Guarding Problems and k-Transmitter Watchman Routes

Christiane Schmidt
Colloquium @ The Open University Israel, January 11, 2023

Agenda

- The Art Gallery Problem and Its Variants
- k-Transmitters
- The Watchman Route Problem (WRP)
- k-Transmitter Watchman Routes
- Outlook

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

The Art Gallery Problem (AGP)
witnesses

The Art Gallery Problem (AGP)

\rightarrow Lower bound of 2
However, generally, the ration between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)

\rightarrow Lower bound of 2
However, generally, the ration between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)

\rightarrow Lower bound of 2
However, generally, the ration between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983] , vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]

point guards

 vertex guards

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983] , vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]

vertex guards

Simple polygon:

- Does not intersect itself
- No holes

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983] , vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]

Algorithms

- Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many instances, heuristics; polytime algorithms

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal '75]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983], vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]

Algorithms

- Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many instances, heuristics; polytime algorithms

Other structural results

The Art Gallery Problem and Its Variants

The Art Gallery Problem (AGP)—and Its Variants?
We can alter:

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

The Art Gallery Problem (AGP) - and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

k-transmitter:

The Art Gallery Problem (AGP) - and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

k-transmitter:

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls
\Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP) - and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls
\Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP) - and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights,
assign energy (= brightness).

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights,
assign energy (= brightness).
"Sufficiently" (normalize to 1)
light everything - with fading!

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights,
assign energy (= brightness).
"Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:
 k-transmitter:

Line crosses at most 2 walls
\Rightarrow visible from the 2-transmitter

- Environment to be guarded

Fading:

Place lights,
assign energy (= brightness).
"Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.
 Minimize

Chromatic AGP:

Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights,
assign energy (= brightness).
"Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

Chromatic AGP:

Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights, assign energy (= brightness). "Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

Chromatic AGP:
Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights, assign energy (= brightness). "Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

Chromatic AGP:
Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights, assign energy (= brightness). "Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

Chromatic AGP:
Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights, assign energy (= brightness). "Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

Chromatic AGP:
Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Fading:

Place lights, assign energy (= brightness). "Sufficiently" (normalize to 1) light everything - with fading! Minimize total energy.

- Environment to be guarded

We do not care about the Chromatic AGP: number of guards, but about the number of colors!
Given: a polygon P

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Alter the polygon class:

Traditionally:
Simple polygons or polygons
with holes

Simple polygon:

- Does not intersect itself
- No holes

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Alter the polygon class:

Traditionally:
Simple polygons or polygons
with holes
 intersect itself

- No holes

Rectilinear polygons

The Art Gallery Problem (AGP)—and lts Variants?

We can alter:

- Capabilities of the guards

Alter the polygon class:

Traditionally:
Simple polygons or polygons
with holes

Simple polygon:

- Does not intersect itself

Rectilinear polygons

- Environment to be guarded

Guard a 1.5D-Terrain

- No holes

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

Alter the polygon class:

Traditionally:
Simple polygons or polygons
with holes

- Environment to be guarded

Guard a 1.5D-Terrain

- With guards on the terrain
 intersect itself
- No holes

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards

Alter the polygon class:

Traditionally:
Simple polygons or polygons
with holes

$$
\Longleftrightarrow
$$

Simple polygon:

- Does not intersect itself
- No holes

Rectilinear polygons

- Environment to be guarded

Guard a 1.5D-Terrain

- With guards on the terrain
- With guards on an altitude line above the terrain

k-Transmitters

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Formally: a point p is $\mathbf{2 (k)}$-visible from a point q, if the straight line connection $p q$ intersects P in at most two (k) connected components.

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Formally: a point p is $\mathbf{2 (k) - v i s i b l e ~ f r o m ~ a ~ p o i n t ~} q$, if the straight line connection $p q$ intersects P in at most two (\mathbf{k}) connected components.
$2 \mathrm{VR}(\mathrm{p})=$ set of points in P, 2-visible from p $k V R(p)=$ set of points in P, k-visible from p

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

- Capabilities of the guards
- Environment to be guarded

Formally: a point p is $\mathbf{2 (k)}$-visible from a point q, if the straight line connection $p q$ intersects P in at most two (\mathbf{k}) connected components.
$2 \mathrm{VR}(\mathrm{p})=$ set of points in P, 2-visible from p $\operatorname{kVR}(p)=$ set of points in P, k-visible from p
analogue of the visibility polygon

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Formally: a point p is $\mathbf{2 (k)}$-visible from a point q, if the straight line connection $p q$ intersects P in at most two (\mathbf{k}) connected components.

