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So-called “Art Gallery Theorems”: x guards are always sufficient and sometimes necessary to guard a 
polygon with n vertices (polygon from a specific class)
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So-called “Art Gallery Theorems”: x guards are always sufficient and sometimes necessary to guard a 
polygon with n vertices (polygon from a specific class)
•  Simple polygon with n vertices:         are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity
•  The AGP is NP-hard for  point guards with holes [O’Rourke & Supowit 1983] , vertex guards without holes 
[Lee & Lin 1986],  point guards without holes [Aggarwal 1986]

• The AGP is ∃R-complete [Abrahamsen, Adamszek & Miltzow 2021]

Algorithms
•  Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many 
instances, heuristics; polytime algorithms

Other structural results
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if there exists a staircase path in P  
that connects them. 

Two points are r-visible to each other  
if there exists a rectangle in P  
that contains both points.
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Motivated by wireless communication:  

       
📱📱
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2VR(p)/kVR(p) can have O(n) connected 
components.
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Point and edge k-transmitters Lower bound Upper bound

Simple n-gons ⌊n/5⌋for k=2 [4] ⌊n/3⌋for k=2 * 
O(n/k) k-transmitters [5]

Monotone n-gons ⌈(n-2)/(2k+3)⌉ [1] ⌈(n-2)/(2k+3)⌉ [1]
Monotone orthogonal n-gons ⌈(n-2)/(2k+4)⌉ for k=1, k even [1] 

⌈(n-2)/(2k+6)⌉ k≥3 odd [1]
⌈(n-2)/(2k+4)⌉ for k=1, k even [1] 
⌈(n-2)/(2k+6)⌉ k≥3 odd [1]

Ortogonal (2m)-gon m even: Single (m-1)-transmitter; m odd: Single m-transmitter [2]
Spiral n-gons ⌊n/4⌋for k=2 [3]
Arrangement of lines in the plane Single ⌈2n/3⌉-transmitter [2] 

Two ⌈n/2⌉-transmitters [2]
Single ⌈2n/3⌉-transmitter [2] 
Two ⌈n/2⌉-transmitters [2]

d-dim Euclidean space \w n convex obstacles Single (dn+1)/(d+1)-transmitter [6]

Plane with obstacles ⌈(5n+6)/12⌉ 1-tr for n disjoint line segments [3]
Simple n-gons ⌊n/6⌋for k=2 [4] ⌊3n/10⌋+1 for k=2 *
Monotone n-gons ⌈(n-2)/9⌉for k=2 [4] ⌈(n-2)/8⌉for k=2 [4]
Monotone orthogonal n-gons ⌈(n-2)/10⌉for k=2 [4] ⌈(n-2)/10⌉for k=2 [4]
Orthogonal n-gons ⌊(3n+4)/16⌋for k=2 [4] ⌈(n-2)/10⌉for k=2 *

Tight bounds

[1] Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons.  

[2] Ruy Fabila-Monroy, Andres Ruiz Vargas, Jorge Urrutia. On Modem Illumination Problems 

[3] Brad Ballinger, Nadia Benbernou, Prosenjit Bose, Mirela Damian, ErikD. Demaine, Vida Dujmovic, Robin Flatland, Ferran Hurtado, John Iacono, Anna Lubiw, Pat Morin, Vera 3Sacristán, Diane Souvaine, and 
Ryuhei Uehara. Coverage with k-transmitters in the presence of obstacles.  

[4] Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt.  Combinatorics and complexity of guarding polygons with edge and point 2-transmitters.  

[5] Frank Duque, Carlos Hidalog-Toscano. An upper bound on the k-modem illumination problem 

[6] Radoslav Foulen, Andreas F. Holmsen, János Pach. Intersecting Convex Sets by Rays

*from 0-transmitters

Few transmitters

Low k
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Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]

Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-
Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit 
Vogtenhuber. Modem illumination of monotone polygons.  



Click to edit Master title styleArt Gallery Theorems for k-Transmitters

12

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version—to ensure that no two vertices have the same x-coordinate:
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Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version—to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let li be a vertical line through vi (2≤i≤n-1). 
Let HL(li) (HR(li)) be the closed half-plane bounded to the right (left) by li. 
P∩ HL(li) and P∩ HR(li) are the left and right part of P, resp.
Perturb to still have no two vertices with same x-coordinate:
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Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-
Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit 
Vogtenhuber. Modem illumination of monotone polygons.  
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•WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
• As for the AGP, we can alter the capabilities of the watchman or the area to be guarded
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S⊂P of the) points of a polygon P (“sees” all of S or P)

