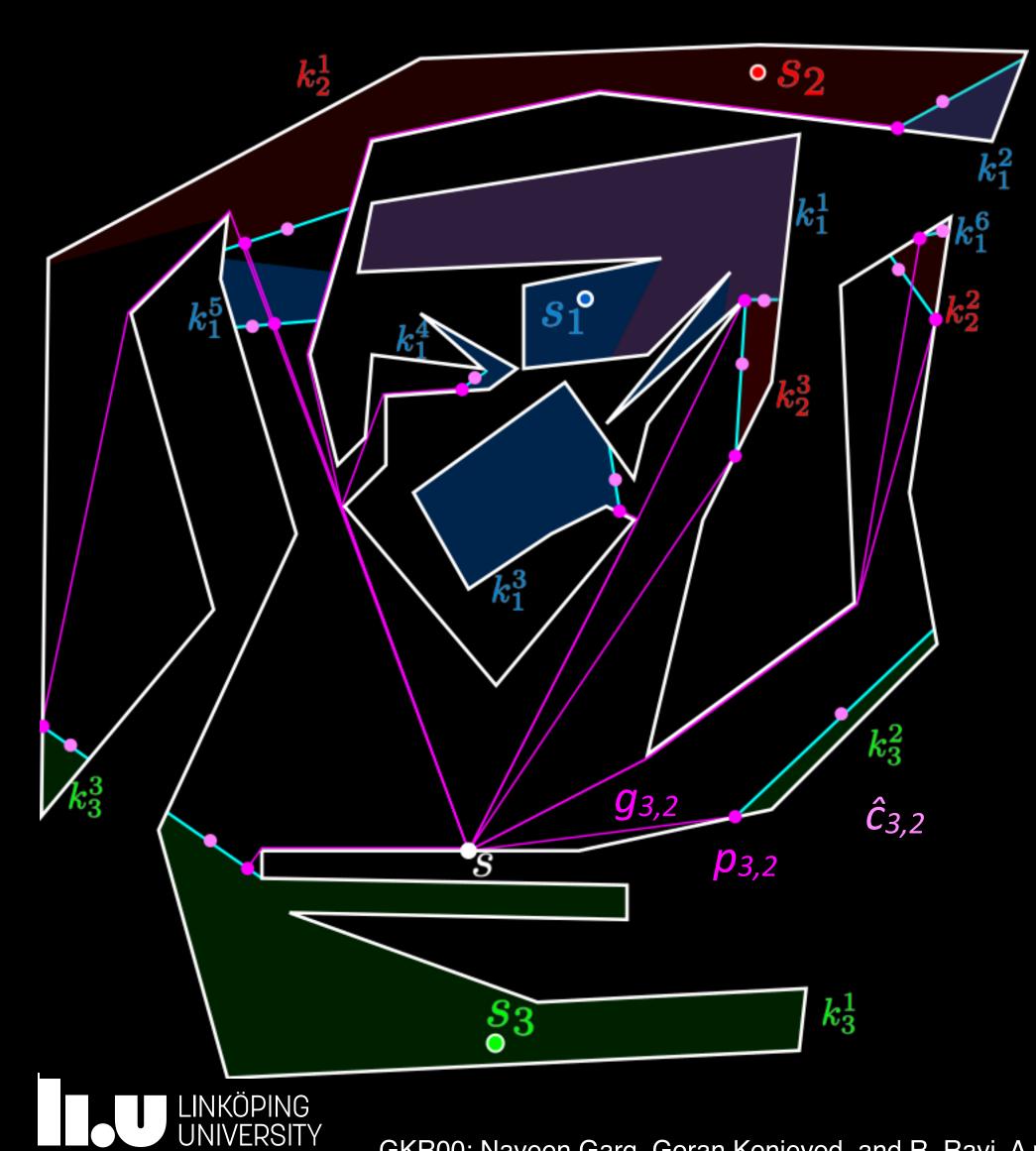
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting p_{i,j} must visit ĉ_{i,j})
 - IV(G)I=O(n |SI)
- Group all candidate points that belong to the same point in S: $\gamma_i = \bigcup_{j=1}^{J_i} p_{i,j} \cup \bigcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:
 - Graph, with *m* vertices and *Q* vertex subsets ("groups")
 - Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree



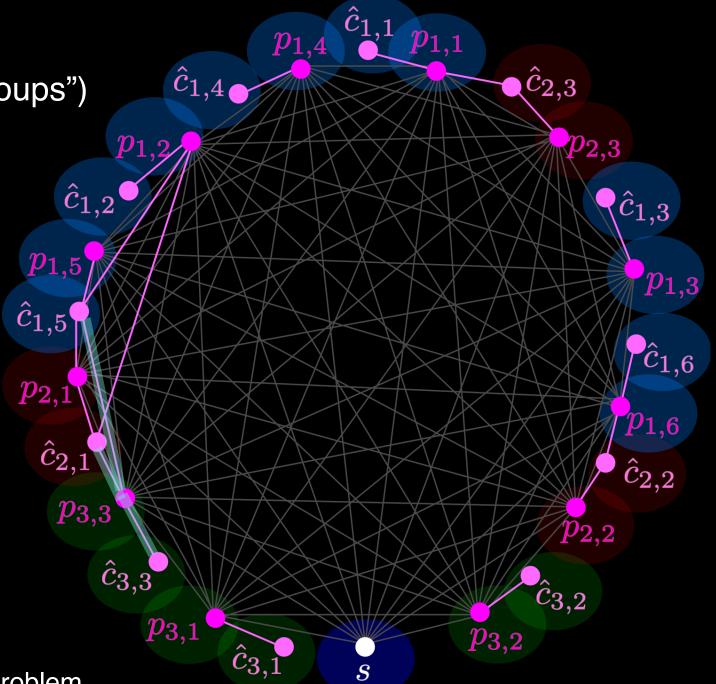


- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - |V(G)| = O(n |S|)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a group Steiner tree:
- Graph, with *m* vertices and *Q* vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by GKR00 with approximation ratio $O(\log 2 \text{ m} \log \log \Omega)$

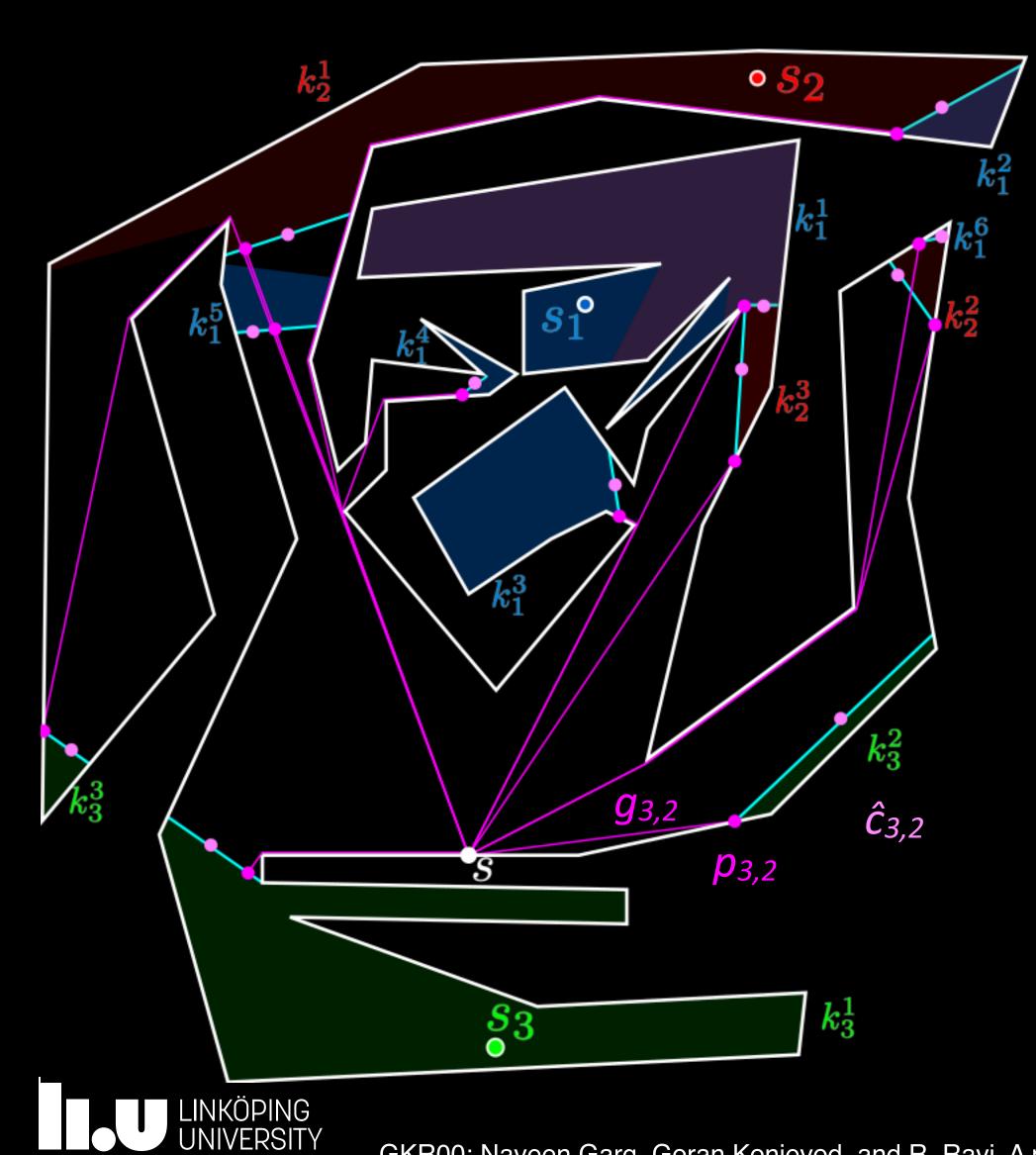




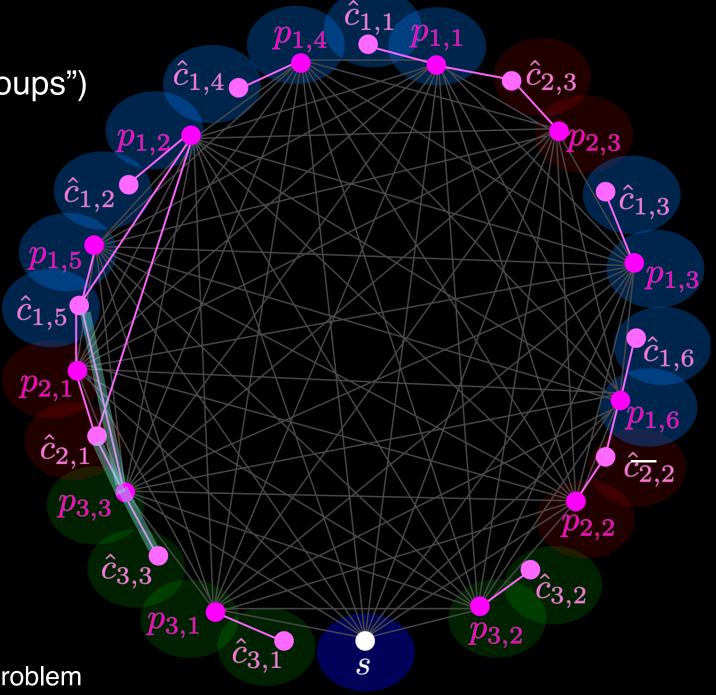
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - IV(G)I=O(n|SI)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:
 - Graph, with *m* vertices and *Q* vertex subsets ("groups")
 - Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
 - Approximation by GKR00 with approximation ratio $O(\log 2 \text{ m} \log \log \Omega)$
 - We have m = O(n |S|), Q = |S| + 1



