k-Transmitters/k-Modems

Christiane Schmidt
XX Spanish Meeting on Computational Geometry
2023

Agenda

- The Art Gallery Problem
- k-Transmitters
- Art Gallery Theorems for k-Transmitters
- Computation of the k-Visibility Region
- Computational Complexity
- Sliding k-Transmitters
- The Watchman Route Problem (WRP)
- k-Transmitter Watchman Routes
- Outlook

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

Given: Polygon P
How many guards do we need to monitor P?

The Art Gallery Problem (AGP)

The Art Gallery Problem (AGP)
witnesses

The Art Gallery Problem (AGP)

\rightarrow Lower bound of 2
However, generally, the ratio between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)
\rightarrow Lower bound of 2
However, generally, the ratio between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)

\rightarrow Lower bound of 2
However, generally, the ratio between minimum number of guards and maximum number of witnesses can be arbitrarily bad:

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

TI LINKÖPING

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity

- Does not intersect itself
- No holes

TI LINKÖPING

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983], vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]
- The AGP is $\exists \mathbb{R}$-complete [Abrahamsen, Adamszek \& Miltzow 2021]

Simple polygon:

- Does not intersect itself
- No holes

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983] , vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]
- The AGP is $\exists \mathbb{R}$-complete [Abrahamsen, Adamszek \& Miltzow 2021]

Algorithms

vertex

Simple polygon:

- Does not intersect itself
- No holes

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983] , vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]
-The AGP is $\exists \mathbb{R}$-complete [Abrahamsen, Adamszek \& Miltzow 2021]

Algorithms

- Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many instances, heuristics; polytime algorithms

The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems": x guards are always sufficient and sometimes necessary to guard a polygon with n vertices (polygon from a specific class)

- Simple polygon with n vertices: $\left\lfloor\frac{n}{3}\right\rfloor$ are sometimes necessary and always sufficient. [Chvátal 1975]

Computational Complexity

- The AGP is NP-hard for point guards with holes [O'Rourke \& Supowit 1983], vertex guards without holes [Lee \& Lin 1986], point guards without holes [Aggarwal 1986]
-The AGP is $\exists \mathbb{R}$-complete [Abrahamsen, Adamszek \& Miltzow 2021]

Algorithms

- Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many instances, heuristics; polytime algorithms

Other structural results

vertex

The Art Gallery Problem (AGP) and Its Variants

We can alter:

The Art Gallery Problem (AGP) and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

LINKÖPING
UNIVERSITY

The Art Gallery Problem (AGP) and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

LINKÖPING
UNIVERSITY

The Art Gallery Problem (AGP) and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

- Environment to be guarded

Rectilinear visibility/r-visibility:

Two points are r-visible to each other
if there exists a rectangle in P
that contains both points.

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

Rectilinear visibility/r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.
k-transmitter:

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

Rectilinear visibility/r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.
k-transmitter:

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

Rectilinear visibility/r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

Rectilinear visibility/r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitter

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

- Environment to be guarded

Rectilinear visibility/ r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/ s-visiblity:

Two points are s-visible to each other if there exists a staircase path in P that connects them.

Rectilinear visibility/ r-visibility:

Two points are r-visible to each other if there exists a rectangle in P that contains both points.

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards

Staircase visibility/ s-visiblity:

Two points are s-visible to each other
if there exists a staircase path in P
that connects them

- Environment to be guarded

Rectilinear visibility/r-visibility

Two points are r-visible to each other
if there exists a rectangle in P
that contains both points

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitte

The Art Gallery Problem [AGP] and Its Variants

We can alter:

- Capabilities of the guards
- Environment to be guarded

Staircase visibility/s-visiblity
Motivated by wireless communication:

Two points are s-visible to each other if there exists a staircase path in P
that connects them

Two points are r-visible to each other if there exists a rectangle in P that contains both points.
k-transmitter:

Line crosses at most 2 walls \Rightarrow visible from the 2-transmitte

50

Formally: a point p is $\mathbf{2 (k)}$-visible from a point q, if the line segment $p q$ intersects P in at most two (k) connected components.

k-Transmitters

k-/2-Transmitter

$2 \mathrm{VR}(p) / \mathrm{kVR}(p)$ can have $\mathrm{O}(\mathrm{n})$ connected components.

Introduced in 2009:

Modem Illumination of Monotone Polygons

Oswin Aichholzer ${ }^{* \xi}$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger}$ Thomas Hackl

Clemens Huemer ${ }^{\ddagger} \quad$ Jorge Urrutia ${ }^{\dagger 9} \quad$ Birgit Vogtenhuber*
On Modem Illumination Problems
R. Fabila-Monroy ${ }^{*} \quad$ Andres Ruiz Vargas ${ }^{* *}$ Jorge Urrutia ${ }^{* * *}$

1) UINKÖPING

Introduced in 2009:

Modem Illumination of Monotone Polygons

Oswin Aichholzer ${ }^{* 5}$	Ruy Fabila-Monroy ${ }^{\dagger}$	David Flores-Peñaloza ${ }^{\dagger}$	Thomas Hackl*

On Modem Illumination Problems
R. Fabila-Monroy ${ }^{*} \quad$ Andres Ruiz Vargas ${ }^{* *} \quad$ Jorge Urrutia ${ }^{* * *}$
, can look through one wall, , find a placement (outside of the polygon),
such that we can spy on all points in the polygon-if exists: polygon is pseudo-
star-shaped

Introduced in 2009:

Modem Illumination of Monotone Polygons
Oswin Aichholzer*§ $^{*} \quad$ Ruy Fabila-Monroy ${ }^{\dagger} \quad$ David Flores-Peñaloza ${ }^{\dagger} \quad$ Thomas Hackl* ${ }^{*}$

On Modem Illumination Problems
R. Fabila-Monroy ${ }^{*}$ Andres Ruiz Vargas ${ }^{* *}$ Jorge Urrutia ***

star-shaped

Coverage with k-transmitters in the presenc

 of obstaclesBrad Ballinger • Nadia Benbernou .
Prosenjit Bose • Mirela Damian • Erik D. Demaine -
Vida Dujmović • Robin Flatland • Ferran Hurtado •
John Iacono • Anna Lubiw • Pat Morin -
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

Radoslay Fulek • Andreas F. Holmsen • János Pach
\square LINKÖPING
UNIVERSITY

Introduced in 2009:

Modem Illumination of Monotone Polygons

Oswin Aichholzer ${ }^{* \xi}$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger}$ Thomas Hackl Clemens Huemer ${ }^{\ddagger} \quad$ Jorge Urrutia $^{\dagger}{ }^{\dagger} \quad$ Birgit Vogtenhuber*

Joseph O'Rourke*

Abstract
[Draft, January 27, 2012.] Two art-gallery-like problems of transmitters in

On Modem Illumination Problems

R. Fabila-Monroy ${ }^{*}$ Andres Ruiz Vargas ${ }^{* *}$ Jorge Urrutia ***

star-shaped

Coverage with k-transmitters in the presence

 of obstaclesBrad Ballinger • Nadia Benbernou -
Prosenjit Bose • Mirela Damian • Erik D. Demaine -
Vida Dujmović • Robin Flatland • Ferran Hurtado •
John Iacono • Anna Lubiw • Pat Morin
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

2012:
Computational Geometry Column 52

Introduced in 2009:

Modem Illumination of Monotone Polygons
Oswin Aichholzer ${ }^{\star \xi} \quad$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger} \quad$ Thomas Hackl

Clemens Huemer ${ }^{\ddagger} \quad$ Jorge Urrutia $^{\dagger \Phi} \quad$ Birgit Vogtenhuber*

On Modem Illumination Problems
R. Fabila-Monroy ${ }^{*}$

Andres Ruiz Vargas **
Jorge Urrutia **

Recognizing polygons, or how to spy*

James A. Dean ${ }^{1 * *}$,

 Andrzej Lingas ${ }^{2 * * *}$ andJörg-Rüdiger Sack ${ }^{3 * * * *}$

Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou .
Prosenjit Bose • Mirela Damian • Erik D. Demaine -
Vida Dujmović • Robin Flatland • Ferran Hurtado •
John Iacono • Anna Lubiw • Pat Morin
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

$$
\text { Joseph O'Rourke }{ }^{*}
$$

Draft, January 27, 2012 Abstract
ygons are described, and seve Two art-galery-like problems of transmitters in
Hybrid Metaheuristic Strategy for Covering with Wireless Devices

Antonio L. Bajuelos
(University of Avero, Portue
sity of Aveiro, Po
leslieQuapt)
Santiago Canales
(Universidad Pontificia Comillas de Madrid, Spair
scanalesodidmcicicai. uppoomillaseses)
Gregorio Hernández
(Universidad Polititecicica de Madrid, Spain
gregoriofiupmes)
gregorioafi.upmes)
Mafalda Martins
University of Avero, Portuga
Combinatorics and complexity of guarding polygons with edge and point 2-transmitters

Sarah Cannon ${ }^{\mathrm{a}, 1}$, Thomas G. Fai ${ }^{\mathrm{b}, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\mathrm{d}}$, Christiane Schmidt ${ }^{\text {e,*,3 }}$

A Note on Approximating 2-Transmitters (about sliding k-Transmitters) Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$

An upper bound on the k-modem illumination problem.

Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$
Hamideh Vosoughpour ${ }^{1} \cdot$ Ziting Yu 1
Modem illumination of monotone polygons
Oswin Aichholzer ${ }^{\text {a, } 1}$, Ruy Fabila-Monroy ${ }^{\text {b,2 }}$, David Flores-Peñaloza ${ }^{\text {c, }}$ Thomas Hackl ${ }^{\text {a,4 }}$, Jorge Urrutia ${ }^{\text {d,5 }}$, Birgit Vogtenhuber ${ }^{\text {a,*, }}$

Covering orthogonal polygons with sliding k-transmitters
Salma Sadat Mahdavi ${ }^{\mathrm{a}, *}$, Saeed Seddighin ${ }^{\mathrm{b}}$, Mohammad Ghodsi ${ }^{\mathrm{a}, \mathrm{C}, 1}$

Computing the k-Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1}$ (D) . Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$. Thomas C. Shermer ${ }^{5}$

A time-space trade-off for computing the k-visibility region of a point in a polygon
Yeganeh Bahoo ${ }^{\text {a }}$, Bahareh Banyassady ${ }^{\text {b }}$, Prosenjit K. Bose ${ }^{\mathrm{C}}$,
Stephane Durocher ${ }^{\text {d }}$. Wolfgang Mulzer
k-Transmitter Watchman Routes

Bengt J. Nilsson ${ }^{1}(1)$ and Christiane Schmidt ${ }^{(\Downarrow)}(\underset{)}{ }$

2012:
Computational Geometry Column 52
Joseph O'Rourke*
Oswin Aichholzer ${ }^{\star \xi} \quad$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger} \quad$ Thomas Hackl

Clemens Huemer ${ }^{\ddagger} \quad$ Jorge Urrutia $^{\dagger \subsetneq} \quad$ Birgit Vogtenhuber*

On Modem Illumination Problems

Andres Ruiz Vargas **
Jorge Urrutia *

Recognizing polygons, or how to spy*

James A. Dean ${ }^{1 * *}$,

 Andrzej Lingas ${ }^{2 * * *}$, andJörg-Rüdiger Sack ${ }^{3 * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou . Prosenjit Bose • Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

Combinatorics and complexity of guarding polygons with edge and point 2 -transmitters

Sarah Cannon ${ }^{\text {a, }, ~}{ }^{\text {, Thomas G. Fai }}{ }^{\text {b }, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\text {d }}$, Christiane Schmidte ${ }^{\text {e, }, 3}$
A Note on Approximating 2-Transmitters (about sliding k-Transmitters) Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$

An upper bound on the k-modem illumination problem.