2VR(p) = set of points in P, 2-visible from p $\operatorname{kVR}(p)=$ set of points in P, k-visible from p

Stationary:
analogue of the visibility polygon

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP)—and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Formally: a point p is $\mathbf{2 (k)}$-visible from a point q, if the straight line connection $p q$ intersects P in at most two (\mathbf{k}) connected components.

2VR(p) = set of points in P, 2-visible from p
$\operatorname{kVR}(p)=$ set of points in P, k-visible from p
Stationary:
analogue of the visibility polygon

A set C is a 2-transmitter cover. $2 \mathrm{VR}(C)=\cup_{p \in C} 2 \mathrm{VR}(p)=P$

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem (AGP) - and Its Variants?

We can alter:

- Capabilities of the guards
- Environment to be guarded

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

Formally: a point p is $\mathbf{2 (k) - v i s i b l e ~ f r o m ~ a ~ p o i n t ~} q$, if the straight line connection $p q$ intersects P in at most two (\mathbf{k}) connected components.
$2 \mathrm{VR}(\mathrm{p})=$ set of points in P, 2-visible from p
$\operatorname{kVR}(p)=$ set of points in P, k-visible from p
Stationary:
analogue of the visibility polygon

A set C is a 2-transmitter cover: $2 \mathrm{VR}(C)=\cup_{p \in C} 2 \mathrm{VR}(p)=P$
A set C is a k-transmitter cover: $k \mathrm{VR}(C)=\cup_{p \in C} k \mathrm{VR}(p)=P$

k-/2-Transmitter

$2 \mathrm{VR}(p) / \mathrm{VVR}(p)$ can have $\mathrm{O}(\mathrm{n})$ connected components.

k-Transmitters

[^0]BBBDDDFHILMSSU2010: Brad Ballinger, Nadia Benbernou, Proseniit Bose, Mirela Damian, ErikD. Demaine, Vida Dujmovic, Robin Flatland, Ferran Hurtado, John Iacono, Anna Lubiw, Pat Morin, Vera Sacristán, Diane Souvaine, and Ryuhei Uehara. Coverage with k-transmitters in the presence of obstacles.

CFILS2018: Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt. Combinatorics and complexity of guarding polygons with edge and point 2-transmitters.

k-Transmitters

- "Art Gallery Theorems"

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:
- Upper and lower bounds for \# edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:
- Upper and lower bounds for \# edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:
- Upper and lower bounds for \# edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:
- Upper and lower bounds for \# edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon
- Minimum 2-/k-transmitter cover:

k-Transmitters

- "Art Gallery Theorems"
- AFFHUV2018: tight bounds for monotone and monotone orthogonal polygons ($\left\lceil\frac{n-2}{2 k+3}\right\rceil k$-transmitters are sometimes necessary and always sufficient to cover a monotone n-gon)
- BBBDDDFHILMSSU2010:
- Bounds for line segments in the plane
- Lower bound of $\left\lfloor\frac{n}{6}\right\rfloor_{2 \text {-transmitters to cover a simple } n \text {-gon }}$
- CFILS2018:
- Upper and lower bounds for \# edge 2-transmitters in simple, monotone, orthogonal, orthogonal monotone polygons
- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon
- Minimum 2-/k-transmitter cover:
- CFILS2018: NP-hard to compute point 2-transmitter/point k-transmitter/edge 2-transmitter cover in simple polygon, point 2-transmitter also for orthogonal polygons

k-Transmitters

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:

Sliding 4-transmitter

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters

Sliding 4-transmitter

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation
- BCLMMVY2019: minimize \#sliding k-transmitters

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation
- BCLMMVY2019: minimize \#sliding k-transmitters
- NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation

Sliding 4-transmitter

- BCLMMVY2019: minimize \#sliding k-transmitters
- NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
- Constant-factor approximation

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation

Sliding 4-transmitter

- BCLMMVY2019: minimize \#sliding k-transmitters
- NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
- Constant-factor approximation
- Computation of k-visibility region

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation
- BCLMMVY2019: minimize \#sliding k-transmitters
- NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
- Constant-factor approximation
- Computation of k-visibility region
- BBBDM19: computation in limited-workspace model

k-Transmitters

- Minimum 2-/k-transmitter cover for sliding k-transmitters:
- MSG2020(/2014): minimize total length of the k-transmitters
- NP-hard for $k=2$
- 2-approximation
- BCLMMVY2019: minimize \#sliding k-transmitters
- NP-hard for orthogonal polygons with holes, even if only horizontal otransmitters allowed
- Constant-factor approximation
- Computation of k-visibility region
- BBBDM19: computation in limited-workspace model
- BBDS20: O(nk) algorithm

The Watchman Route Problem [WRP]

Watchman Route Problem (WRP)

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move

Given: Polygon P

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move

Given: Polygon P
What is the shortest tour for a watchman along which all points of P become visible?