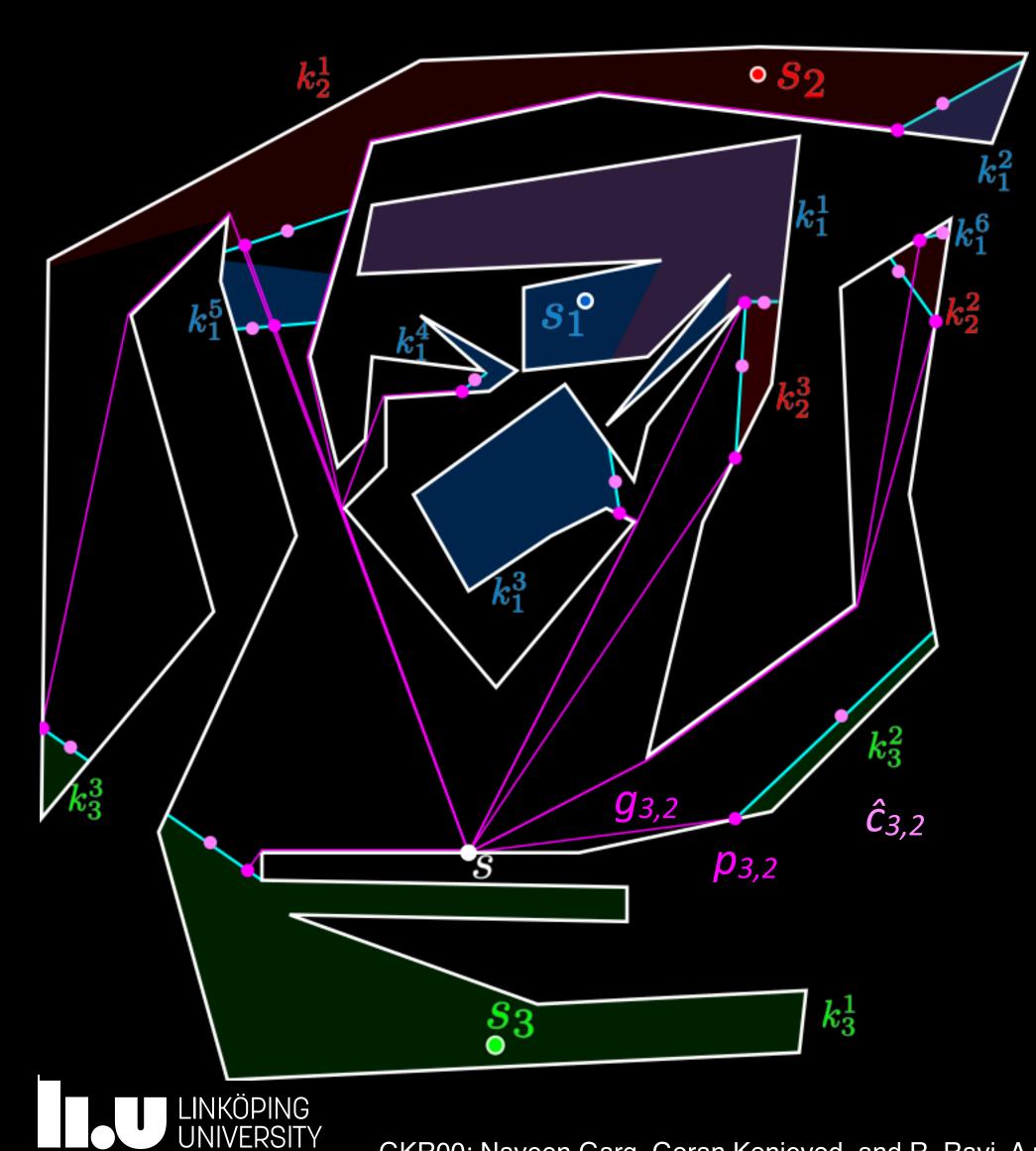
Approximation Algorithm for k-TrWRP(S,P,s)



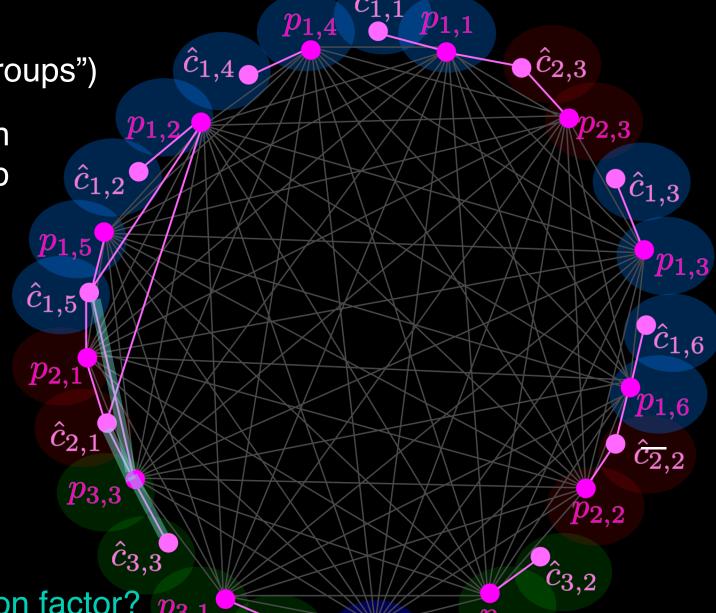
- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)
 - IV(G)I=O(n|SI)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:
 - Graph, with *m* vertices and *Q* vertex subsets ("groups")
 - Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
 - Approximation by GKR00 with approximation ratio $O(\log 2 \text{ m} \log \log \Omega)$
 - We have m = O(n |S|), Q = |S| + 1
- Double this tree and obtain a route R the route is feasible as we visit one point per γ_i



Approximation Algorithm for k-TrWRP(S,P,s)



- Create a candidate point for each connected component of the *k*-visibility region of each point in *S*.
- Candidate points: intersection of geodesics from starting point s to cuts (C^{all} set of all cuts)
- Build complete graph G on candidate points pi,j:
 - Gray edges: length of geodesic
 - Add pink edges: edge cost 0 (any path/tour visiting p_{i,j} must visit ĉ_{i,j})
 - IV(G)I=O(n|SI)
- Group all candidate points that belong to the same point in S: $\gamma_i = igcup_{j=1}^{J_i} p_{i,j} \cup igcup_{j=1}^{J_i} \hat{c}_{i,j}$
- Add $\gamma_0 = s$
- Approximate a *group Steiner tree*:
 - Graph, with *m* vertices and *Q* vertex subsets ("groups")
 - Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
 - Approximation by GKR00 with approximation ratio $O(\log 2 \text{ m} \log \Omega)$
 - We have m = O(n |S|), Q = |S| + 1
- Double this tree and obtain a route R the route is feasible as we visit one point per γ_i



To do: why do we achieve the claimed approximation factor? $p_{3,1}$

Proof idea: alter(unknown) optimal route OPT(<i>S</i> , <i>P</i> , <i>s</i>) to pass through points from <i>V</i> (<i>G</i>), and new tour has length at most constant· OPT(<i>S</i> , <i>P</i> , <i>s</i>)					
					10

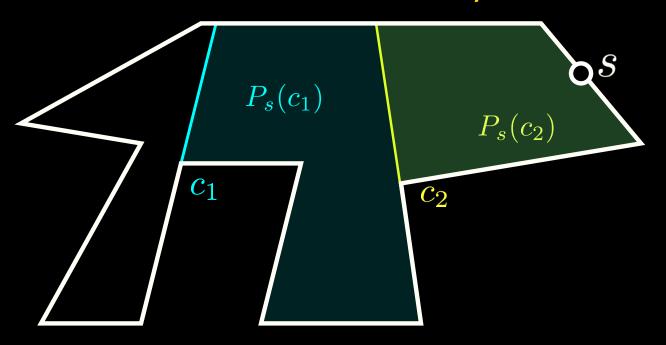
- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set C $(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$

A cut c partitions polygon into two subpolygons: $P_s(c)$ —subpolygon that contains starting point s A cut c_1 dominates c_2 if $P_s(c_2) \subseteq P_s(c_1)$ Essential cut: not dominated by other cut



- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$

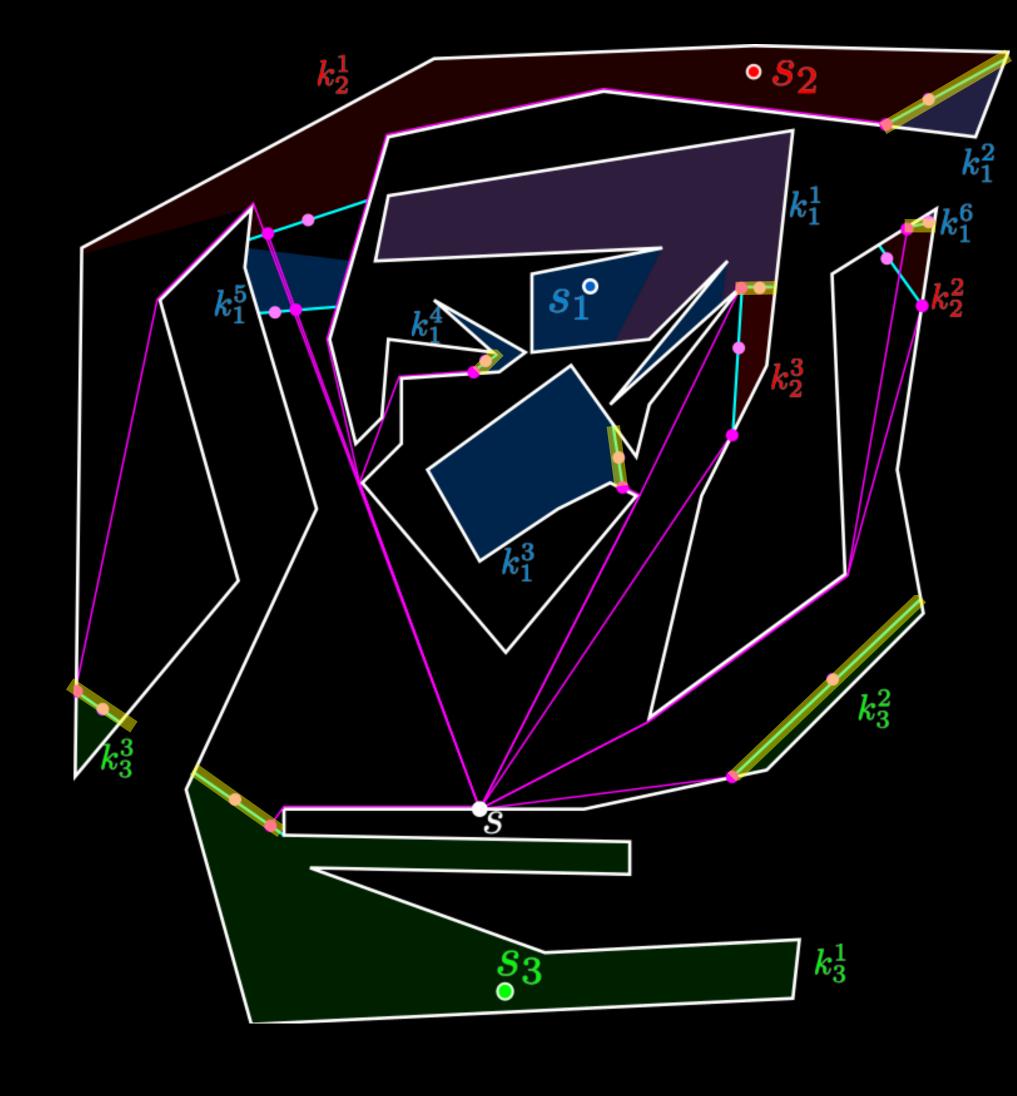
- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C}$ " set of geodesics that end at cuts in C"



- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- C"←C'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C}$ " set of geodesics that end at cuts in C"
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C}$ " set of geodesics that end at cuts in C"
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- C"←C'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C}$ " set of geodesics that end at cuts in C"
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $\mathcal{G}_{C''}$ intersect the cuts in C'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C''}$ set of geodesics that end at cuts in C''
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $\mathcal{G}_{C''}$ intersect the cuts in C'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$
- -Build relative convex hull of all $o_{i,j}$ and all points in $\mathcal{P}_{C''}$ (relative w.r.t. polygon P): $CH_P(OPT, \mathcal{P}_{C''})$

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- C"←C'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C''}$ set of geodesics that end at cuts in C''
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $\mathcal{G}_{C''}$ intersect the cuts in C'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$
- -Build relative convex hull of all $o_{i,j}$ and all points in $\mathcal{P}_{C''}$ (relative w.r.t. polygon P): CH $_P$ (OPT, $\mathcal{P}_{C''}$)
- -Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- -Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- *C*"←*C*'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C''}$ set of geodesics that end at cuts in C''
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $G_{C''}$ intersect the cuts in G'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$
- -Build relative convex hull of all $o_{i,j}$ and all points in $\mathcal{P}_{C''}$ (relative w.r.t. polygon P): $CH_P(OPT, \mathcal{P}_{C''})$
- -Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.
- -Claim 4: $CH_P(\mathcal{P}_{C''})$ is not longer than $CH_P(OPT, \mathcal{P}_{C''})$ and $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i (except for γ_0).

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- C"←C'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C''}$ set of geodesics that end at cuts in C''
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $G_{C''}$ intersect the cuts in G'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$
- -Build relative convex hull of all $o_{i,j}$ and all points in $\mathcal{P}_{C''}$ (relative w.r.t. polygon P): $CH_P(OPT, \mathcal{P}_{C''})$
- -Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.
- -Claim 4: $CH_P(\mathcal{P}_{C''})$ is not longer than $CH_P(OPT, \mathcal{P}_{C''})$ and $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i (except for γ_0).
- To connect s (which may lie in the interior of $CH_P(\mathcal{P}_{C''})$, we need to connect s, which costs at most IIOPT(S,P,s)II.