Frank Duque * Carlos Hidalgo-Toscano *

Guarding Orthogonal Art Galleries with Sliding

 k-Transmitters: Hardness and ApproximationTherese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1}$. Ziting Yu ${ }^{1}$
Modem illumination of monotone polygons
Oswin Aichholzer ${ }^{\text {a, } 1}$, Ruy Fabila-Monroy ${ }^{\text {b,2 }}$, David Flores-Peñaloza ${ }^{\text {c, }}$ Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\mathrm{a}, *, 1}$

Covering orthogonal polygons with sliding k-transmitters
Salma Sadat Mahdavi ${ }^{\mathrm{a}, *}$, Saeed Seddighin ${ }^{\mathrm{b}}$, Mohammad Ghodsi ${ }^{\mathrm{a}, \mathrm{C}, 1}$

Computing the k-Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1}$ (${ }^{\text {(} \cdot \text { Prosenjit Bose }}{ }^{2}$. Stephane Durocher ${ }^{3,4}$ Thomas C. Shermer ${ }^{5}$

Sliding k-Transmitters: Hardness and Approximation
Therese Biedl*
Saeed Mehrabi*
Ziting Yu*
A time-space trade-off for computing the k-visibility region of a point in a polygon

Yeganeh Bahoo ${ }^{\mathrm{a}}$, Bahareh Banyassady ${ }^{\mathrm{b}}$. Prosenjit K. Bose ${ }^{\mathrm{c}}$,
Stephane Durocher ${ }^{\text {d }}$, Wolifgang Mulzer
k-Transmitter Watchman Routes

Bengt J. Nilsson ${ }^{1} \oplus$ and Christiane Schmidt ${ }^{2(\boxtimes)} \oplus$

2012:
Computational Geometry Column 52
Joseph O'Rourke*
Oswin Aichholzer ${ }^{\star \xi} \quad$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger} \quad$ Thomas Hackl

Clemens Huemer ${ }^{\ddagger} \quad$ Jorge Urrutia $^{\dagger \subsetneq} \quad$ Birgit Vogtenhuber*

On Modem Illumination Problems

Andres Ruiz Vargas **
Jorge Urrutia

Recognizing polygons, or how to spy*

James A. Dean ${ }^{1 * *}$,

 Andrzej Lingas ${ }^{2 * * *}$, andJörg-Rüdiger Sack ${ }^{3 * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou .
Prosenjit Bose • Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

Radoslav Fulek • Andreas F. Holmsen • János Pach

2012:
Computational Geometry Column 52
Joseph O'Rourke*
Oswin Aichholzer ${ }^{\star \xi}$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger}$ Thomas Hackl

Clemens Huemer \ddagger
Jorge Urrutia ${ }^{\dagger \boldsymbol{q}}$
Birgit Vogtenhuber*

On Modem Illumination Problems

Recognizing polygons, or how to spy*

James A. Dean ${ }^{1 * *}$,

 Andrzej Lingas ${ }^{2 * * *}$, andJörg-Rüdiger Sack ${ }^{3 * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou . Prosenjit Bose • Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

Radoslav Fulek • Andreas F. Holmsen • János Pach
Oswin Aichholzer ${ }^{\star \xi}$ Ruy Fabila-Monroy ${ }^{\dagger}$ David Flores-Peñaloza ${ }^{\dagger} \quad$ Thomas Hackl

Clemens Huemer \ddagger
Jorge Urrutia ${ }^{\dagger}{ }^{\boldsymbol{q}}$
Birgit Vogtenhuber*

On Modem Illumination Problems

Recognizing polygons, or how to spy*

James A. Dean ${ }^{1 * *}$,

 Andrzej Lingas ${ }^{2 * * *, \text { and }}$Jörg-Rüdiger Sack ${ }^{3 * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou . Prosenjit Bose • Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin
Vera Sacristán • Diane Souvaine • Ryuhei Uehara

Intersecting Convex Sets by Rays

Radoslav Fulek • Andreas F. Holmsen • János Pach
Frank Duque * Carlos Hidalgo-Toscano *
Sliding k-Transmitters: Hardness and Approximation

2012:
Computational Geometry Column 52
Joseph O'Rourke*

Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation

Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1} \cdot$ Ziting Yu 1
Modem illumination of monotone polygons
Oswin Aichholzer ${ }^{\mathrm{a}, 1}$, Ruy Fabila-Monroy ${ }^{\mathrm{b}, 2}$, David Flores-Peñaloza Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\mathrm{a}, *, 1}$

Covering orthogonal polygons with sliding k-transmitters
Salma Sadat Mahdavi ${ }^{\text {a }}{ }^{, *}$, Saeed Seddighin ${ }^{\mathrm{b}}$, Mohammad Ghodsi ${ }^{\text {a }}$,, , 1

Computing the k-Visibility Region of a Point in a Polygon

Combinatorics and complexity of guarding polygons with edge and point 2 -transmitters

Yeganeh Bahoo ${ }^{1}$ © \cdot Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$ Thomas C. Shermer ${ }^{5}$
Sarah Cannon ${ }^{\text {a,1 }}$, Thomas G. Fai ${ }^{\text {b }, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\text {d }}$,
Christiane Schmidt ${ }^{\mathrm{e}, *,}$
A Note on Approximating 2-Transmitters
(about sliding k-Transmitters)
Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$
An upper bound on the k-modem illumination problem.

A time-space trade-off for computing the k-visibility region of a point in a polygon ${ }^{\text {H/ }}$
Yeganeh Bahoo ${ }^{\text {a }}$, Bahareh Banyassady ${ }^{\text {b }}$, Prosenjit K. Bose ${ }^{\text {c }}$,
Stephane Durocher ${ }^{\mathrm{a}}$, Wolfgang Mulzer ${ }^{\mathrm{b}, \text {, }}$
k-Transmitter Watchman Routes

Bengt J. Nilsson ${ }^{1}\left(\mathbb{C}\right.$ and Christiane Schmidt ${ }^{2(\boxtimes)}(\mathbb{})$

Edge Transmitter	Sliding k-Transmitter	Watchman

2012:
Computational Geometry Column 52
Joseph O'Rourke*

Oswin Aichholzer*5	Ruy Fabila-Monroy ${ }^{\dagger}$	David Flores-Peñaloza ${ }^{\dagger}$	
Cleme	uemer \ddagger Jorge	tia ${ }^{\text {¢ }}$ - Birgit Vogte	

Clemens Huemer
Jorge Urrutia ${ }^{\dagger}{ }^{\boldsymbol{q}}$
Birgit Vogtenhuber*

On Modem Illumination Problems

Recognizing polygons, or how to spy*
\qquad ames A. Dean ${ }^{2 * *}$, and
Andreje Lingas
Jorg-Ridiger Sack ${ }^{3 * * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with k-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou .
[Draft, January 27, 2012.] Two art-gallery-like problems of transmitters in
[ind

Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation

Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1}$. Ziting Yu ${ }^{1}$
Modem illumination of monotone polygons
Oswin Aichholzer ${ }^{\text {a, } 1}$, Ruy Fabila-Monroy ${ }^{\text {b,2 }}$, David Flores-Peñaloza Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\text {a, }, *, 1}$

Covering orthogonal polygons with sliding k-transmitters
Salma Sadat Mahdavi ${ }^{\text {a }}$,*, Saeed Seddighin ${ }^{\text {b }}$, Mohammad Ghodsi ${ }^{\text {a }}$,,${ }^{\text {, }}$,

Combinatorics and complexity of guarding polygons with edge and point 2-transmitters

Sarah Cannon ${ }^{\text {a, }, 1}$, Thomas G. Faid ${ }^{\mathrm{D}, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\mathrm{d}}$,

Computing the \boldsymbol{k}-Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1(0)}$. Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$ Thomas C. Shermer ${ }^{5}$
Christiane Schmidt e,
A Note on Approximating 2-Transmitters (about sliding k-Transmitters)

Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$
An upper bound on the k-modem illumination problem.

