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Holes

⟺
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•  No holes



Click to edit Master title style
The Art Gallery Problem (AGP)

7

So-called “Art Gallery Theorems”: x guards are always sufficient and sometimes necessary to guard a 
polygon with n vertices (polygon from a specific class)
•  Simple polygon with n vertices:         are sometimes necessary and always sufficient. [Chvátal ’75]

Computational Complexity
•  The AGP is NP-hard for  point guards with holes [O’Rourke & Supowit 1983] , vertex guards without holes 
[Lee & Lin 1986],  point guards without holes [Aggarwal 1986]

Algorithms
•  Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many 
instances, heuristics; polytime algorithms



Click to edit Master title style
The Art Gallery Problem (AGP)

7

So-called “Art Gallery Theorems”: x guards are always sufficient and sometimes necessary to guard a 
polygon with n vertices (polygon from a specific class)
•  Simple polygon with n vertices:         are sometimes necessary and always sufficient. [Chvátal ’75]

Computational Complexity
•  The AGP is NP-hard for  point guards with holes [O’Rourke & Supowit 1983] , vertex guards without holes 
[Lee & Lin 1986],  point guards without holes [Aggarwal 1986]

Algorithms
•  Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many 
instances, heuristics; polytime algorithms

Other structural results
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Chromatic AGP:
Given: a polygon P 

Task:   find a min guard cover of P

Find a colored guard cover of P: 
No point in P is seen by two guards 
of the same color.

We do not care about the 
number of guards, but 
about the number of 
colors!

Capabilities of the guards 
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We can alter: 
•  Capabilities of the guards                                                  • Environment to be guardedEnvironment to be guarded

Rectilinear polygons

Guard a 1.5D-Terrain
•  With guards on the terrain
•  With guards on an altitude line above the 
terrain

Traditionally: 
Simple polygons or polygons 
with holes

Holes

⟺

Simple polygon:  
• Does not 
intersect itself 

•  No holes

Alter the polygon class: 
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2VR(p)/kVR(p) can have O(n) connected 
components.
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CFILS2018: Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt.  Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. 
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• Watchman route can be computed in polynomial time in a simple polygon with or without a given starting 
point on the boundary [Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] 
[Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
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• WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
• Central concept: extensions
• As for the AGP, we can alter the capabilities of the watchman or the area to be guarded

A cut c partitions polygon into two subpolygons: 
Ps(c)—subpolygon that contains starting point s
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1)
Essential cut: not dominated by other cut



k-Transmitter Watchman Routes
[Nilsson, S., 2022]

To appear in WALCOM 2023 
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 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.



Click to edit Master title style

22

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with S=U∪{v}

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with S=U∪{v}

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

long

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with S=U∪{v}

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

long

k-Transmitter Watchman Routes
 Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S,P) does not 
admit a polynomial-time approximation algorithm with approximation ratio c ln |S| unless P=NP, even 
for k=2.
 Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with S=U∪{v}

➜ Inapproximability: Cannot be approximated to within a logarithmic factor



Click to edit Master title style

22

long

k-Transmitter Watchman Routes

 Corollary: The same holds for k-TrWRP(S,P,s).
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Approximation Algorithm for k-TrWRP(S,P,s)

 Theorem 2: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal 
solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). 
Then R yields an approximation ratio of O( log2 (|S| n) log log (|S| n) log |S|).
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Example: When we visit k33 (in point p33), we also visit the cuts of k33, k21 and k15.  
Thus, we have edges from p33 to ĉ33, ĉ21, and ĉ15.
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Here:  
𝛾1 candidate points that belong to s1, 

𝛾2 candidate points that belong to s2,  

𝛾3 candidate points that belong to s3,  
𝛾0=s,  
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GKR00: Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem
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- We have m = O(n |S|), Q = |S| + 1

- Double this tree and obtain a route R                                                                                           —
the route is feasible as we visit one point per 𝛾i

To do: why do we achieve the claimed approximation factor?
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g3,2 ĉ3,2

GKR00: Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem
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A cut c partitions polygon into two subpolygons:  
Ps(c)—subpolygon that contains starting point s 
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1) 
Essential cut: not dominated by other cut
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-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
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-GC’’  set of geodesics that end at cuts in C’’



Click to edit Master title style

25

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.



Click to edit Master title style

25

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C’ ) is touched by exactly one of the geodesics.



Click to edit Master title style

25

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C’ ) is touched by exactly one of the geodesics.

-The geodesics in GC’’  intersect the cuts in C’’ in points of the type pi,j—set PC’’



Click to edit Master title style

25

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C’ ) is touched by exactly one of the geodesics.

-The geodesics in GC’’  intersect the cuts in C’’ in points of the type pi,j—set PC’’

-Build relative convex hull of all oi,j and all points in PC’’ (relative w.r.t. polygon P): CHP(OPT, PC’’)



Click to edit Master title style

25

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C’ ) is touched by exactly one of the geodesics.

-The geodesics in GC’’  intersect the cuts in C’’ in points of the type pi,j—set PC’’

-Build relative convex hull of all oi,j and all points in PC’’ (relative w.r.t. polygon P): CHP(OPT, PC’’)

-Claim 3: No geodesic can intersect CHP(OPT, PC’’) between a point oi,j  and a point pi,j  on the same cut. Thus, between any pair of points of the type 
oi,j on CHP(OPT, PC’’), we have at most two points of PC’’. CHP(OPT, PC’’) has length at most 3·||OPT(S,P,s)||.
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-Claim 4: CHP(PC’’) is not longer than CHP(OPT, PC’’) and CHP(PC’’) visits one point per 𝛾i (except for 𝛾0). 
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-  To connect s (which may lie in the interior of CHP(PC’’), we need costs at most ||OPT(S,P,s)||.
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Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is 
visited by two of these geodesics.
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We then iterate over these geodesics in the order g1, g2, …, g|C’ |

If the current geodesic gt intersects cuts ct1,…, ctY ∈ C’: we delete the shorter geodesics to these cut (gt1,…, gtY)
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If the current geodesic gt intersects cuts ct1,…, ctY ∈ C’: we delete the shorter geodesics to these cut (gt1,…, gtY)

➜ After last iteration, no two remaining geodesics visit the same cut in C’
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Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is 
visited by two of these geodesics.
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Claim 3: No geodesic can intersect CHP(OPT, PC’’) between a point oi,j  and a point pi,j  on the 
same cut. Thus, between any pair of points of the type oi,j on CHP(OPT, PC’’), we have at 
most two points of PC’’. CHP(OPT, PC’’) has length at most 3·||OPT(S,P,s)||.
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and the point pi,j are on CHP(OPT, PC’’). No geodesic in GC’’ intersects c between oi,j  and pi,j.
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Proof:

•Let oi,j     and oi’,j’  be the two consecutive points from OPT on CHP(OPT, PC’’’)

•By Lemma 1, pi,j     and pi’,j’ can lie between oi,j     and oi’,j’

•BUT: we cannot have a point p𝜅,ƛ  between oi,j     and pi,j or between oi’,j’     and pi’,j’ 
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30

Approximation Algorithm for k-TrWRP(S,P,s)

 Theorem 2: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal 
solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). 
Then R yields an approximation ratio of O( log2 (|S| n) log log (|S| n) log |S|).



Outlook
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• Approximation for watchmen routes for k-transmitters without given starting 

point and/or when all of P should be monitored? 
• Structural analogue for extensions for 0-transmitters? 
• Improved combinatorial bounds for 2-/k-transmitter covers—in particular, 

better upper bounds for simple polygons than the one stemming from 0-
transmitters
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