- Identify all cuts of the $kVR(s_i)$ that OPT(S,P,s) visits—set $C(C \subseteq C^{all})$
- Let $o_{i,j}$ denote the point where OPT(S,P,s) visits $c_{i,j}$ (first time)
- Identify subset C' of essential cuts $(C' \subseteq C)$
- -Order geodesics to essential cuts by decreasing Euclidean length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$
- C"←C'
- -For t=1 TO |*C*'|
 - Identify all $C_t \subset C'$ that g_t intersects
 - $-C" \leftarrow C" \setminus C_t$
- $-G_{C''}$ set of geodesics that end at cuts in C''
- -Claim 1: The geodesics in $G_{C''}$ are a set of *independent* geodesics, i.e., no essential cut is visited by two of these geodesics.
- -Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C') is touched by exactly one of the geodesics.
- -The geodesics in $\mathcal{G}_{C''}$ intersect the cuts in C'' in points of the type $p_{i,j}$ —set $\mathcal{P}_{C''}$
- -Build relative convex hull of all $o_{i,j}$ and all points in $\mathcal{P}_{C''}$ (relative w.r.t. polygon P): $CH_P(OPT, \mathcal{P}_{C''})$
- -Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.
- -Claim 4: $CH_P(\mathcal{P}_{C''})$ is not longer than $CH_P(OPT, \mathcal{P}_{C''})$ and $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i (except for γ_0).
- To connect s (which may lie in the interior of $\mathsf{CH}_P(\mathcal{P}_{\mathcal{C}'})$, we need to connect s, which costs at most $\mathsf{IIOPT}(S,P,s)\mathsf{II}$. $\|R\| \leq \alpha_1 \cdot f(|V(G)|,|S|)\|\mathsf{OPT}_G(S,P,s)\| \leq \alpha_2 \cdot f(n|S|,|S|)\|\mathsf{CH}_P(\mathcal{P}_{\mathcal{C}''})\| \leq \alpha_3 \cdot f(n|S|,|S|)\|\mathsf{CH}_P(\mathsf{OPT},\mathcal{P}_{\mathcal{C}''})\|$

$$\leq \alpha_4 \cdot f(n|S|, |S|) \|OPT(S, P, s)\|$$

with $f(N, M) = \log^2 N \log \log N \log M$

Proof:

Proof:

We orderred the geodesics to the essential cuts C' by decreasing length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$

Proof:

We orderred the geodesics to the essential cuts C' by decreasing length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$

We then iterate over these geodesics in the order $g_1, g_2, ..., g_{|C'|}$

Proof:

We orderred the geodesics to the essential cuts C' by decreasing length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \overline{\ell(g_{|C'|})}$

We then iterate over these geodesics in the order $g_1, g_2, ..., g_{|C'|}$

If the current geodesic g_t intersects cuts $c_{t1}, \ldots, c_{tY} \in C'$: we delete the shorter geodesics to these cut (g_{t1}, \ldots, g_{tY})

Proof:

We orderred the geodesics to the essential cuts C' by decreasing length: $\ell(g_1) \ge \ell(g_2) \ge ... \ge \ell(g_{|C'|})$

We then iterate over these geodesics in the order g₁, g₂, ..., g_{|C'|}

If the current geodesic g_t intersects cuts $c_{t1}, \ldots, c_{tY} \in C'$: we delete the shorter geodesics to these cut (g_{t1}, \ldots, g_{tY})

→ After last iteration, no two remaining geodesics visit the same cut in C'

Proof:

Proof:

The geodesics $g_1, g_2, ..., g_{|C'|}$ visit all cuts in C'

Proof:

The geodesics $g_1, g_2, ..., g_{|C'|}$ visit all cuts in C'

We only delete a geodesic from the set if the cut is already visited by a longer geodesic

Proof:

The geodesics $g_1, g_2, ..., g_{|C'|}$ visit all cuts in |C'|

We only delete a geodesic from the set if the cut is already visited by a longer geodesic

→ All cuts in C' are visited

Claim 3: No geodesic can intersect $CH_P(OPT, \mathcal{P}_{C''})$ between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on $CH_P(OPT, \mathcal{P}_{C''})$, we have at most two points of $\mathcal{P}_{C''}$. $CH_P(OPT, \mathcal{P}_{C''})$ has length at most $3 \cdot |IOPT(S,P,s)|I$.

Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Claim 3: No geodesic can intersect CH_P(OPT, $\mathcal{P}_{C''}$) between a point $o_{i,j}$ and a point $p_{i,j}$ on the same cut. Thus, between any pair of points of the type $o_{i,j}$ on CH_P(OPT, $\mathcal{P}_{C''}$), we have at most two points of $\mathcal{P}_{C''}$. CH_P(OPT, $\mathcal{P}_{C''}$) has length at most 3·IIOPT(S,P,s)II.

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Assume there exists a geodesic $g_{c'} \in G_{C''}$ to a cut $c' \neq c$, $c' \in C''$ that intersects c between $o_{i,j}$ and $p_{i,j}$.

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Assume there exists a geodesic $g_{c'} \in G_{C''}$ to a cut $c' \neq c$, $c' \in C''$ that intersects c between $o_{i,j}$ and $p_{i,j}$.

Let p_c denote the point in which $g_{c'}$ intersects c

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Assume there exists a geodesic $g_{c'} \in G_{C''}$ to a cut $c' \neq c$, $c' \in C''$ that intersects c between $o_{i,j}$ and $p_{i,j}$.

Let p_c denote the point in which $g_{c'}$ intersects c

• If $\ell(g_{c'}) > \ell(g_c)$: we would have deleted g_c , hence $c \notin C''$

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Assume there exists a geodesic $g_{c'} \in G_{C''}$ to a cut $c' \neq c$, $c' \in C''$ that intersects c between $o_{i,j}$ and $p_{i,j}$.

Let p_c denote the point in which $g_{c'}$ intersects c

- If $\ell(g_{c'}) > \ell(g_{c})$: we would have deleted g_{c} , hence $c \notin C''$
- If ℓ(g_c)<ℓ(g_c): the geodesic to c' restricted to the part between s and p_c (g_{c'[s,pc]}) is shorter than g_c

 f contradiction to g_c being geodesic to c

Lemma 1: Consider a cut $c \in C''$, from CC j of a k-visibility region for $s_i \in S$, $kVR^j(s_i)$, for which both the point $o_{i,j}$ and the point $p_{i,j}$ are on CH $_P(OPT, \mathcal{P}_{C''})$. No geodesic in $\mathcal{G}_{C''}$ intersects c between $o_{i,j}$ and $p_{i,j}$.

Proof:

Assume there exists a geodesic $g_{c'} \in G_{C''}$ to a cut $c' \neq c$, $c' \in C''$ that intersects c between $o_{i,j}$ and $p_{i,j}$.

Let p_c denote the point in which $g_{c'}$ intersects c

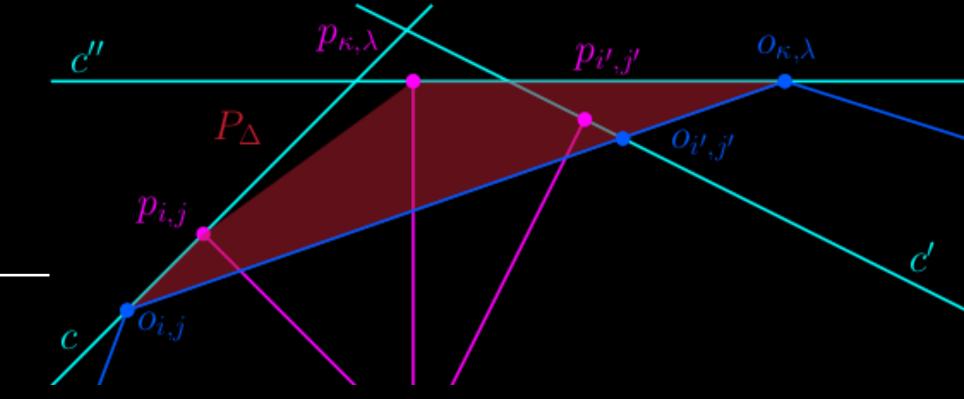
- If $\ell(g_{c'}) > \ell(g_{c})$: we would have deleted g_{c} , hence $c \notin C''$
- If ℓ(g_c')<ℓ(g_c): the geodesic to c' restricted to the part between s and p_c (g_{c'[s,pc]}) is shorter than g_c

 ≠ contradiction to g_c being geodesic to c
- If $\ell(g_{c'}) = \ell(g_c)$: Either $\ell(g_{c'[s,pc]}) < \ell(g_{c'}) = \ell(g_c)$ or (if p_c on c') $p_{i,j} = p_c$ (claim holds)

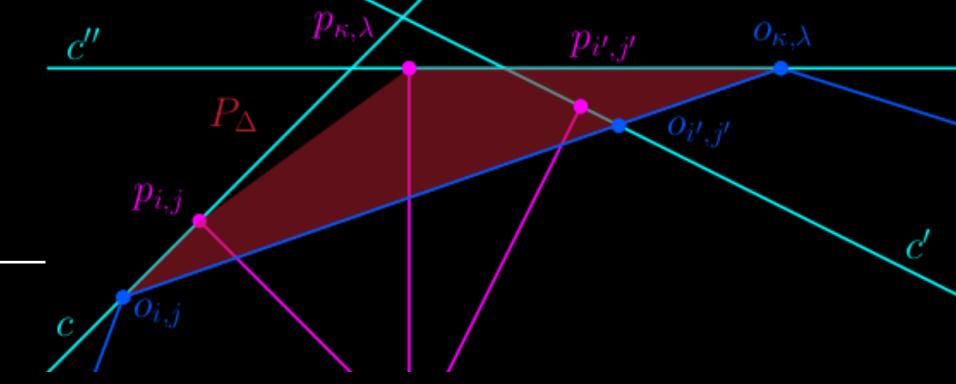
Lemma 2: Between any pair of points of the type $o_{i,j}$ on $CH_P(OPT, P_{C''})$, we have at most two points in $\mathcal{P}_{C''}$. Proof:

• Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)

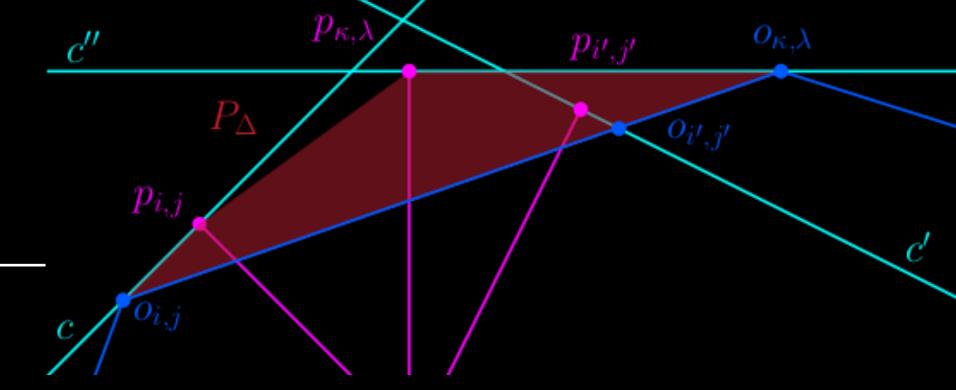
- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$



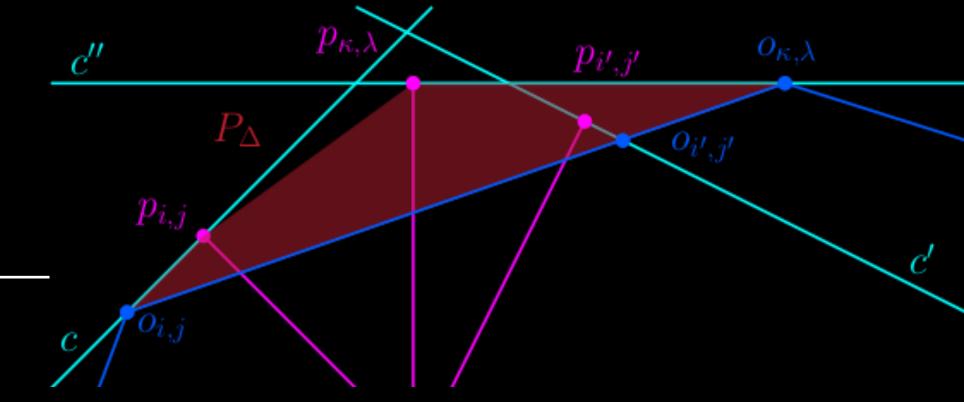
- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$



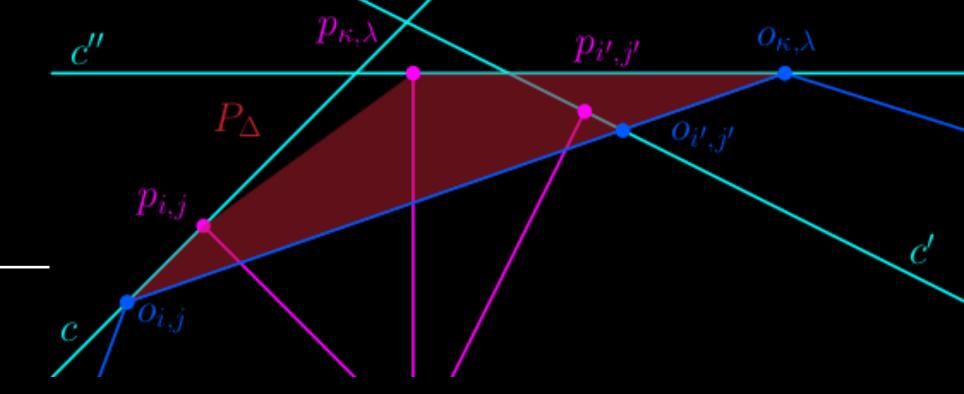
- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on $CH_P(OPT, \mathcal{P}_{C''})$ (on cuts c'', c, c', resp.)