A time-space trade-off for computing the k-visibility region of a point in a polygon ${ }^{\text {H }}$
Yeganeh Bahoo ${ }^{\mathrm{a}}$, Bahareh Banyassady ${ }^{\mathrm{b}}$. Prosenjit K. Bose ${ }^{\mathrm{C}}$,
Stephane Durocher ${ }^{2}$, Wolfgang Mulzer
k-Transmitter Watchman Routes
Bengt J. Nilsson ${ }^{1} \odot$ and Christiane Schmidt ${ }^{2(\Downarrow)} \oplus$
Frank Duque * Carlos Hidalgo-Toscano *
Sliding k-Transmitters: Hardness and Approximation

> Art Gallery theorems

Oswin Aichholzer*5	Ruy Fabila-Monroy ${ }^{\dagger}$	David Flores-Peñaloza ${ }^{\dagger}$	Thomas Hackl*
Cleme	emer \ddagger Jorg	tia ${ }^{\text {¢¢ }}$ Birgit Vogt	

On Modem Illumination Problems
R. Fabila-Monroy*

Andres Ruiz Vargas ** Jorge Urrutia **

Recognizing polygons, or how to spy*
\qquad James A. Dean ${ }^{2 * * *}$ and
Andrej Lingas
Jorry-Ridiger Sack ${ }^{3 * * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with \boldsymbol{k}-transmitters in the presence of obstacles

Brad Ballinger . Nadia Benbernou . Prosenjit Bose - Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin .
Vera Sacristán • Diane Souvaine • Ryuhei Uehara Intersecting Convex Sets by Rays

2012:
Computational Geometry Column 52
Joseph O'Rourke*

Guarding Orthogonal Art Galleries with Sliding
k-Transmitters: Hardness and Approximation

Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1}$. Ziting Yu ${ }^{1}$
Modem illumination of monotone polygons
Oswin Aichholzer ${ }^{\text {a, } 1}$, Ruy Fabila-Monroy ${ }^{\text {b,2 }}$, David Flores-Peñaloza Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\text {a, }, *, 1}$
 Covering orthogonal polygons with sliding k-transmitters ${ }^{2}$
Salma Sadat Mahdavi ${ }^{\text {a }}$,*, Saeed Seddighin ${ }^{\text {b }}$, Mohammad Ghodsi ${ }^{\text {a, }, \text {, }}{ }^{1}$

Computing the k-Visibility Region of a Point in a Polygon

Combinatorics and complexity of guarding polygons with edge and point 2-transmitters

Sarah Cannon ${ }^{\text {a, }, 1}$, Thomas G. Fai ${ }^{\text {b }, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\text {d }}$,
Yeganeh Bahoo ${ }^{1}$ (\cdot. Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$ Thomas C. Shermer ${ }^{5}$

Christiane Schmidt ${ }^{\text {e, },}$
A time-space trade-off for computing the k-visibility region of a point in a polygon
(about sliding k-Transmitters)
Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$
An upper bound on the k-modem illumination problem.

Yeganeh Bahoo ${ }^{\mathrm{a}}$, Bahareh Banyassady ${ }^{\text {b }}$, Prosenjit K. Bose ${ }^{\text {© }}$
Stephane Durocher ${ }^{2}$, Wolfgang Mulzer ${ }^{\text {b }}$
b,*
k-Transmitter Watchman Routes
Bengt J. Nilsson ${ }^{1} \oplus$ and Christiane Schmidt ${ }^{2(\boxtimes)}(\odot)$
Art Gallery theorems Computational complexity

Sliding k-Transmitters: Hardness and Approximation

Therese Biedl*
Saeed Mehrabi*
Ziting Yu*
Sliding
k-Transmitter

Introduced in 2009:

Modem Illumination of Monotone Polygons

Oswin Aichholzer*5	Ruy Fabila-Monroy ${ }^{\dagger}$	David Flores-Peñaloza ${ }^{\dagger}$	Thomas Hackl*
Clemen	uemer \ddagger Jorg	tia $^{\dagger ¢} \quad$ Birgit Vog	

Clemens Huemer \ddagger
Jorge Urrutia ${ }^{\dagger}$
Birgit Vogtenhuber*
On Modem Illumination Problems
R. Fabila-Monroy*

Andres Ruiz Vargas **
Jorge Urrutia *

Recognizing polygons, or how to spy*
James A. Dean ${ }^{1 * *}$, Andrzej Lingas ${ }^{2 * * *}$, and
Jorg-RUdiger Sack ${ }^{3 * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with \boldsymbol{k}-transmitters in the presence of obstacles

2012:
Computational Geometry Column 52

$$
\text { Joseph O'Rourke }{ }^{*}
$$

[yrans, January 27, 2012.] Two art-gallery-like problems of transmitters in A Hybrid Metaheuristic Strategy for Covering with Wireless Devices

ensity of Aveiro, Por
leslie@uapt)
Guarding Orthogonal Art Galleries with Sliding
k-Transmitters: Hardness and Approximation
Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1}$. Ziting Yu ${ }^{1}$

Modem illumination of monotone polygons

Oswin Aichholzer ${ }^{\text {a }, 1}$, Ruy Fabila-Monroy ${ }^{\mathrm{b}, 2}$, David Flores-Peñaloza Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\text {a,*, }}$
Santiago Canales
(Universidad Pontificiac Comilas de Madrid, Spain
risidad Pontificia Comillas de Madrid
scanalesidmc.icai. upoomillaseses)
Gregorio Hernaindez
Gregorio Hernindez
(Universidded Politícicica de Medrid, Spain
Eregrioffupmes)
gregorioafi.upmess)
Covering orthogonal polygons with sliding k-transmitters