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary
- Now: one guard (watchman) that can move

Given: Polygon P
What is the shortest tour for a watchman along which all points of P become visible?

Watchman Route Problem (WRP)

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions

A cut c partitions polygon into two subpolygons:

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions

> A cut c partitions polygon into two subpolygons: $P_{s}(c)$-subpolygon that contains starting point s

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions

> A cut c partitions polygon into two subpolygons:
> $P_{s}(c)$-subpolygon that contains starting point s
> A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

Watchman Route Problem (WRP)

- Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]
-WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- Central concept: extensions
- As for the AGP, we can alter the capabilities of the watchman or the area to be guarded

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

k-Transmitter Watchman Routes

[Nilsson, S., 2022]

k-Transmitter Watchman Routes

k-Transmitter Watchman Routes

- Mobile k-transmitter

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset ScP of the) points of a polygon P ("sees" all of S or P)

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset ScP of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset ScP of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)
o With or without a given starting point s $k-\operatorname{TrWRP}(S, P, s)$ or $k-\operatorname{TrWRP}(S, P)$

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset ScP of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a ktransmitter)
- With or without a given starting point s $k-\operatorname{TrWRP}(S, P, s)$ or $k-\operatorname{TrWRP}(S, P)$

- Extensions do not translate to k-transmitters for $k \geq 2$ (no longer local!)

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2$.

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio c In ISI unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \mathrm{In} \mathrm{ISI}$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln \operatorname{ISI}$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $P=N P$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

Approximation Algorithm for k-TrWRP(S,P,s)

Approximation Algorithm for k-TrWRP(S,P,s)

Theorem 2: Let P be a simple polygon with $n=\mid P I$. Let OPT(S, P, s) be the optimal solution for the $k-\operatorname{TrWRP}(S, P, s)$ and let R be the solution by our algorithm $\operatorname{ALG}(S, P, s)$. Then R yields an approximation ratio of $\mathrm{O}\left(\log ^{2}(\mathrm{ISI} n) \log \log (I S I n) \log \mid S I\right)$.

Approximation Algorithm for k-TrWRP(S,P,s)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

UNIVERSITY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

INKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

IINKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting $p_{i, j}$ must visit $\hat{c}_{\mathrm{i}, \mathrm{j}}$)

Example: When we visit $k_{3}{ }^{3}$ (in point $p_{3}{ }^{3}$), we also visit the cuts of $k_{3}{ }^{3}, k_{2}{ }^{1}$ and $k_{1}{ }^{5}$. Thus, we have edges from $p_{3}{ }^{3}$ to $\hat{c}_{3}{ }^{3}, \hat{c}_{2}{ }^{1}$, and $\hat{\mathrm{c}}_{1}{ }^{5}$.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting $p_{i, j}$ must visit $\hat{c}_{\mathrm{i}, \mathrm{j}}$)

Example: When we visit $k_{3}{ }^{3}$ (in point $p_{3}{ }^{3}$), we also visit the cuts of $k_{3}{ }^{3}, k_{2}{ }^{1}$ and $k_{1}{ }^{5}$. Thus, we have edges from $p_{3}{ }^{3}$ to $\hat{\mathrm{c}}_{3^{3}}, \hat{\mathrm{c}}_{2}{ }^{1}$, and $\hat{\mathrm{c}}_{1}{ }^{5}$.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
INKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
INKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$

Here:

γ_{1} candidate points that belong to s_{1}, γ_{2} candidate points that belong to S_{2} γ_{3} candidate points that belong to S_{3},

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- |V(G)|=O(n|SI)
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

LINKÖPING
UNIVERSITY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{\mathrm{c}}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by GKR00 with approximation ratio $O(\log 2 m \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$

LINKÖPING
UNIVERSITY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{\mathrm{c}}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by GKR00 with approximation ratio $O(\log 2 m \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$
- Double this tree and obtain a route R the route is feasible as we visit one point per γ_{i}