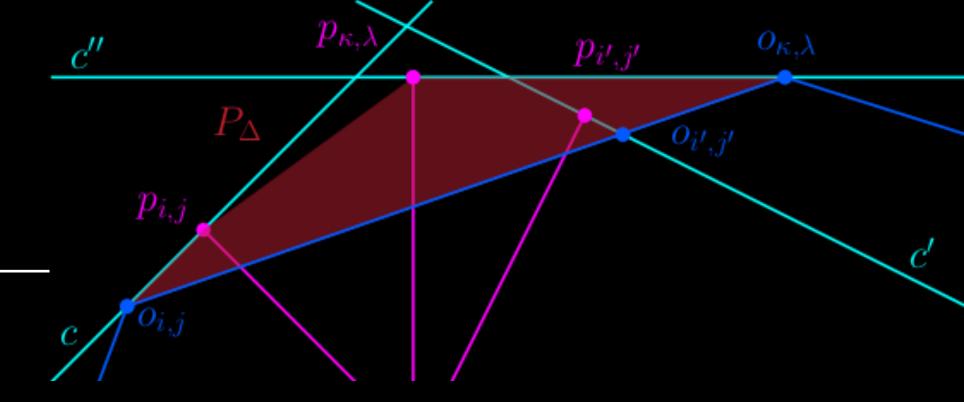
- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \bar{\lambda}}$ on c"



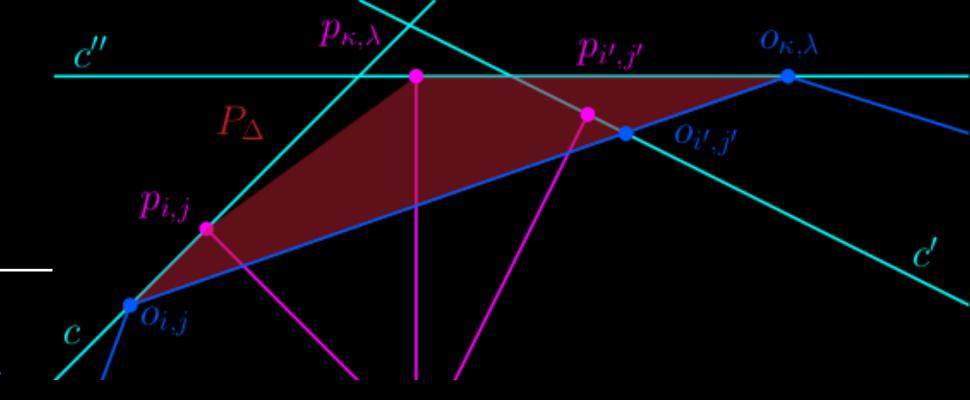
- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \tilde{\lambda}}$ on c''
- $o_{i,j}$ and $o_{i',j'}$ are consecutive pts on CH_P(OPT, $\mathcal{P}_{C''}$)



- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \lambda}$ on c''
- $o_{i,j}$ and $o_{i',j'}$ are consecutive pts on CH_P(OPT, $\mathcal{P}_{C''}$)
- ightharpoonup Order of OPT $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$ or $o_{\kappa,\lambda}$, $o_{i,j}$ $o_{i',j'}$, w.l.o.g. $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$

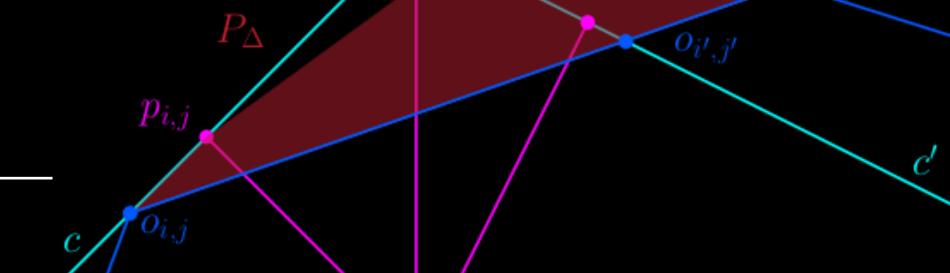


- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \lambda}$ on c''
- $o_{i,j}$ and $o_{i',j'}$ are consecutive pts on CH_P(OPT, $\mathcal{P}_{C''}$)
- ightharpoonup Order of OPT $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$ or $o_{\kappa,\lambda}$, $o_{i,j}$ $o_{i',j'}$, w.l.o.g. $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$
- Cut *c*" is a line segment



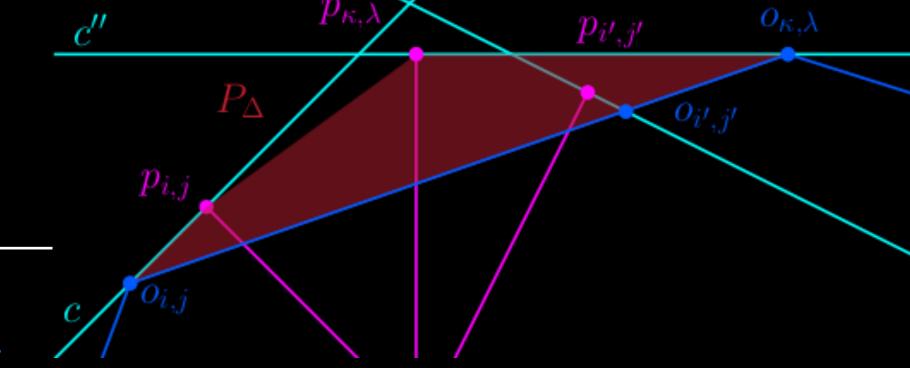
Lemma 2: Between any pair of points of the type $o_{i,j}$ on $CH_P(OPT, P_{C''})$, we have at most two points in $\mathcal{P}_{C''}$. Proof:

- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \lambda}$ on c''
- $o_{i,j}$ and $o_{i',j'}$ are consecutive pts on CH_P(OPT, $\mathcal{P}_{C''}$)
- \rightarrow Order of OPT $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$ or $o_{\kappa,\lambda}$, $o_{i,j}$ $o_{i',j'}$, w.l.o.g. $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$
- Cut c" is a line segment
- Consider polgyon P_{Δ} with vertices $O_{i,j}$ $P_{i,j}$, $O_{\kappa,\lambda}$, $O_{\kappa,\lambda}$, $O_{i',j'}$, $O_{i,j}$



 $p_{i',j'}$

- Let $o_{i,j}$ and $o_{i',j'}$ be the two consecutive points from OPT on CH_P(OPT, $\mathcal{P}_{C''}$)
- By Lemma 1, $p_{i,j}$ and $p_{i',j'}$ can lie between $o_{i,j}$ and $o_{i',j'}$
- BUT: we cannot have a point $p_{\kappa,\lambda}$ between $o_{i,j}$ and $p_{i,j}$ or between $o_{i',j'}$ and $p_{i',j'}$
- Assume there is a point $p_{\kappa,\Lambda}$ between on $p_{i,j}$ and $p_{i',j'}$ on CH_P(OPT, $\mathcal{P}_{C''}$) (on cuts c'', c, c', resp.)
- OPT visits $o_{\kappa, \lambda}$ on c''
- $o_{i,j}$ and $o_{i',j'}$ are consecutive pts on CH_P(OPT, $\mathcal{P}_{C''}$)
- \rightarrow Order of OPT $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$ or $o_{\kappa,\lambda}$, $o_{i,j}$ $o_{i',j'}$, w.l.o.g. $o_{i,j}$ $o_{i',j'}$, $o_{\kappa,\lambda}$
- Cut c" is a line segment
- Consider polgyon P_Δ with vertices O_{i,j} p_{i,j}, p_{κ,λ}, O_{κ,λ}, O_{i',j'}, O_{i,j}
- Point $p_{i',j'}$ must lie in P_{Δ} 's interior + $o_{i',j'}$ cannot lie on CH_P(OPT, $\mathcal{P}_{C''}$)



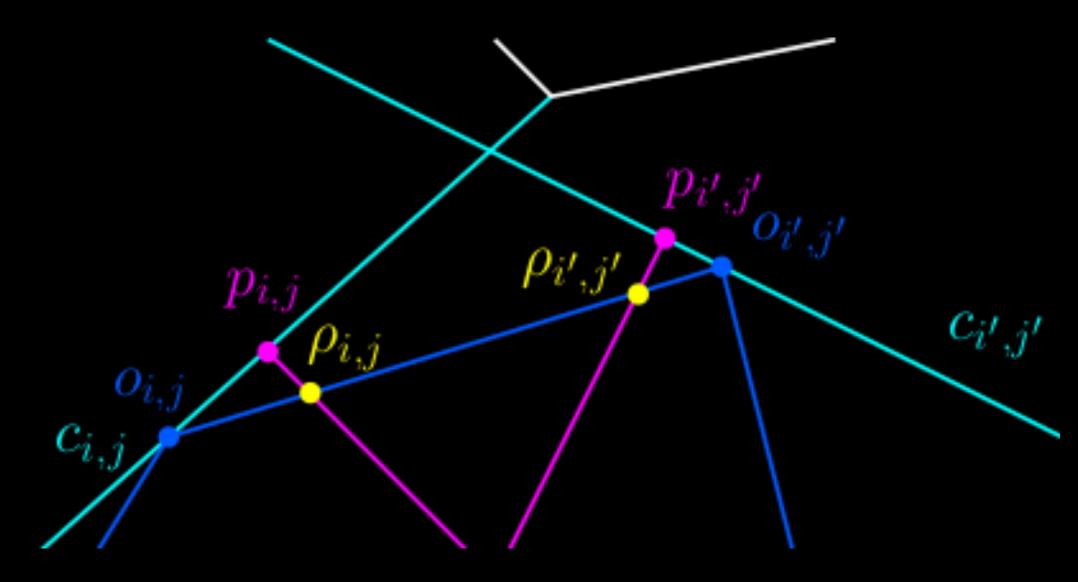
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S, P, s)II$.

Lemma 3: $|ICH_P(OPT, \mathcal{P}_{C''})|| \leq 3 \cdot |IOPT(S, P, s)||$.

Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S, P, s)II$.

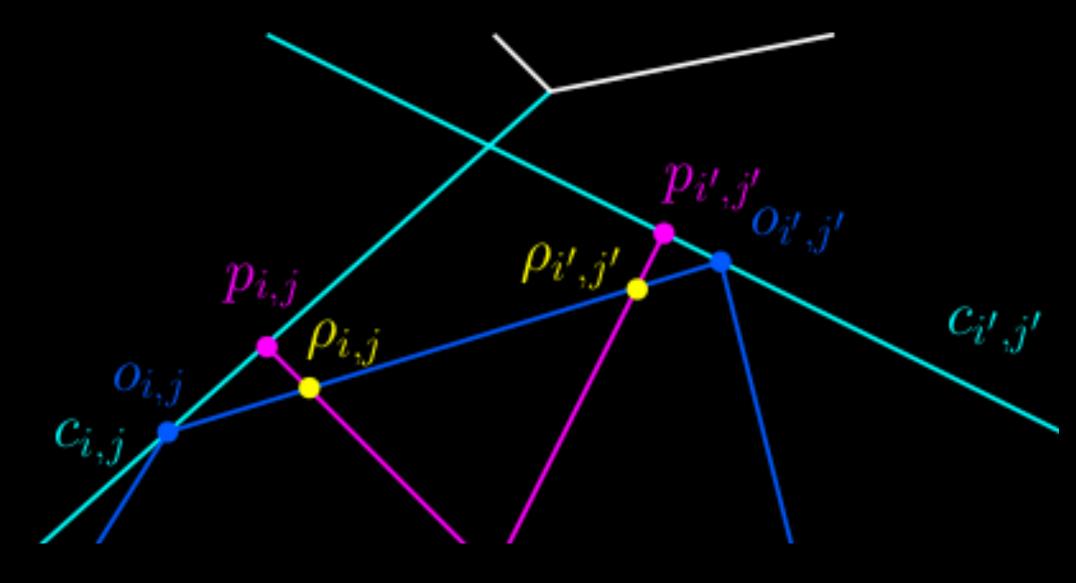
Proof:

• Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH_P(OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$



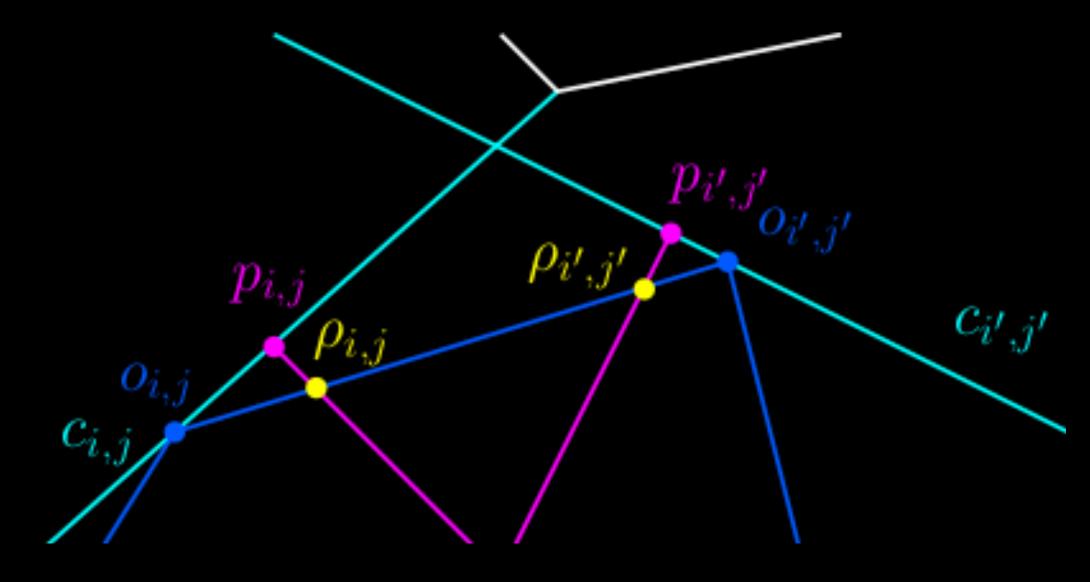
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S, P, s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$