Mafalda Martins
Combinatorics and complexity of guarding polygons with edge and point 2 -transmitters *

Sarah Cannon ${ }^{\mathrm{a}, 1}$, Thomas G. Fai ${ }^{\mathrm{b}, 2}$, Justin Iwerks ${ }^{\mathrm{c}}$, Undine Leopold ${ }^{\text {d }}$,
Salma Sadat Mahdavi ${ }^{\mathrm{a}, *}$. Saeed Seddighin ${ }^{\mathrm{b}}$. Mohammad Ghodsi ${ }^{\text {a }, \text {, }, 1}$

Computing the k-Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1}$ ($)$. Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$ Thomas C. Shermer ${ }^{5}$
Christiane Schmidt

Brad Ballinger • Nadia Benbernou .

A Note on Approximating 2-Transmitters (about sliding k-Transmitters) Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$

An upper bound on the k-modem illumination problem.

A time-space trade-off for computing the k-visibility region of a point in a polygon
Yeganeh Bahoo ${ }^{\text {a }}$, Bahareh Banyassady ${ }^{\text {b }}$. Prosenjit K. Bose ${ }^{\text {© }}$ Stephane Durocher ${ }^{\text {d }}$, Wolfgang Mulzer
k-Transmitter Watchman Routes

Bengt J. Nilsson ${ }^{1}\left(\mathbb{O}\right.$ and Christiane Schmidt ${ }^{2(\boxtimes)}(\mathbb{O}$ Art Gallery theorems Computational complexity (Approximation) algorithms

Introduced in 2009:

Modem Illumination of Monotone Polygons
Oswin Aichholzer* ${ }^{*} \quad$ Ruy Fabila-Monroy ${ }^{\dagger} \quad$ David Flores-Peñaloza ${ }^{\dagger}$ Thomas Hackl*

Clemens Huemer \ddagger
Jorge Urrutia ${ }^{\dagger}$
Birgit Vogtenhuber*
On Modem Illumination Problems
R. Fabila-Monroy*

Andres Ruiz Vargas **
Jorge Urrutia ${ }^{* * *}$

Recognizing polygons, or how to spy*
James A. Dean ${ }^{1 * *}$, James A. Dean ${ }^{2 *}{ }^{2 * *}$, and
Aorrzej Lingas
Jorg-Ridiger Sack ${ }^{3 * * * * *}$

1988: can look through one wall, , find a placement (outside of the polygon), such that we can spy on all points in the polygon-if exists: polygon is pseudo-star-shaped
Coverage with \boldsymbol{k}-transmitters in the presence of obstacles

2012:
Computational Geometry Column 52
Joseph O'Rourke*

Draft, January 27 Abstract
[Dran, J Janary 27, 2012. Two art-gallery-like problems of transmitters in Hybrid Metaheuristic Strategy for Covering with Wireless Devices
Antonio L. Bajuelos
(University of Averiro, Portuga
Uiversity of Avero, Port
leslie@uapt
leslieQuanapt)
Santiago Canales

stridad Ponnificia Comilas de Mad
scanalsadidmcicai.upoomillasess

$\left.\begin{array}{c}\text { Gregorio Herraindez } \\ \text { (Universided Politécnica de Madrid, Spain } \\ \text { gregorioaffupmes) }\end{array}\right)$ gregorioafiupme.ss) Mafalda Martins

Combinatorics and complexity of guarding polygons with

 edge and point 2-transmittersSarah Cannon ${ }^{\mathrm{a}, 1}$, Thomas G. Fai ${ }^{\mathrm{b}, 2}$, Justin Iwerks ${ }^{\text {c }}$, Undine Leopold ${ }^{\text {d }}$, Christiane Schmidt

Guarding Orthogonal Art Galleries with Sliding
k-Transmitters: Hardness and Approximation
Therese Biedl ${ }^{1}$. Timothy M. Chan ${ }^{1}$.
Stephanie Lee ${ }^{1}$. Saeed Mehrabi ${ }^{1}$.
Fabrizio Montecchiani ${ }^{2}$.
Hamideh Vosoughpour ${ }^{1}$. Ziting $\mathbf{Y u}^{1}$

Modem illumination of monotone polygons

Oswin Aichholzer ${ }^{\text {a, }, 1}$, Ruy Fabila-Monroy ${ }^{\text {b,2 }}$, David Flores-Peñaloza ${ }^{\text {d }}$ Thomas Hackl ${ }^{\mathrm{a}, 4}$, Jorge Urrutia ${ }^{\mathrm{d}, 5}$, Birgit Vogtenhuber ${ }^{\text {a,*, }}$ Covering orthogonal polygons with sliding k-transmitters
Salma Sadat Mahdavi ${ }^{\text {a,* }}$, Saeed Seddighin ${ }^{\text {b }}$. Mohammad Ghodsi ,, ,, 1
Computing the k-Visibility Region of a Point in a Polygon

Yeganeh Bahoo ${ }^{1}$ © . Prosenjit Bose ${ }^{2}$. Stephane Durocher ${ }^{3,4}$. Thomas C. Shermer ${ }^{5}$

A Note on Approximating 2-Transmitters (about sliding k-Transmitters)

A time-space trade-off for computing the k-visibility region of a point in a polygon

Saeed Mehrabi ${ }^{1}$, Abbas Mehrabi ${ }^{2}$
Yeganeh Bahoo ${ }^{\text {a }}$, Bahareh Banyassady ${ }^{\text {b }}$, Prosenjit K. Bose ${ }^{\text {c }}$
Yeganeh Bahoo, Bahareh Banyassady ${ }^{\mathrm{b}}$, Stephane Durocher ${ }^{\mathrm{a}}$, Wolfgang Mulzer,
An upper bound on the k-modem illumination
problem.
k-Transmitter Watchman Routes
Bengt J. Nilson ${ }^{1} \oplus$ and Christiane Schmidt ${ }^{2(\otimes)} \odot$
Art Gallery theorems
Frank Duane * Corloc Hidaloo-Tresann *
Sliding k-Transmitters: Hardness and Approximation Computational complexity
(Approximation) algorithms
k-visibility region
Therese Biedl*
Saeed Mehrabi*
Ziting Yu*