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{\mathrm{c}}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by GKR00 with approximation ratio $O(\log 2 m \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$
- Double this tree and obtain a route R
the route is feasible as we visit one point per γ_{i}

To do: why do we achieve the claimed approximation factor? $p_{3,1}$

- Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, \mathrm{~s})$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i, j}$ (first time)
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)
- Identify subset C ' of essential cuts ($C ‘ \subseteq$)

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT (S, P, s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)

A cut c partitions polygon into two subpolygons: $P_{s}(c)$-subpolygon that contains starting point s A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$ Essential cut: not dominated by other cut

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set C ($\left.C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime} \prime}\right)$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set C ($\left.C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime}}\right)$
- C"'>C'

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C^{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime}}\right)$
- C"' ${ }^{\prime \prime}$ C'
-For $\mathrm{t}=1$ TO IC'

Proof idea: alter(unknown) optimal route OPT(S, P, s) to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT(S,P,s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

Proof idea: alter(unknown) optimal route OPT(S, P, s) to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT(S,P,s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects
$-C^{\prime \prime} \leftarrow C^{\prime \prime} 1 C_{t}$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
- For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C " \leftarrow C " 1 C_{t}
$$

$-G_{C}$ set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by $\operatorname{OPT}(S, P, s)$ (each cut in C^{\prime}) is touched by exactly one of the geodesics.
- The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C} "

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $O_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $O_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S, P, s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $O_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
${ }^{\text {Claim 4: }} \mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per γ_{i} (except for $\left.\gamma_{0}\right)$.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{IOPT}(S, P, s)\|$.
${ }^{\text {Claim 4: }} \mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per γ_{i} (except for $\left.\gamma_{0}\right)$.
- To connect s (which may lie in the interior of $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime \prime}}\right)$, we need costs at most IIOPT(S,P,s)\|.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For $\mathrm{t}=1 \mathrm{TO}\left|\mathrm{C}^{\prime}\right|$
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by $\operatorname{OPT}(S, P, s)$ (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
-Claim 4: $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per γ_{i} (except for γ_{0}).
- To connect s (which may lie in the interior of $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime \prime}}\right)$, we need costs at most \|OPT(S,P,s)\|.
$\|R\| \leq \alpha_{1} \cdot f(|V(G)|,|S|)\left\|\mathrm{OPT}_{G}(S, P, s)\right\| \leq \alpha_{2} \cdot f(n|S|,|S|)\left\|\mathrm{CH}_{P}\left(\mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)\right\| \leq \alpha_{3} \cdot f(n|S|,|S|)\left\|\mathrm{CH}_{P}\left(\mathrm{OPT} \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)\right\|$ $\leq \alpha_{4} \cdot f(n|S|,|S|)\|\operatorname{OPT}(S, P, s)\|$
with $f(N, M)=\log ^{2} N \log \log N \log M$

Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof:

Claim 1: The geodesics in G_{C} " are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof:
We orderred the geodesics to the essential cuts C^{\prime} by decreasing length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}^{\prime} c^{\prime}\right)$

Claim 1: The geodesics in G_{C} " are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof:
We orderred the geodesics to the essential cuts C^{\prime} by decreasing length: $\left.\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}^{\prime} c^{\prime}\right)\right)$ We then iterate over these geodesics in the order $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\left|c^{\prime}\right|}$

Claim 1: The geodesics in $\mathcal{G}_{C^{\prime \prime}}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof:
We orderred the geodesics to the essential cuts C^{\prime} by decreasing length: $\left.\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}^{\prime} c^{\prime}\right)\right)$
We then iterate over these geodesics in the order $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\left|c^{\prime}\right|}$
If the current geodesic g_{t} intersects cuts $\mathrm{c}_{\mathrm{t} 1}, \ldots, \mathrm{C}_{\mathrm{tr}} \in \mathrm{C}^{\prime}$: we delete the shorter geodesics to these cut ($\mathrm{g}_{\mathrm{t} 1}, \ldots, \mathrm{~g}_{\mathrm{tr}}$)

Claim 1: The geodesics in $\mathcal{G}_{C^{\prime \prime}}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof:

We orderred the geodesics to the essential cuts C^{\prime} by decreasing length: $\ell\left(g_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime}}\right)$
We then iterate over these geodesics in the order $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\left|c^{\prime}\right|}$
If the current geodesic gt_{t} intersects cuts $\mathrm{c}_{\mathrm{t} 1}, \ldots, \mathrm{c}_{\mathrm{iv}} \in \mathrm{C}^{\prime}$: we delete the shorter geodesics to these $\mathrm{cut}^{\left(\mathrm{g}_{\mathrm{t} 1}, \ldots, \mathrm{giv}^{\prime}\right)}$
\rightarrow After last iteration, no two remaining geodesics visit the same cut in C^{\prime}