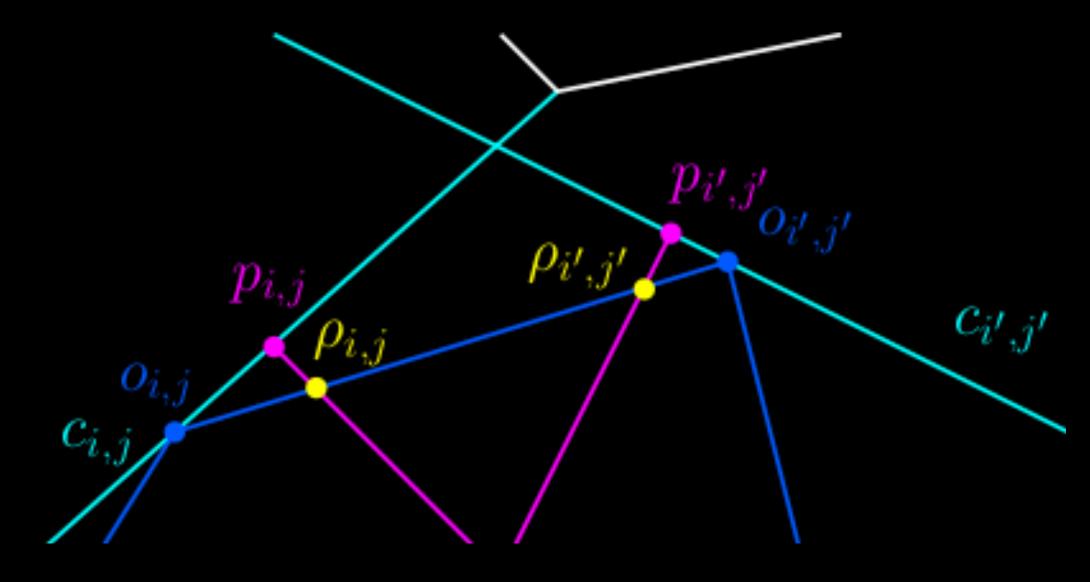
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- \Rightarrow $g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$



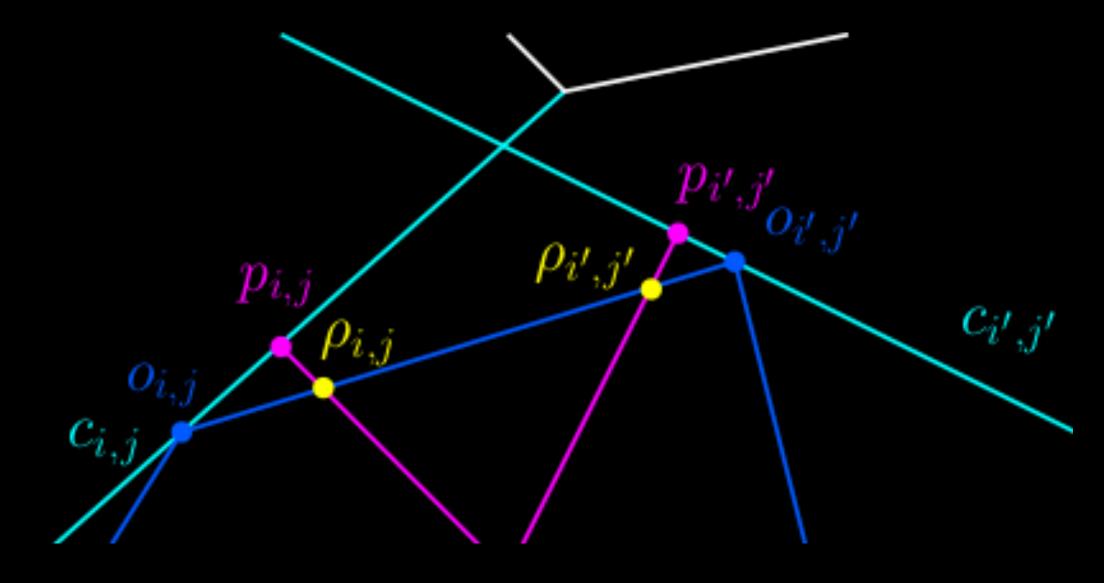
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \Rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g*_{i,j} is geodesic



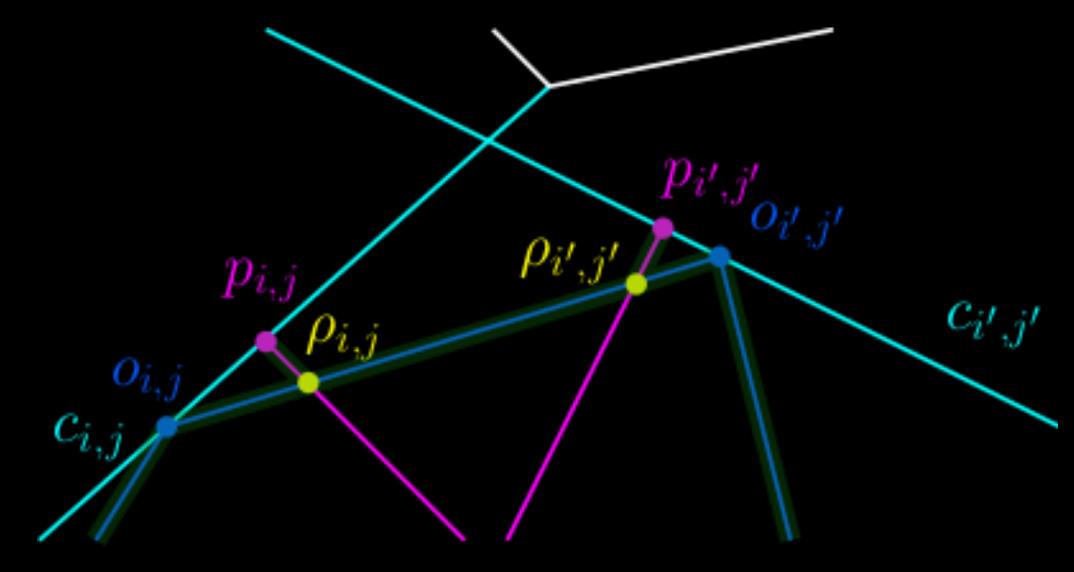
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- $\Rightarrow \ell(\varrho_{i,j}, \rho_{i,j}) \leq \ell(\varrho_{i,j}, o_{i,j}) \text{ (and } \ell(\varrho_{i',j'}, \rho_{i',j'}) \leq \ell(\varrho_{i',j'}, o_{i',j'}))$



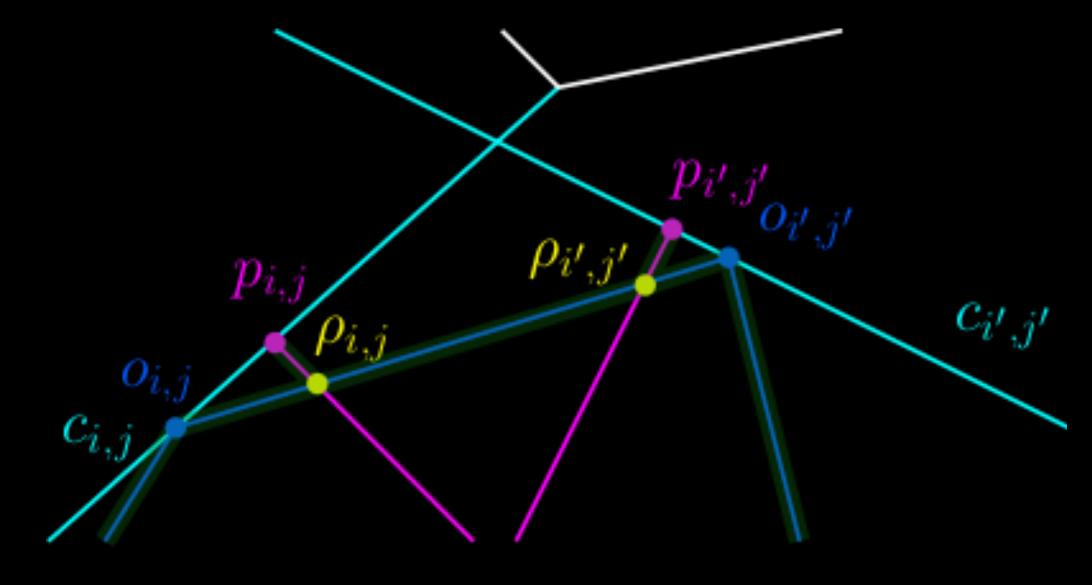
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \Rightarrow Between two consecutive points of OPT(S,P,s) on CH_P(OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j oi,j oi,j oi,j oi,j oi',j' oi',j'



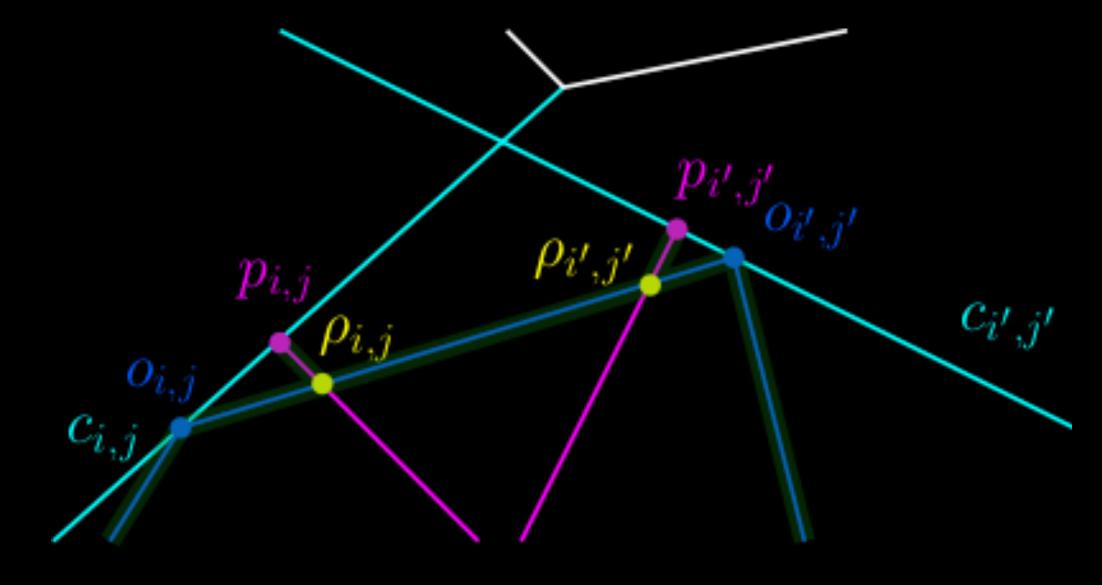
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \Rightarrow Between two consecutive points of OPT(S,P,s) on CH_P(OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j oi,j oi,j oi,j oi',j' oi',j' oi',j'
- ightharpoonup New tour T: visits all points on $CH_P(OPT, \mathcal{P}_{C''})$



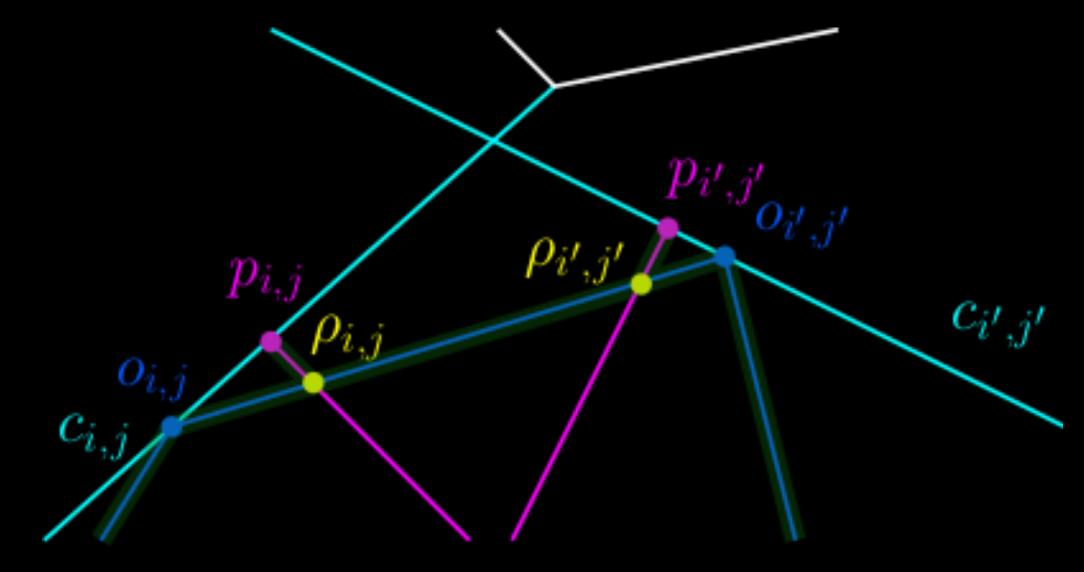
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH_P(OPT, $\mathcal{P}_{C'}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j pi,j oi,j oi,j oi',j' oi',j'
- ightharpoonup New tour T: visits all points on $CH_P(OPT, \mathcal{P}_{C''})$
- $\rightarrow ||T|| \leq 3 \cdot ||OPT(S, P, s)||$