๏ Find shortest tour for the k-transmitter that “sees” all 
of S or P and moves in P (a watchman route for a k-
transmitter)

๏ With or without a given starting point s                      
k-TrWRP(S,P,s) or k-TrWRP(S,P)

• Extensions do not translate to k-transmitters for k≥2 (no 
longer local!)
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 Corollary: The same holds for k-TrWRP(S,P,s).
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Well, actually, for k≥4 hard to approximate even for “simpler” polygon classes (than simple 
polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
When we map a point (x, y) to (x, y+cx) for a large enough constant c, we obtain a x-y-monotone 
polygon for which the visibility properties are maintained
We can even transform our histogram into a star-shaped polygon:

Small detour for a recent result 



Click to edit Master title style

31

Small detour for a recent result 



Click to edit Master title style

31

Small detour for a recent result 



Click to edit Master title style

31

Small detour for a recent result 



Click to edit Master title style

31

Small detour for a recent result 

Here, we need a starting point •
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 Theorem 2: For a discrete set of points S and a polygon P, the k-TrWRP(S,P) does 
not admit a polynomial-time approximation algorithm with approximation ratio c ln |S| 
unless P=NP, even for k=4 and for P being a histogram, or an x-y-monotone polygon; 
for the k-TrWRP(S,P,s), this holds even for star-shaped polygons.

Small detour for a recent result 
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 Theorem 3: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal 
solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). 
Then R yields an approximation ratio of O( log2 (|S| n) log log (|S| n) log |S|).
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Example: When we visit k33 (in point p33), we also visit the cuts of k33, k21 and k15.  
Thus, we have edges from p33 to ĉ33, ĉ21, and ĉ15.



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

p3,2

g3,2 ĉ3,2

Example: When we visit k33 (in point p33), we also visit the cuts of k33, k21 and k15.  
Thus, we have edges from p33 to ĉ33, ĉ21, and ĉ15.



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

p3,2

g3,2 ĉ3,2



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

p3,2

g3,2 ĉ3,2



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

- Group all candidate points that belong to the same point in S: 

p3,2

g3,2 ĉ3,2



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

- Group all candidate points that belong to the same point in S: 

- Add 𝛾0=s

p3,2

g3,2 ĉ3,2



Click to edit Master title style

34

Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

- Group all candidate points that belong to the same point in S: 

- Add 𝛾0=s

p3,2

g3,2 ĉ3,2

Here:  
𝛾1 candidate points that belong to s1, 

𝛾2 candidate points that belong to s2,  

𝛾3 candidate points that belong to s3,  
𝛾0=s,  
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- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)
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-  To connect s (which may lie in the interior of CHP(PC’’), we need to connect s, which costs at most ||OPT(S,P,s)||.
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Click to edit Master title styleOpen Problem k-Transmitter Watchman Routes
• Structural analogue for extensions, which we have for 0-transmitters?

37



Click to edit Master title styleOpen Problem k-Transmitter Watchman Routes
• Structural analogue for extensions, which we have for 0-transmitters?

37

A cut c partitions polygon into two subpolygons:  
Ps(c)—subpolygon that contains starting point s 
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1) 
Essential cut: not dominated by other cut



Click to edit Master title styleOpen Problem k-Transmitter Watchman Routes
• Structural analogue for extensions, which we have for 0-transmitters?

37

A cut c partitions polygon into two subpolygons:  
Ps(c)—subpolygon that contains starting point s 
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1) 
Essential cut: not dominated by other cut

• We see all of P iff we visit all essential cuts.



Click to edit Master title styleOpen Problem k-Transmitter Watchman Routes
• Structural analogue for extensions, which we have for 0-transmitters?

37

A cut c partitions polygon into two subpolygons:  
Ps(c)—subpolygon that contains starting point s 
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1) 
Essential cut: not dominated by other cut

• We see all of P iff we visit all essential cuts.



Click to edit Master title styleOpen Problem k-Transmitter Watchman Routes
• Structural analogue for extensions, which we have for 0-transmitters?

37

A cut c partitions polygon into two subpolygons:  
Ps(c)—subpolygon that contains starting point s 
A cut c1 dominates c2 if Ps(c2)⊆Ps(c1) 
Essential cut: not dominated by other cut

➡ OPEN PROBLEM #2: Is there a structure like 
essential cuts that guarantees k-visibility of P when 
visited?

• We see all of P iff we visit all essential cuts.
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• Open Problem #2: Structural analogue for extensions for 0-transmitters?
• Approximation for watchmen routes for k-transmitters without given starting 

point and/or when all of P should be monitored?
• Generally: More structural insights for k-transmitters
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