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Proof:

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Proof:
Assume there exists a geodesic $\mathrm{gc}^{\prime} \in \mathcal{G}_{C^{\prime \prime}}$ to a cut $c^{\prime} \neq c, c^{\prime} \in C^{\prime \prime}$ that intersects c between $o_{i, j}$ and $p_{i, j}$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j,}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Proof:
Assume there exists a geodesic $\mathrm{g}_{c^{\prime}} \in \mathcal{G}_{C^{\prime \prime}}$ to a cut $c^{\prime} \neq c, c^{\prime} \in C^{\prime \prime}$ that intersects c between $o_{i, j}$ and $p_{i, j}$.
Let p_{c} denote the point in which g_{c} intersects c

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Proof:
Assume there exists a geodesic $\mathrm{g}_{c^{\prime}} \in G_{C^{\prime \prime}}$ to a cut $c^{\prime} \neq c, c^{\prime} \in C^{\prime \prime}$ that intersects c between $o_{i, j}$ and $p_{i, j}$.
Let p_{c} denote the point in which g_{c} intersects c

- If $\ell\left(\mathrm{g}_{\mathrm{c}}\right)>\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: we would have deleted g_{c}, hence $c \notin C^{\prime \prime}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\left(^{\prime \prime}\right.}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{IIOPT}(S, P, s) \mid l$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S$, $k V R i(s)$, for which both the point $o_{i j}$ and the point $p_{i j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{c^{\prime}}\right)$. No geodesic in \mathcal{G}_{c}. intersects c between $o_{i j}$ and $p_{i j}$.

Proof:
Assume there exists a geodesic $\mathrm{g}_{c^{\prime}} \in \mathcal{G}_{c^{\prime}}$ to a cut $c^{\prime} \neq c, c^{\prime} \in C^{\prime \prime}$ that intersects c between $o_{i j}$ and $p_{i j}$.
Let p_{c} denote the point in which g_{c} intersects c

- If $\ell\left(\mathrm{gc}_{\mathrm{c}}\right)>\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: we would have deleted g_{c}, hence $\mathrm{c} \notin \mathrm{C}^{\prime \prime}$
- If $\ell\left(\mathrm{g}_{\mathrm{c}}\right)<\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: the geodesic to c^{\prime} restricted to the part between s and $p_{\mathrm{c}}\left(\mathrm{g}_{\mathrm{c} / \mathrm{s}, \mathrm{pc})}\right)$ is shorter than g_{c} \Varangle contradiction to gc_{c} being geodesic to c

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\left(^{\prime \prime}\right.}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{IIOPT}(S, P, s) \mid I$.

Lemma 1: Consider a cut $c \in C^{\prime \prime}$, from CC j of a k-visibility region for $s_{i} \in S, k V R i(s i)$, for which both the point $o_{i, j}$ and the point $p_{i, j}$ are on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$. No geodesic in $\mathcal{G}_{C^{\prime}}$ intersects c between $o_{i, j}$ and $p_{i, j}$.

Proof:
Assume there exists a geodesic $\mathrm{gc}^{\prime} \in \mathcal{G}_{C^{\prime \prime}}$ to a cut $c^{\prime} \neq c, c^{\prime} \in C^{\prime \prime}$ that intersects c between $o_{i, j}$ and $p_{i, j}$.
Let p_{c} denote the point in which g_{c} intersects c

- If $\ell\left(\mathrm{g}_{\mathrm{c}}\right)>\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: we would have deleted g_{c}, hence $c \notin C^{\prime \prime}$
- If $\ell\left(\mathrm{g}_{c^{\prime}}\right)<\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: the geodesic to c^{\prime} restricted to the part between s and $p_{\mathrm{c}}\left(\mathrm{g}_{\mathrm{c}[\mathrm{s}, \mathrm{pc}]}\right)$ is shorter than g_{c} 4 contradiction to g_{c} being geodesic to c
- If $\ell\left(\mathrm{g}_{\mathrm{c}^{\prime}}\right)=\ell\left(\mathrm{g}_{\mathrm{c}}\right)$: Either $\ell\left(\mathrm{g}_{\mathrm{c}^{\prime}[\mathrm{s}, \mathrm{pc\mid}]}\right)<\ell\left(\mathrm{g}_{\mathrm{c}^{\prime}}\right)=\ell\left(\mathrm{g}_{\mathrm{c}}\right)$ or (if p_{c} on $\left.c^{\prime}\right) p_{\mathrm{i}, \mathrm{j}}=p_{\mathrm{c}}$ (claim holds)