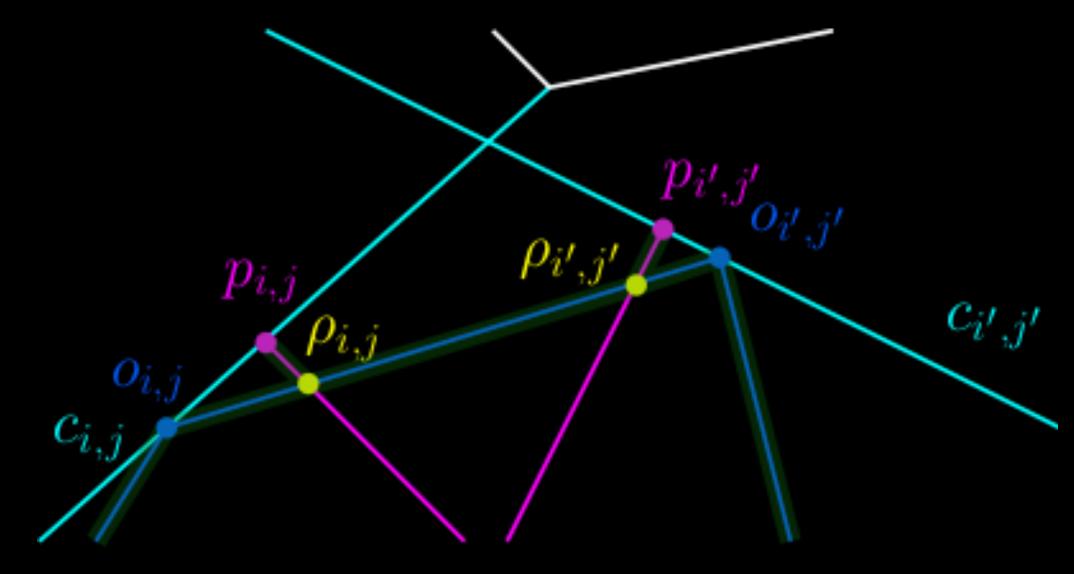
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S, P, s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH_P(OPT, $\mathcal{P}_{C'}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j pi,j oi,j oi,j oi',j' oi',j'
- ightharpoonup New tour T: visits all points on $CH_P(OPT, \mathcal{P}_{C''})$
- $\rightarrow ||T|| \leq 3 \cdot ||OPT(S, P, s)||$
- CH_P(OPT, \mathcal{P}_{C} ") is shortest tour to visit these points



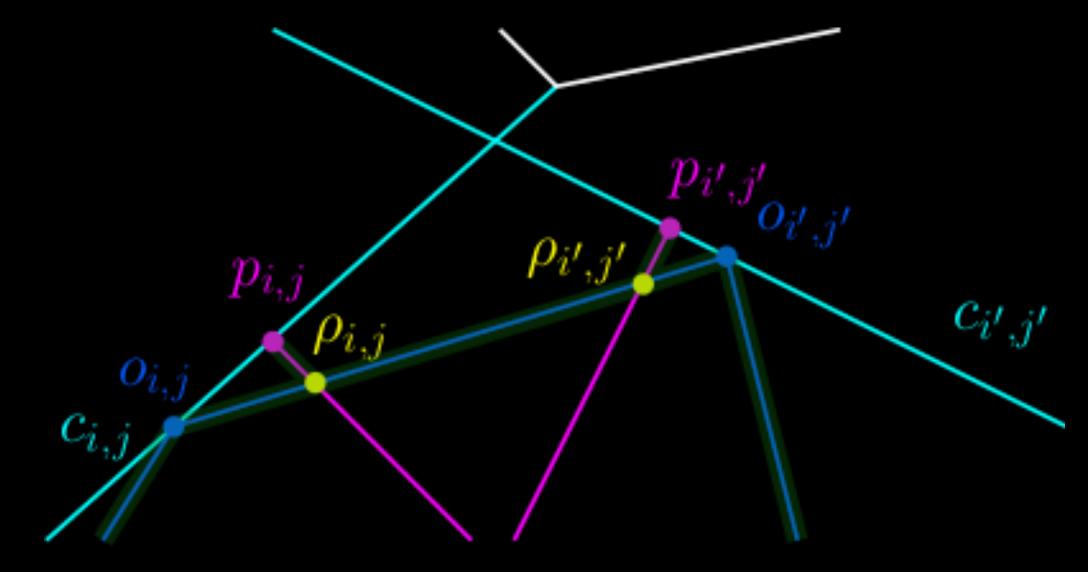
Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j pi,j oi,j oi,j oi',j' oi',j'
- → New tour T: visits all points on $CH_P(OPT, \mathcal{P}_{C''})$
- $\rightarrow ||T|| \le 3 \cdot ||OPT(S, P, s)||$
- CH_P(OPT, $\mathcal{P}_{C''}$) is shortest tour to visit these points
- \rightarrow ||CH_P(OPT, $\mathcal{P}_{C''}$)|| \leq || \mathcal{T} |



Lemma 3: $IICH_P(OPT, \mathcal{P}_{C''})II \leq 3 \cdot IIOPT(S,P,s)II$.

- Lemmas 1,2 \rightarrow Between two consecutive points of OPT(S,P,s) on CH $_P$ (OPT, $\mathcal{P}_{C''}$), $o_{i,j}$ and $o_{i',j'}$, we hat at most two points where a geodesic visits a cut: $p_{i,j}$ and $p_{i',j'}$
- Points $o_{i,j}$ and $p_{i,j}$ both on $c_{i,j}$ / points $o_{i',j'}$ and $p_{i',j'}$ both on $c_{i',j'}$
- $\rightarrow g_{i,j}$ intersects OPT(S,P,s) between $o_{i,j}$ and $o_{i',j'}$ —in point: $o_{i,j}$
- *g_{i,j}* is geodesic
- Alter OPT(S,P,s) between oi,j and oi',j': Oi,j oi,j pi,j oi,j oi,j oi',j' oi',j'
- → New tour T: visits all points on $CH_P(OPT, \mathcal{P}_{C''})$
- $\rightarrow ||T|| \le 3 \cdot ||OPT(S, P, s)||$
- CH_P(OPT, $\mathcal{P}_{C''}$) is shortest tour to visit these points
- → $||CH_P(OPT, \mathcal{P}_{C''})|| \leq ||T||$
- \rightarrow ||CH_P(OPT, $\mathcal{P}_{C''}$)|| $\leq 3 \cdot ||OPT(S, P, s)||$



Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in \mathcal{P}_{C} lie on their relative convex hull $CH_{P}(\mathcal{P}_{C})$.

Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in \mathcal{P}_{C} lie on their relative convex hull $CH_{P}(\mathcal{P}_{C})$.

Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in $\mathcal{P}_{C''}$ lie on their relative convex hull $CH_P(\mathcal{P}_{C''})$.

Proof:

Assume there is a point $p_{i,j} \in \mathcal{P}_{C}$, $p_{i,j} \notin CH_P(\mathcal{P}_{C})$

Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in $\mathcal{P}_{C''}$ lie on their relative convex hull $CH_P(\mathcal{P}_{C''})$.

Proof:

Assume there is a point $p_{i,j} \in \mathcal{P}_{C''}$, $p_{i,j} \notin CH_P(\mathcal{P}_{C''})$

→ No $g_c \in G_{C''}$ intersects $c_{i,j}$

Lemma 4: $|ICH_P(\mathcal{P}_{C''})|| \leq |ICH_P(OPT, \mathcal{P}_{C''})||$.

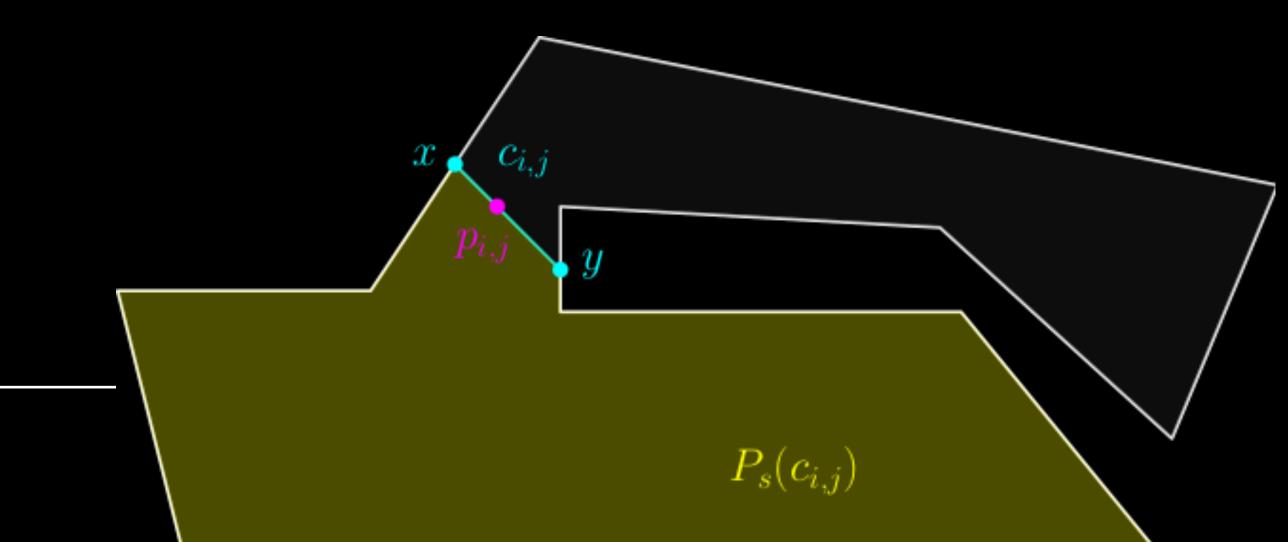
Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in $\mathcal{P}_{C''}$ lie on their relative convex hull $CH_P(\mathcal{P}_{C''})$.

Proof:

Assume there is a point $p_{i,j} \in \mathcal{P}_{C}$, $p_{i,j} \notin CH_P(\mathcal{P}_{C})$

- → No $g_c \in G_{C''}$ intersects $c_{i,j}$
- Cut c_{i,j} connects two boundary points x, y



Lemma 4: $||CH_P(\mathcal{P}_{C''})|| \leq ||CH_P(OPT, \mathcal{P}_{C''})||$.

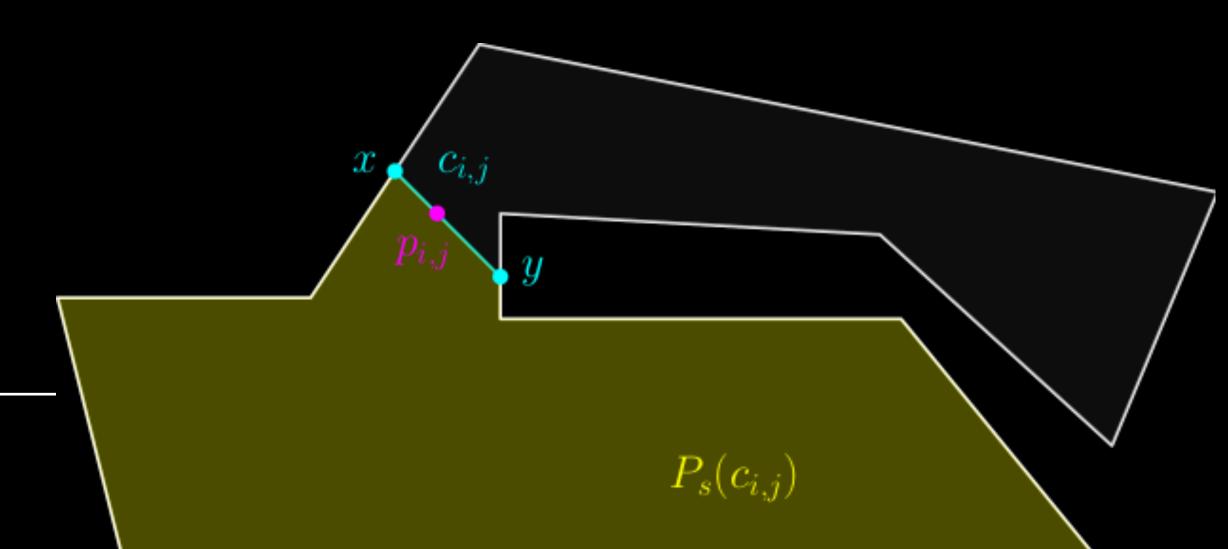
Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in $\mathcal{P}_{C''}$ lie on their relative convex hull $CH_P(\mathcal{P}_{C''})$.

Proof:

Assume there is a point $p_{i,j} \in \mathcal{P}_{C''}$, $p_{i,j} \notin CH_P(\mathcal{P}_{C''})$

- → No $g_c \in G_{C''}$ intersects $c_{i,j}$
- Cut c_{i,j} connects two boundary points x, y
- $CH_P(\mathcal{P}_{C''}) \subseteq P_s(c_{i,j})$ ($CH_P(\mathcal{P}_{C''})$ does not cross $c_{i,j}$)



Lemma 4: $|ICH_P(\mathcal{P}_{C''})|| \leq |ICH_P(OPT, \mathcal{P}_{C''})||$.