Brad Ballinger • Nadia Benbernou Prosenjit Bose • Mirela Damian • Erik D. Demaine Vida Dujmović • Robin Flatland • Ferran Hurtado • John Iacono • Anna Lubiw • Pat Morin •
Vera Sacristán • Diane Souvaine • Ryuhei Uehara Intersecting Convex Sets by Rays

Radoslav Fulek - Andreas F. Holmsen • János Pach
h.v

LINKÖPING
UNIVERSITY

Sliding
k-Transmitter

Art Gallery Theorems for k-Transmitters

Art Gallery Theorems for k-Transmitters

Point and edge k-transmitters	Lower bound	Upper bound
Simple n-gons	\n/5 \rfloor for k=2 [4]	$\begin{aligned} & \lfloor n / 3\rfloor \text { for } k=2 * \\ & O(n / k) \text { k-transmitters [5] } \end{aligned}$
Monotone n-gons	[(n-2)/(2k+3)] [1]	$\lceil(\mathrm{n}-2) /(2 \mathrm{k}+3)\rceil[1]$
Monotone orthogonal n-gons	$\begin{aligned} & \lceil(n-2) /(2 k+4)\rceil \text { for } k=1, k \text { even }[1] \\ & \lceil(n-2) /(2 k+6)\rceil k \geq 3 \text { odd }[1] \end{aligned}$	$\lceil(n-2) /(2 k+4)\rceil$ for $k=1, k$ even [1] $\lceil(n-2) /(2 k+6)\rceil k \geq 3$ odd [1]
Ortogonal (2m)-gon		m even: Single (m-1)-transmitter; m odd: Single m-transmitter [2]
Spiral n-gons		[$\mathrm{n} / 4$ \ for $\mathrm{k}=2$ [3]
Arrangement of lines in the plane	Single [2n/3]-transmitter [2] Two [n/2]-transmitters [2]	Single 「2n/3]-transmitter [2] Two [n/2]-transmitters [2]
d-dim Euclidean space \w n convex obstacles		Single ($\mathrm{dn}+1) /(\mathrm{d}+1)$-transmitter [6]
Plane with obstacles		$\lceil(5 n+6) / 12\rceil$ 1-tr for n disjoint line segments [3]
Simple n-gons	[$\mathrm{n} / 6$] for k=2 [4]	\3n/10 ${ }^{\text {[}}$ [1 for k=2 *
Monotone n -gons	[($\mathrm{n}-2) / 9]$ for $\mathrm{k}=2$ [4]	「($\mathrm{n}-2) / 8$] for $\mathrm{k}=2$ [4]
Monotone orthogonal n-gons	[(n-2)/10] for k=2 [4]	[(n-2)/10] for k=2 [4]
Orthogonal n-gons	$\lfloor(3 n+4) / 16\rfloor$ for $k=2[4]$	[$\mathrm{n}-2) / 10]$ for $\mathrm{k}=2$ *
[1] Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons. [2] Ruy Fabila-Monroy, Andres Ruiz Vargas, Jorge Urrutia. On Modem Illumination Problems		
Ryuhei Uehara. Coverage with k-transmitters in the presence [4] Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leop [5] Frank Duque, Carlos Hidalog-Toscano. An upper bound on [6] Radoslav Foulen, Andreas F. Holmsen, János Pach. Interse	of obstacles. old, and Christiane Schmidt. Combinatorics an the k-modem illumination problem ecting Convex Sets by Rays	pplexity of guarding polygons with edge and point 2 -transmitters.

Art Gallery Theorems for k-Transmitters

*from 0-transmitters
Low k

Point and edge k-transmitters	Lower bound	Upper bound
Simple n -gons	\n/5 $\mathrm{for}_{\text {k }}$ =2 [4]	$\begin{aligned} & \operatorname{Ln} / 3\rfloor \text { for } k=2^{*} \\ & O(n / k) k \text {-transmitters [5] } \end{aligned}$
Monotone n-gons	$\lceil(\mathrm{n}-2) /(2 \mathrm{k}+3)][1]$	[(n-2)/(2k+3)] [1]
Monotone orthogonal n-gons	$\lceil(n-2) /(2 k+4)]$ for $k=1, k$ even [1] $\lceil(n-2) /(2 k+6)\rceil k \geq 3$ odd [1]	$\lceil(n-2) /(2 k+4)\rceil$ for $k=1, k$ even [1] $\lceil(n-2) /(2 k+6)\rceil k \geq 3$ odd [1]
Ortogonal (2m)-gon		m even: Single (m-1)-transmitter; m odd: Single m-transmitter [2]
Spiral n-gons		\n/4 for $^{\text {k }}$ =2 [3]
Arrangement of lines in the plane	Single [2n/3]-transmitter [2]	Single [2n/3]-transmitter [2]
	Two [n/2]-transmitters [2]	Two [n/2]-transmitters [2]
d-dim Euclidean space \w n convex obstacles		Single (dn+1)/(d+1)-transmitter [6]
Plane with obstacles		[(5n+6)/12] 1-tr for n disjoint line segments [3]
Simple n-gons	[$\mathrm{n} / 6$] for k=2 [4]	\3n/10 ${ }^{\text {a }}$ +1 for $k=2$ *
Monotone n-gons	[($\mathrm{n}-2) / 9]$ for $\mathrm{k}=2$ [4]	[($\mathrm{n}-2) / 8$] for $\mathrm{k}=2$ [4]
Monotone orthogonal n-gons	[(n-2)/10] for k=2 [4]	[(n-2)/10] for k=2 [4]
Orthogonal n-gons	$\lfloor(3 n+4) / 16\rfloor$ for $k=2[4]$	$\lceil(\mathrm{n}-2) / 10\rceil$ for k=2 *

[1] Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons.
[2] Ruy Fabila-Monroy, Andres Ruiz Vargas, Jorge Urrutia. On Modem Illumination Problems
[3] Brad Ballinger, Nadia Benbernou, Prosenjit Bose, Mirela Damian, ErikD. Demaine, Vida Dujmovic, Robin Flatland, Ferran Hurtado, John Iacono, Anna Lubiw, Pat Morin, Vera 3Sacristán, Diane Souvaine, and Ryuhei Uehara. Coverage with k-transmitters in the presence of obstacles.
[4] Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt. Combinatorics and complexity of guarding polygons with edge and point 2-transmitters.
[5] Frank Duque, Carlos Hidalog-Toscano. An upper bound on the k-modem illumination problem
[6] Radoslav Foulen, Andreas F. Holmsen, János Pach. Intersecting Convex Sets by Rays

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ξ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(\xi_{i}\right)\left(H_{R}\left(\ell_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by ϵ_{i}.

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(G_{i}\right)\left(H_{R}\left(\epsilon_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by G_{i}.
$P \cap H_{L}\left(\xi_{i}\right)$ and $P \cap H_{R}\left(\xi_{i}\right)$ are the left and right part of P, resp.

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(\xi_{i}\right)\left(H_{R}\left(\ell_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by ϵ_{i}.
$P \cap H_{L}\left(\xi_{i}\right)$ and $P \cap H_{R}\left(\xi_{i}\right)$ are the left and right part of P, resp.
Perturb to still have no two vertices with same x-coordinate:

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(\xi_{i}\right)\left(H_{R}\left(G_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by ϵ_{i}.
$P \cap H_{L}\left(l_{i}\right)$ and $P \cap H_{R}\left(l_{i}\right)$ are the left and right part of P, resp.
Perturb to still have no two vertices with same x-coordinate:
$\& P \cap H_{L}\left(G_{i}\right)$ contains i edges of P.

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(\xi_{i}\right)\left(H_{R}\left(G_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by ϵ_{i}.
$P \cap H_{L}\left(\zeta_{i}\right)$ and $P \cap H_{R}\left(\xi_{i}\right)$ are the left and right part of P, resp.
Perturb to still have no two vertices with same x-coordinate:
$\& P \cap H_{L}\left(G_{i}\right)$ contains i edges of P.
$\& P \cap H_{R}\left(\xi_{i}\right)$ contains $n-i+1$ edges of P.

Art Gallery Theorems for k-Transmitters

Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version-to ensure that no two vertices have the same x-coordinate:
Splitting Lemma from [Aichholzer et al., 2018]
Let P be an x-monotone polygon and let ϵ_{i} be a vertical line through $v_{\mathrm{i}}(2 \leq i \leq n-1)$.
Let $H_{L}\left(\xi_{i}\right)\left(H_{R}\left(G_{i}\right)\right)$ be the closed half-plane bounded to the right (left) by ϵ_{i}.
$P \cap H_{L}\left(l_{i}\right)$ and $P \cap H_{R}\left(l_{i}\right)$ are the left and right part of P, resp.
Perturb to still have no two vertices with same x-coordinate:
$\& P \cap H_{L}\left(G_{i}\right)$ contains i edges of P.
$\& P \cap H_{R}\left(\xi_{i}\right)$ contains $n-i+1$ edges of P.
\& If both $P \cap H_{L}\left(\zeta_{i}\right)$ and $P \cap H_{R}\left(\ell_{i}\right)$ are illuminated, then P is illuminated

Open Problem: k-Transmitter Combinatorics

Art Gallery Theorems for k-Transmitters

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

All other gadgets remain
entirely below these lines

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n / 3\rfloor 2$-transmitters

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\lfloor n / 3\rfloor 2$-transmitters We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: Ln/3」2-transmitters We were only able to reduce this to $L(n-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)

Art Gallery Theorems for k-Transmitters

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5」 than to $\lfloor n / 3\rfloor$)

Joe O'Rourke, Computational Geometry Column 52, 2012:
The only upper bound I know is obtained

art transmitters, when [$n / 3$] suffice-the original art gallery theorem!

- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor_{2}$-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5」 than to $\lfloor n / 3\rfloor$)

We know:

- Every 5-gon can be covered by a point 2-transmitter parchaprveillery Theorems for k-Transmitter
- Lower bound of $\left\lfloor\frac{n}{5}\right\rfloor$ 2-transmitters to cover a simple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: Ln/3」2-transmitters We were only able to reduce this to $\lfloor(n-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to $\lfloor\mathrm{n} / 5\rfloor$ than to $\lfloor n / 3\rfloor$)

We know:

- Every 5-gon can be covered by a point 2-transmitter

Joe O'Rourke, Computational Geometry
point 2-transmitter at vor w $\begin{array}{ll}\text { point 2-transmitter at vor w } \\ \text { covers } P \text {. } & \text { Lower bound of }\left\lfloor\frac{n}{5}\right\rfloor_{2} \text {-transmitters to cover a simple } n \text {-gon }\end{array}$

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters
We were only able to reduce this to $\lfloor(n-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5 ل than to $\lfloor n / 3\rfloor$)

We know:

- Every 5-gon can be covered by a point 2-transmitter

o Let P be a $6-\mathrm{g} 0 \mathrm{n}, \mathrm{e}=\{\mathrm{V}, \mathrm{w}\}$, a point 2-transmitter at v or w covers P. - Lower bout

Joe O'Rourke, Computational Geometry Column 52, 2012:
The only upper bound I know is obtained by ignoring the extra power of the transmitters, when $n / 3$ 〕 suffice-the original art gallery theorem!

All other gadgets remain entirely below these lines

imple n-gon

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters
We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5」 than to $\lfloor n / 3\rfloor$)

We know:

- Every 5-gon can be covered by a point 2-transmitter placed anywhere: Ilanv Th
- Let P be a $6-\mathrm{gon}, \mathrm{e}=\{\mathrm{V}, \mathrm{w}\}$, a point 2-transmitter at vor w covers P. - Lower bout

BUT: the best upper bound is (essentially) given by the bound for the AGP with "normal" visibility: $\operatorname{Ln} / 3\rfloor 2$-transmitters
We were only able to reduce this to $L(\mathrm{n}-1) / 3\rfloor$ (getting rid of an ear)
This does not use the stronger capabilities of 2-transmitters vs. 0-transmitters (our "normal" guards)
\Rightarrow OPEN PROBLEM \#1: Close the gap between lower and upper bound for 2-transmitters (intuition: should be closer to Ln/5」 than to $\lfloor n / 3\rfloor$)

Computation of k-Visibility Region

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: O(n^{2}) algorithm [Bajuelos, Canales, Hernández, Martins 12]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k -Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: O(n^{2}) algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P
- Increase θ from 0 to $2 \pi \rightarrow$ edge list of r_{θ} changes when a vertex v is encountered

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: O(n^{2}) algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19] $k=2$

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P
- Increase θ from 0 to $2 \pi \rightarrow$ edge list of r_{θ} changes when a vertex v is encountered
-Critical vertex: two edges added/removed

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k -Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P
- Increase θ from 0 to $2 \pi \rightarrow$ edge list of r_{θ} changes when a vertex v is encountered
-Critical vertex: two edges added/removed
-Otherwise: replace one edge by another

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k-Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: O(n^{2}) algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P
- Increase θ from 0 to $2 \pi \rightarrow$ edge list of r_{θ} changes when a vertex v is encountered
-Critical vertex: two edges added/removed
-Otherwise: replace one edge by another
- k-visible from q : first $k+1$ elements in the edge list of r_{e}

Figure from [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

Computation of the k -Visibility Region

- Simple polygon P, query point $q \in P$
- Weak general position: query point not on line through two vertices of P

First: $\mathrm{O}\left(n^{2}\right)$ algorithm [Bajuelos, Canales, Hernández, Martins 12]
Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]

- Idea:
- Coordinate system with q at origin,
- $\theta \in[0,2 \pi)$: re ray from q eminating in CCW angle θ with x-axis
- Edges that ray intersects \rightarrow Edge list of r_{θ}, sorted according to increasing dist from q; j-the element $\epsilon_{\theta}(j)$
- Critical vertex: incident edges on same side of $r_{\theta}-c$ in total in P
- Increase θ from 0 to $2 \pi \rightarrow$ edge list of r_{θ} changes when a vertex v is encountered
-Critical vertex: two edges added/removed
-Otherwise: replace one edge by another
- k-visible from q : first $k+1$ elements in the edge list of r_{θ}
- When critical vertex is encountered, part of the ray re may become a window of the k-visibility region

Computation of the k-Visibility Region

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace
- For $\mathrm{O}(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace
- For $O(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size $s \rightarrow$ output windows of the batch

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace
- For $\mathrm{O}(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size $s \rightarrow$ output windows of the batch
2. Algorithm that skips non-critical vertices in processing, process critical vertices in angular order in batches of size $s \rightarrow$ output windows of the batch (different data structure)

Yeganeh Bahoo, Bahareh Banyassady, Prosenjit K. Bose, Stephane Durocher, Wolfgang Mulzer. A time-space trade-off for

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\rightarrow They can report the k-visibility region of $q \in P$ in $\mathrm{O}(k n+c n)$ time using $\mathrm{O}(1)$ words of workspace
- For $\mathrm{O}(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size $s \rightarrow$ output windows of the batch
2. Algorithm that skips non-critical vertices in processing, process critical vertices in angular order in batches of size $s \rightarrow$ output windows of the batch (different data structure)
\Rightarrow They can report the k-visibility region of $q \in P$ in $\mathrm{O}(c n / s+c \log s+\min \{\lceil k / s\rceil n, n \log \log s n\})$ expected time using O(s) words of workspace

Yeganeh Bahoo, Bahareh Banyassady, Prosenjit K. Bose, Stephane Durocher, Wolfgang Mulzer. A time-space trade-off for

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace
- For $O(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size $s \rightarrow$ output windows of the batch
2. Algorithm that skips non-critical vertices in processing, process critical vertices in angular order in batches of size $s \rightarrow$ output windows of the batch (different data structure)
\Rightarrow They can report the k-visibility region of $q \in P$ in $\mathrm{O}(c n / s+c \log s+\min \{\lceil k / s\rceil n, n \log \log s n\})$ expected time using O(s) words of workspace
Last: O(nk) algorithm [Bahoo, Bose, Durocher, Shermer 2020]

Yeganeh Bahoo, Bahareh Banyassady, Prosenjit K. Bose, Stephane Durocher, Wolfgang Mulzer. A time-space trade-off for

Computation of the k-Visibility Region

- Bahoo et al. show how to first find the first $k+1$ intersecting edges of the ray through the first critical vertex, and then how to update for the next critical vertices
\Rightarrow They can report the k-visibility region of $q \in P$ in $O(k n+c n)$ time using $O(1)$ words of workspace
- For $O(s)$ workspace $(s \in\{1, \ldots, n\})$ they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size $s \rightarrow$ output windows of the batch
2. Algorithm that skips non-critical vertices in processing, process critical vertices in angular order in batches of size $s \rightarrow$ output windows of the batch (different data structure)
\Rightarrow They can report the k-visibility region of $q \in P$ in $O\left(c n / s+c \log s+\min \left\{\lceil k / s\rceil n, n \log \log _{s} n\right\}\right)$ expected time using O(s) words of workspace
Last: O(nk) algorithm [Bahoo, Bose, Durocher, Shermer 2020]

- Based again on radial decomposition

Yeganeh Bahoo, Bahareh Banyassady, Prosenjit K. Bose, Stephane Durocher, Wolfgang Mulzer. A time-space trade-off for

Computational Complexity

Computational Complexity

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:

Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt. Combinatorics and complexity of

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.
Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.
Minimum Edge 2-transmitter Cover (ME2TC) Problem:
Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.
Minimum Edge 2-transmitter Cover (ME2TC) Problem:
Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

Usual spike box

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

Usual spike box
\rightarrow Modify slightly by
adding "crowns"

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.
Minimum Edge 2-transmitter Cover (ME2TC) Problem:
Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

Usual spike box
\rightarrow Modify slightly by adding "crowns"

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)
- MP2TC is NP-hard for orthogonal, simple polygons-reduction from MLCP4, where given lines have only one out of 4 slopes, shown hard by [Biedl, Irfan, Iwerks, Kim,Mitchell, 2011]

Computational Complexity

Minimum Point 2-transmitter [k-transmitter] Cover (MP2TC) [MPkTC] Problem:
Given: Polygon P.
Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

- MPkTC is NP-hard for simple polygons-reduction from Minimum Line Cover (MLCP)
- MP2TC is NP-hard for orthogonal, simple polygons-reduction from MLCP4, where given lines have only one out of 4 slopes, shown hard by [Biedl, Irfan, Iwerks, Kim,Mitchell, 2011]
- ME2TC is NP-hard for simple polygons-adapted version of the [Lee \& Lin, 86] reduction from 3SAT for minimum edge guard cover

Sliding k-Transmitters

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding