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$, Proof:

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$, Proof:

- Let $o_{i, j}$ and $o_{i, j}{ }^{\prime} j^{\prime}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j ;}{ }^{\prime}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\left.C^{\prime}\right)}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j ;}{ }^{\prime}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}{ }^{\prime}$, and $p_{i, j, j}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j ;}{ }^{\prime}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}{ }^{\prime}$, and $p_{i, j, j}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j ;}{ }^{\prime}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}{ }^{\prime}$, and $p_{i, j, j}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $O_{k, \lambda}$ on $c "$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j, j}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}^{i}$ and $p_{i, j, j}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $O_{k, \lambda}$ on $c "$
- $O_{i, j}$ and $O_{i, j}{ }^{\prime}{ }^{\prime}$ are consecutive pts on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$ Proof:

- Let $o_{i, j}$ and $o_{i, j, j}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \pi}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}{ }^{\prime}$ and $p_{i, j}{ }^{\prime \prime}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $O_{k, \lambda}$ on $c "$
- $o_{i, j}$ and $O_{i, j, j}$ are consecutive pts on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
\Rightarrow Order of OPT $o_{i, j} O_{i, j}{ }^{\prime}, o_{k, \lambda}$ or $O_{K, \lambda,} O_{i, j} O_{i}^{\prime}, j^{\prime}$, w.l.o.g. $o_{i, j} O_{i, j, j}, o_{K, \lambda}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$, Proof:

- Let $o_{i, j}$ and $o_{i, j, j}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}^{i}$ and $p_{i, j, j}{ }^{\prime}$
- Assume there is a point $p_{k, \lambda}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathbb{P}_{c^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $O_{k, \lambda}$ on $c "$
- $O_{i, j}$ and $O_{i, j}{ }^{\prime}{ }^{\prime}$ are consecutive pts on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
\Rightarrow Order of OPT $o_{i, j} O_{i, j}{ }^{\prime}, o_{k, \lambda}$ or $O_{K, \lambda,} O_{i, j} O_{i}^{\prime}, j^{\prime}$, w.l.o.g. $O_{i, j} O_{i, j, j}, o_{K, \lambda}$
- Cut c "is a line segment

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$, Proof:

- Let $o_{i, j}$ and $o_{i, j, j}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}^{i}$ and $p_{i, j, j}{ }^{\prime}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $o_{\kappa, \pi}$ on c "
- $O_{i, j}$ and $O_{i, j}{ }^{\prime}{ }^{\prime}$ are consecutive pts on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
\Rightarrow Order of OPT $o_{i, j} O_{i, j} j^{\prime}, o_{k, \lambda}$ or $O_{k, \lambda,} O_{i, j} O_{i, j}^{\prime},{ }^{\prime}$, w.I.o.g. $o_{i, j} O_{i, j}{ }^{\prime}, o_{k, \lambda}$
- Cut c "is a line segment
- Consider polgyon P_{Δ} with vertices $o_{i, j} p_{i, j}, p_{k, \lambda}, O_{k, i}, o_{i, j}{ }^{j}, O_{i, j}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right.$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 2: Between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathrm{P}_{C^{\prime \prime}}\right)$, we have at most two points in $\mathcal{P}_{C^{\prime \prime}}$, Proof:

- Let $o_{i, j}$ and $o_{i, j, j}$ be the two consecutive points from OPT on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
- By Lemma 1, $p_{i, j}$ and $p_{i, j, j}$ can lie between $o_{i, j}$ and $o_{i, j}{ }^{\prime}{ }^{\prime}$
- BUT: we cannot have a point $p_{k, \lambda}$ between $o_{i, j}$ and $p_{i, j}$ or between $o_{i, j}^{i}$ and $p_{i, j, j}{ }^{\prime}$
- Assume there is a point $p_{k, \pi}$ between on $p_{i, j}$ and $p_{i^{\prime}, j^{\prime}}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ (on cuts $c^{\prime \prime}, c, c^{\prime}$, resp.)
- OPT visits $o_{\kappa, \pi}$ on c "
- $O_{i, j}$ and $O_{i, j}{ }^{\prime}{ }^{\prime}$ are consecutive pts on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
\Rightarrow Order of OPT $o_{i, j} O_{i, j} j^{\prime}, o_{k, \lambda}$ or $O_{k, \lambda,} O_{i, j} O_{i, j}^{\prime},{ }^{\prime}$, w.I.o.g. $o_{i, j} O_{i, j}{ }^{\prime}, o_{k, \lambda}$
- Cut c "is a line segment
- Consider polgyon P_{Δ} with vertices $o_{i, j} p_{i, j}, p_{k, \lambda}, O_{k, \lambda}, O_{i, j} j^{\prime}, O_{i, j}$
- Point $p_{i, j}{ }^{\prime}$, must lie in P_{Δ} 's interior $+o_{i^{\prime}, j}$ cannot lie on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right) \nLeftarrow$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, s)\|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, \mathrm{~s})\|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j^{\prime}}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, \mathrm{~s})\|$.

Lemma 3: \|CH $\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\|\leq 3 \cdot\| \mathrm{OPT}(S, P, s) \|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}{ }^{\prime}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j, j^{\prime}}$ and $p_{i, j}{ }^{\prime}$ both on $c_{i, j}{ }^{\prime}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ has length at most $3 \cdot\|\mathrm{OPT}(S, P, \mathrm{~s})\|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}$ and $p_{i, j, j}$ both on $c_{i, j}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $e_{i, j}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathscr{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}$ and $p_{i, j, j}$ both on $c_{i, j}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathscr{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}$ and $p_{i, j}{ }^{\prime}$ both on $c_{i, j}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, o_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho_{r^{\prime}, j^{\prime}}, p_{i_{j}, j}\right) \leq \ell\left(\rho_{r_{i}^{\prime,},}, O_{i, j}, j\right)\right)$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}{ }^{\prime}$ and $p_{i, j}{ }^{\prime}$ both on $c_{i, j}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i, j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, O_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho_{r_{j}^{\prime},}, p_{i, j}\right) \leq \ell\left(\rho_{i, j^{\prime}}, O_{i, j}\right)\right)$
- Alter OPT(S,P,s) between $o_{i, j}$ and $o_{i, j ;}$: $o_{i, j} \boldsymbol{Q}_{i, j} p_{i, j} \boldsymbol{\rho}_{i, j} \rho_{i, j}{ }^{\prime} p_{i, j, j} \rho_{i, j}{ }^{\prime} O_{i, j}$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}{ }^{\prime}$ and $p_{i, j}{ }^{\prime}$ both on $c_{i, j}$
$\rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $e_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i, j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, o_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho_{i, j^{\prime}}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, o_{i j, j}\right)\right)$

\rightarrow New tour T: visits all points on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:
-Lemmas $1,2 \rightarrow$ Between two consecutive points of $\operatorname{OPT}(S, P, s)$ on $\operatorname{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i_{i}, j}$, we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$

- Points $o_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $o_{i, j,}{ }^{\prime}$ and $p_{i, j}{ }^{\prime}$ both on $c_{i, j}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i, j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, o_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho_{i, j^{\prime}}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, o_{i j, j}\right)\right)$

\Rightarrow New tour T : visits all points on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$
$\Rightarrow\|T\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:

- Lemmas $1,2 \rightarrow$ Between two consecutive points of OPT(S,P,s) on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i^{\prime}, j}$, , we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$
- Points $O_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $O_{i, j}{ }^{\prime} j^{\prime}$ and $p_{i, j, j}$ both on $c_{i, j}{ }^{\prime}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}, j$ in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i, j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, O_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho^{\prime}, j^{\prime}, p_{i, j} j^{\prime}\right) \leq \ell\left(\rho^{\prime}, j^{\prime}, O_{i, j} j^{\prime}\right)\right)$
- Alter OPT(S,P,s) between $o_{i, j}$ and $O_{i^{\prime}, j,:}: O_{i, j} \boldsymbol{\varrho}_{i, j} p_{i, j} \boldsymbol{\rho}_{i, j} \boldsymbol{\rho}^{\prime}, j^{\prime} p_{i^{\prime}, j} \boldsymbol{\rho}^{\prime}, j^{\prime} O_{i, j}^{\prime \prime} j^{\prime}$
\Rightarrow New tour T : visits all points on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$
$\Rightarrow\|T\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$
- $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ is shortest tour to visit these points

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:

- Lemmas $1,2 \rightarrow$ Between two consecutive points of OPT(S,P,s) on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i^{\prime}, j}$, , we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$
- Points $O_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $O_{i, j}{ }^{\prime} j^{\prime}$ and $p_{i, j, j}$ both on $c_{i, j}{ }^{\prime}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}$-in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\rho_{i, j}, p_{i, j}\right) \leq \ell\left(\rho_{i, j}, O_{i, j}\right)\left(\right.$ and $\left.\ell\left(\rho^{\prime}, j^{\prime}, p_{i, j} j^{\prime}\right) \leq \ell\left(\rho^{\prime}, j^{\prime}, O_{i, j} j^{\prime}\right)\right)$
- Alter OPT(S,P,s) between $o_{i, j}$ and $O_{i^{\prime}, j,:}: O_{i, j} \boldsymbol{\varrho}_{i, j} p_{i, j} \boldsymbol{\rho}_{i, j} \boldsymbol{\rho}^{\prime}, j^{\prime} p_{i^{\prime}, j} \boldsymbol{\rho}^{\prime}, j^{\prime} O_{i, j}^{\prime \prime} j^{\prime}$
\rightarrow New tour T: visits all points on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$
$\Rightarrow\|T\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$
- $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ is shortest tour to visit these points
$\Rightarrow\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq\|\mathrm{I}\|$

Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)$ has length at most $3 \cdot \operatorname{lIOPT}(S, P, s) \|$.

Lemma 3: $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$.
Proof:

- Lemmas $1,2 \rightarrow$ Between two consecutive points of OPT(S,P,s) on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right), o_{i, j}$ and $o_{i^{\prime}, j}$, , we hat at most two points where a geodesic visits a cut: $p_{i, j}$ and $p_{i, j}$
- Points $O_{i, j}$ and $p_{i, j}$ both on $c_{i, j} /$ points $O_{i, j}{ }^{\prime} j^{\prime}$ and $p_{i, j, j}$ both on $c_{i, j}{ }^{\prime}$
$\Rightarrow g_{i, j}$ intersects $\operatorname{OPT}(S, P, s)$ between $o_{i, j}$ and $o_{i, j}, j$ in point: $\varrho_{i, j}$
- $g_{i, j}$ is geodesic
$\Rightarrow \ell\left(\varrho_{i, j}, p_{i, j}\right) \leq \ell\left(\varrho_{i, j}, O_{i, j}\right)\left(\operatorname{and} \ell\left(\rho^{\prime} ; j^{\prime}, p_{i^{\prime}, j^{\prime}}\right) \leq \ell\left(\rho^{\prime} ; j^{\prime}, O_{i}{ }^{\prime}, j^{\prime}\right)\right)$
- Alter OPT(S,P,s) between $o_{i, j}$ and $O_{i^{\prime}, j,:}: O_{i, j} \boldsymbol{\varrho}_{i, j} p_{i, j} \boldsymbol{\rho}_{i, j} \boldsymbol{\rho}^{\prime}, j^{\prime} p_{i^{\prime}, j} \boldsymbol{\rho}^{\prime}, j^{\prime} O_{i, j}^{\prime \prime} j^{\prime}$
\Rightarrow New tour T : visits all points on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$
$\Rightarrow\|T\| \leq 3 \cdot\|\mathrm{OPT}(S, P, s)\|$
- $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathscr{P}_{C^{\prime \prime}}\right)$ is shortest tour to visit these points
$\rightarrow\left|\mid \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime}}\right)\|\leq\| \mathrm{Il}\right.$
- \| $\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C}\right)\right\| \leq 3 \cdot\|\mathrm{OPT}(S, P, S)\|$

Approximation Algorithm for k-TrWRP(S,P,s)

Theorem 2: Let P be a simple polygon with $n=\mid P I$. Let OPT(S, P, s) be the optimal solution for the $k-\operatorname{TrWRP}(S, P, s)$ and let R be the solution by our algorithm $\operatorname{ALG}(S, P, s)$. Then R yields an approximation ratio of $\mathrm{O}\left(\log ^{2}(\mathrm{ISI} n) \log \log (I S I n) \log \mid S I\right)$.

Outlook
1.0

Outlook

- Approximation for watchmen routes for k-transmitters without given starting point and/or when all of P should be monitored?
- Structural analogue for extensions for 0-transmitters?
- Improved combinatorial bounds for 2-/k-transmitter covers-in particular, better upper bounds for simple polygons than the one stemming from 0 transmitters

christiane.schmidt@liu.se
http://webstaff.itn.liu.se/~chrsc91/

[^0]: AFFHUV2018: Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons.