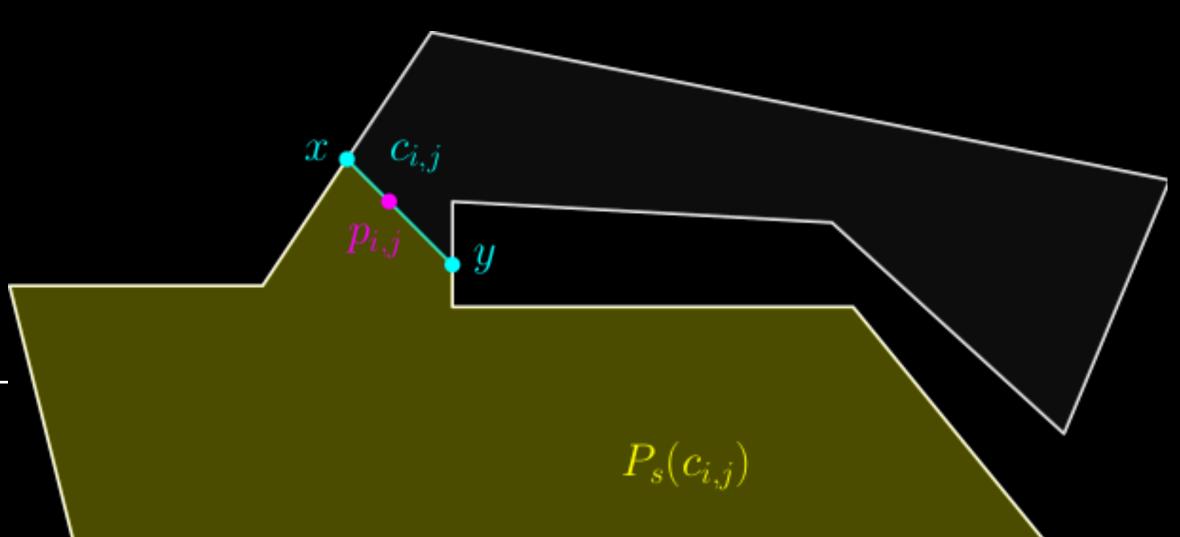
Proof: $\mathcal{P}_{C''} \subseteq \mathcal{P}_{C''} \cup \mathsf{OPT} \longrightarrow \square$

Lemma 5: All points in $\mathcal{P}_{C''}$ lie on their relative convex hull $CH_P(\mathcal{P}_{C''})$.

Proof:

Assume there is a point $p_{i,j} \in \mathcal{P}_{C''}$, $p_{i,j} \notin CH_P(\mathcal{P}_{C''})$

- → No $g_c \in G_{C''}$ intersects $c_{i,j}$
- Cut c_{i,j} connects two boundary points x, y
- $\overline{\mathsf{CH}_P(\mathcal{P}_{C''})} \subseteq \overline{P_{\mathcal{S}}(c_{i,j})}$ ($\overline{\mathsf{CH}_P(\mathcal{P}_{C''})}$ does not cross $c_{i,j}$)
- $\rightarrow p_{i,j}$ must lie on $CH_P(\mathcal{P}_{C''})$



Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

• $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in $\{C \setminus C'\}$ are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\overline{P_{C''}})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C\C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- → There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in $\{C \setminus C'\}$ are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- ightharpoonup CH_P(\mathcal{P}_{C} ") is such a tour \not

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- \rightarrow CH_P(\mathcal{P}_{C} ") is such a tour \neq

Lemma 7: $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i , except for γ_0 .

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- \rightarrow CH_P(\mathcal{P}_{C} ") is such a tour \neq

Lemma 7: $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i , except for γ_0 .

Proof: OPT(S,P,s) is feasible

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- ightharpoonup CH_P($\mathcal{P}_{C''}$) is such a tour ightharpoonup

Lemma 7: $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i , except for γ_0 .

Proof: OPT(S,P,s) is feasible

 \rightarrow Set C includes at least one cut colored in s_i

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

- $C = C'' \cup \{C' \setminus C''\} \cup \{C \setminus C'\}$ (Reminder: C visited by OPT, $C' \subseteq C$ essential cuts, $C'' \subseteq C'$ cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- ightharpoonup CH_P($\mathcal{P}_{C''}$) is such a tour ightharpoonup

Lemma 7: $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i , except for γ_0 .

Proof: OPT(S,P,s) is feasible

- → Set *C* includes at least one cut colored in *s*_i
- ightharpoonup CH_P(\mathcal{P}_{C} ") visits all cuts in C

Lemma 6: $CH_P(\mathcal{P}_{C''})$ visits all cuts in C.

Proof:

- C = C" ∪ {C' \ C"} ∪ {C \ C'} (Reminder: C visited by OPT, C' ⊆ C essential cuts, C" ⊆ C'cuts with independent geodesics)
- Cuts in {C \ C'} are dominated by cuts in C'
- \rightarrow Any tour visiting all cuts in C' must visit all cuts in $\{C \setminus C'\}$
- Cuts in C" are visited by Lemma 5.
- Assume $c \in \{C' \setminus C''\}$ not visited by $CH_P(\mathcal{P}_{C''})$
- ightharpoonup Cut c not in C" (we filtered its geodesic g_c out)
- ightharpoonup There is a geodesic $g_{ci,j} \in \mathcal{G}_{C''}$ with $\ell(g_{ci,j}) \ge \ell(g_c)$ that intersects c; visits $c_{i,j}$ in the point $p_{i,j}$
- \rightarrow Any tour that visits s and $p_{i,j}$ must intersect c
- ightharpoonup CH_P($\mathcal{P}_{C''}$) is such a tour ightharpoonup

Lemma 7: $CH_P(\mathcal{P}_{C''})$ visits one point per γ_i , except for γ_0 .

Proof: OPT(S,P,s) is feasible

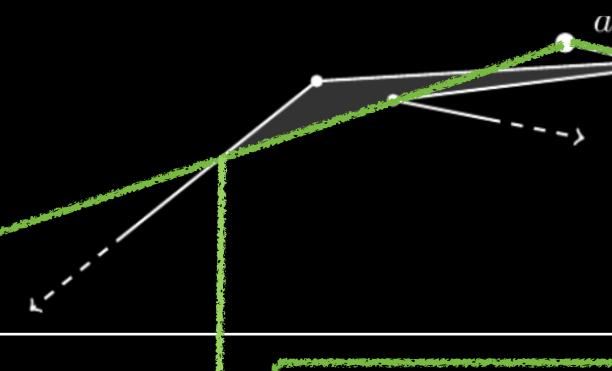
- → Set *C* includes at least one cut colored in *s*_i
- ightharpoonup CH_P($\mathcal{P}_{C''}$) visits all cuts in C
- ightharpoonup CH_P($\mathcal{P}_{C''}$) visits at least one point per γ_i

Approximation Algorithm for k-TrWRP(S,P,s)

Theorem 2: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). Then R yields an approximation ratio of $O(\log^2(|S| n) \log \log(|S| n) \log |S|)$.

Open Problem: k-Transmitter Combinatorics

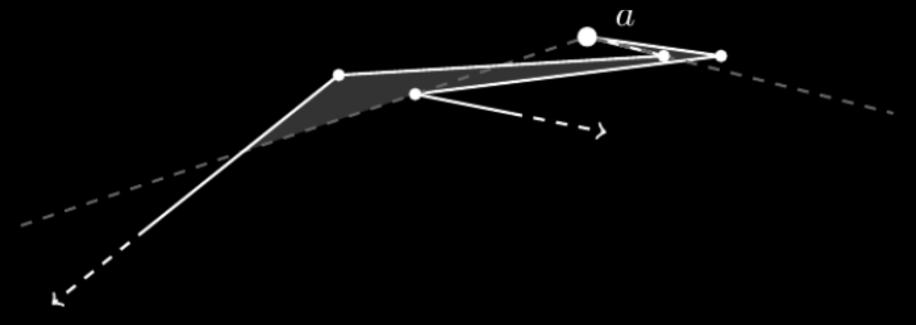
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:
 - Bounds for line segments in the plane
 - Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple n-gon
 - CFILS2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon



- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons $(\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: _n/3 _ 2-transmitters

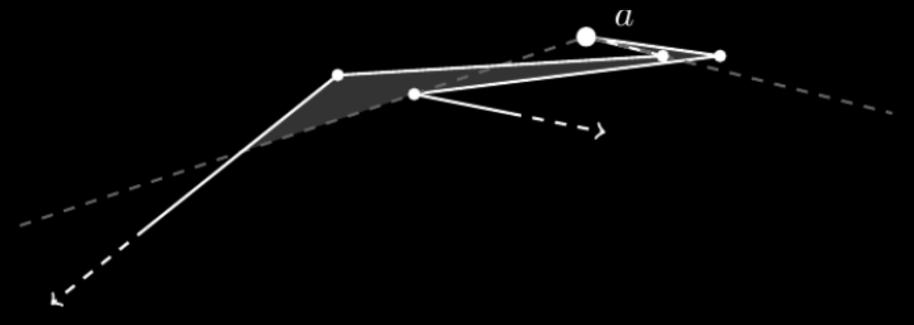
- Lower bound of $\lfloor \frac{n}{6} \rfloor$ 2-transmitters to cover a simple n-gon
- CFILS2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon



- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n/3 \rfloor$ 2-transmitters We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

- CFILS2018:
 - Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon

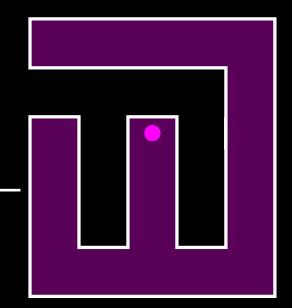


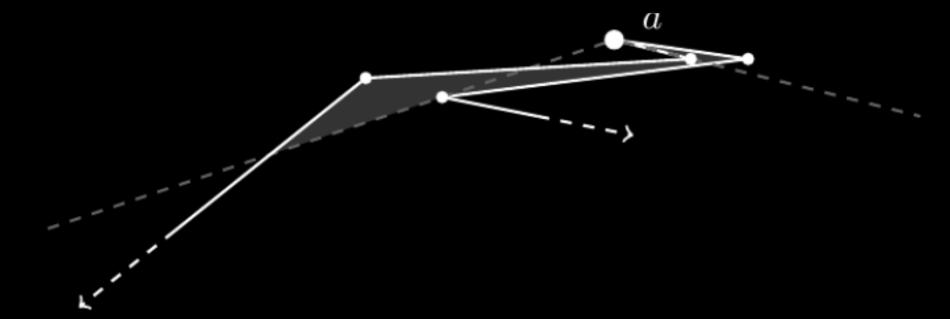
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - **BBBDDDFHILMSSU2010:**

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n/3 \rfloor$ 2-transmitters We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

- Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon



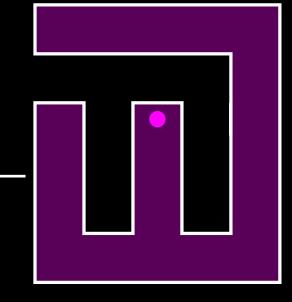


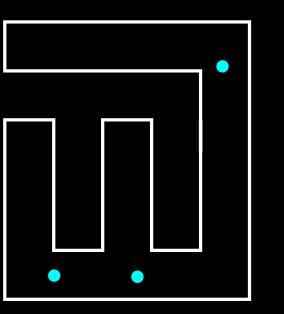
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons $(\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

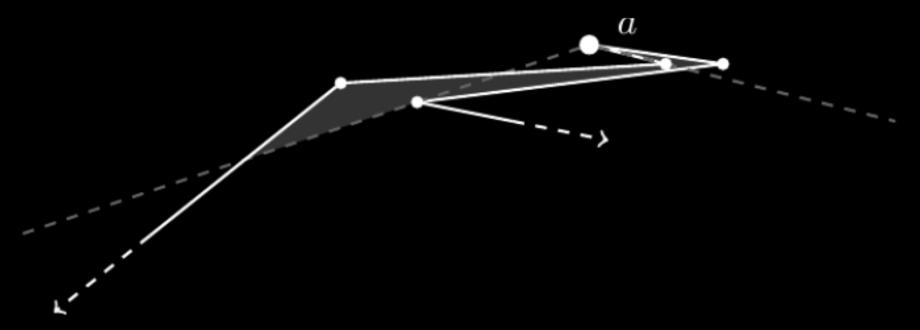
BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n/3 \rfloor$ 2-transmitters We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

- Upper and lower bounds for # edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon







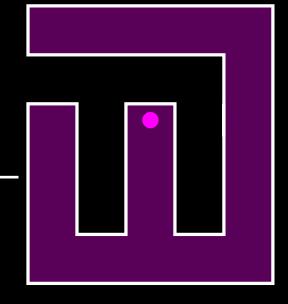
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

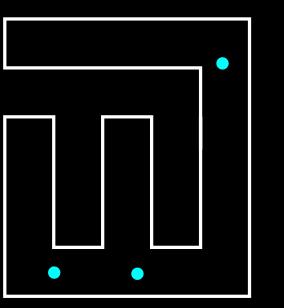
We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

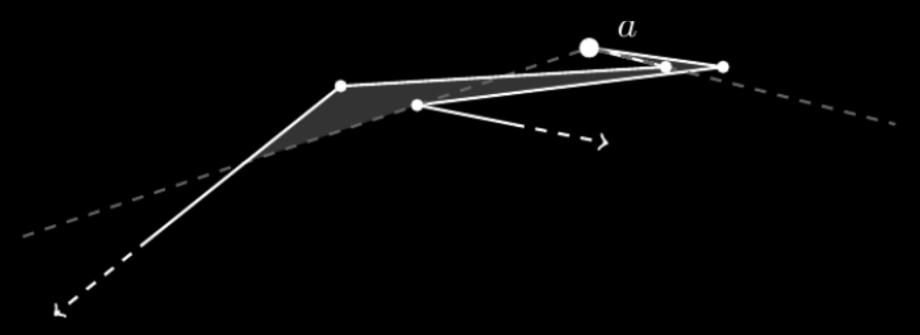
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

→ OPEN PROBLEM #1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to _n/5_
than to _n/3_)

- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon





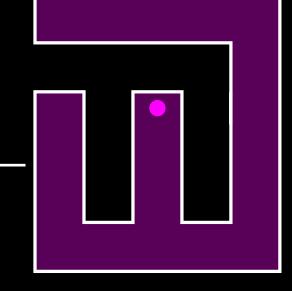


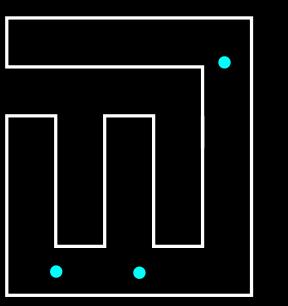
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

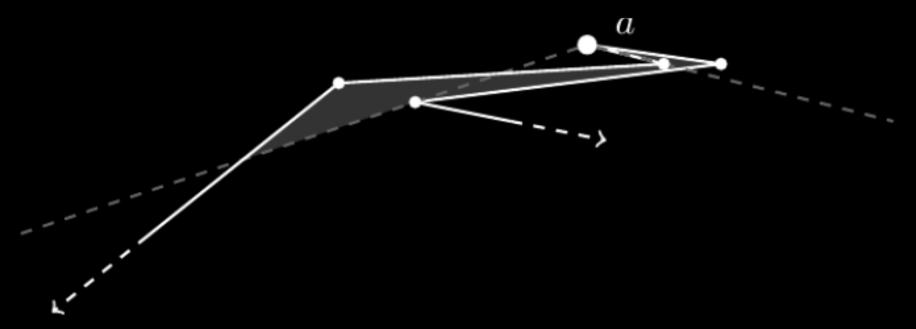
BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n/3 \rfloor$ 2-transmitters. We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

- → OPEN PROBLEM #1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to _n/5 _
 than to _n/3 _)
 - Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon







Joe O'Rourke, Computational Geometry

The only upper bound I know is obtained

by ignoring the extra power of the

original art gallery theorem!

transmitters, when [n/3] suffice—the

Column 52, 2012:

We know:

• Every 5-gon can be covered by a point 2-transmitter placed anywhere.

Joe O'Rourke, Computational Geometry Column 52, 2012:

The only upper bound I know is obtained by ignoring the extra power of the transmitters, when [n/3] suffice—the original art gallery theorem!

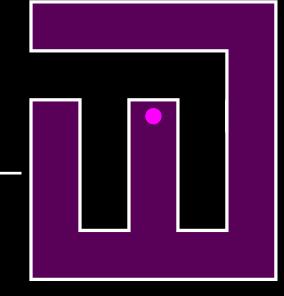
- "Art Gallery Theorems"
 - AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
 - BBBDDDFHILMSSU2010:

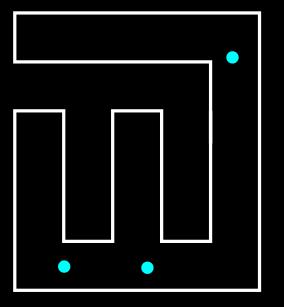
We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

→ OPEN PROBLEM #1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to _n/5_
than to _n/3_)

- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon





We know:

- Every 5-gon can be covered by a point 2-transmitter placed anywhere.
- Let P be a 6-gon, e={v,w}, a point 2-transmitter at v or w covers P.

Joe O'Rourke, Computational Geometry Column 52, 2012:

The only upper bound I know is obtained by ignoring the extra power of the transmitters, when [n/3] suffice—the original art gallery theorem!

AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\lceil \frac{n-2}{2k+3} \rceil k$ -transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)

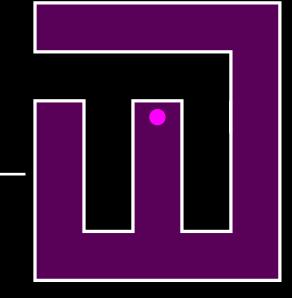
BBBDDDFHILMSSU2010

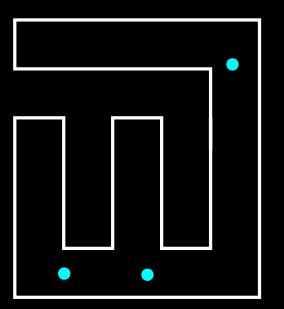
BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n/3 \rfloor$ 2-transmitters We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

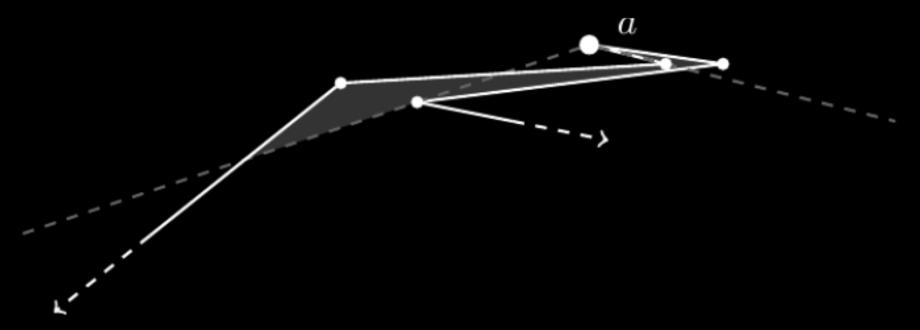
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

→ OPEN PROBLEM #1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to _n/5_
than to _n/3_)

- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon

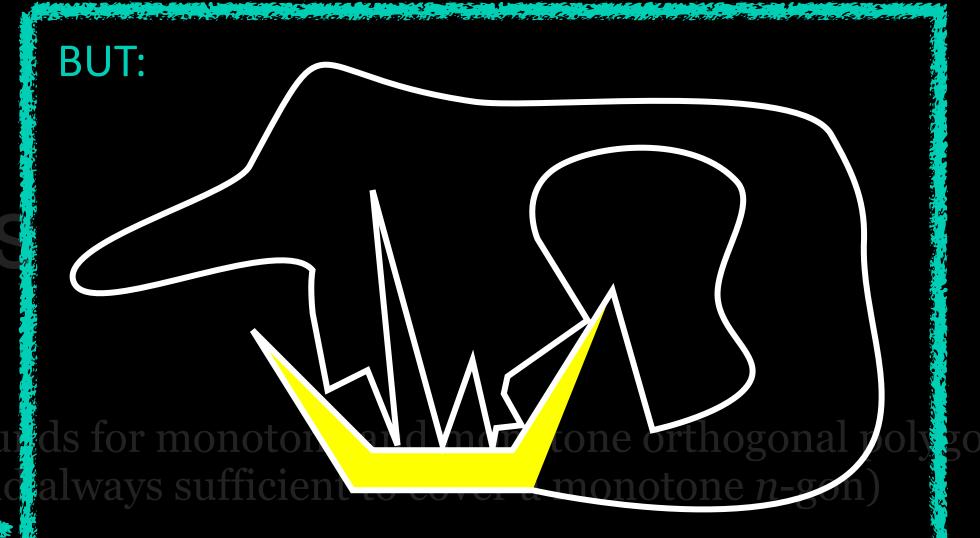






We know:

- Every 5-gon can be covered by a point 2-transmitter placed anywhere.
- Let P be a 6-gon, e={v,w}, a point 2-transmitter at v or w covers P.



Joe O'Rourke, Computational Geometry Column 52, 2012:

The only upper bound I know is obtained by ignoring the extra power of the transmitters, when [n/3] suffice—the original art gallery theorem!

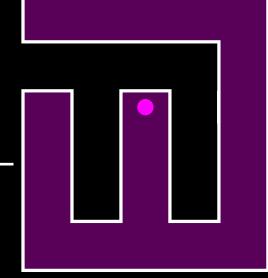
BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: \[\ln/3 \right] 2-transmitters

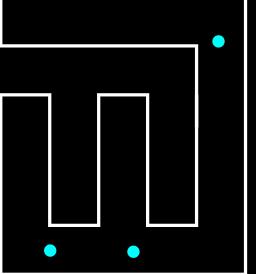
We were only able to reduce this to $\lfloor (n-1)/3 \rfloor$ (getting rid of an ear)

This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

→ OPEN PROBLEM #1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5] than to $\lfloor n/3 \rfloor$

- Lower bound of $\lfloor \frac{n}{5} \rfloor$ 2-transmitters to cover a simple *n*-gon

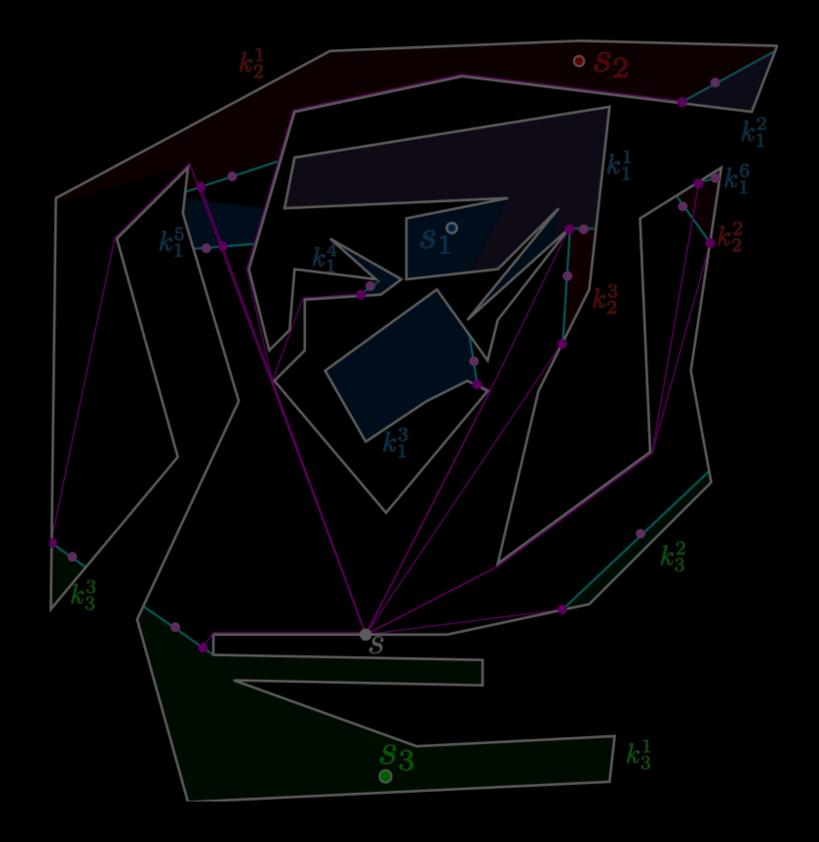


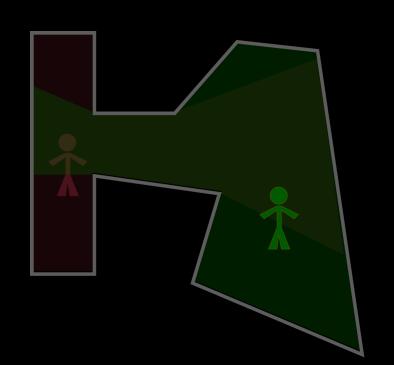


Outlook

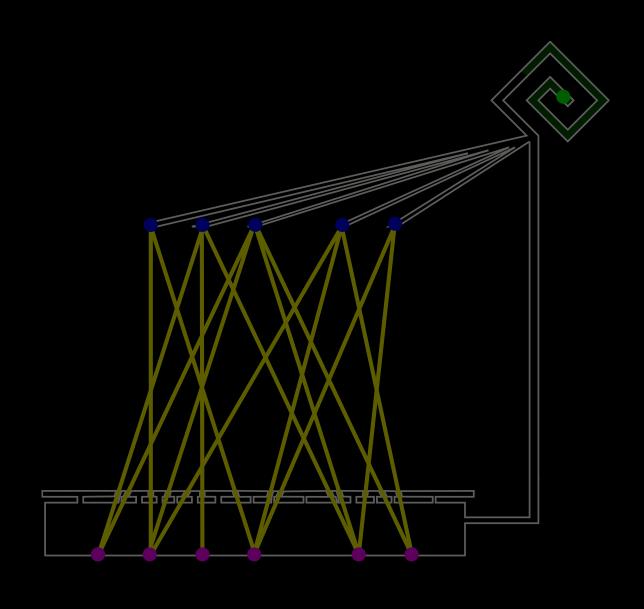
Outlook

- Approximation for watchmen routes for k-transmitters without given starting point and/or when all of P should be monitored?
- Structural analogue for extensions for 0-transmitters?
- Improved combinatorial bounds for 2-/k-transmitter covers—in particular, better upper bounds for simple polygons than the one stemming from 0-transmitters





Thank you.



christiane.schmidt@liu.se
http://webstaff.itn.liu.se/~chrsc91/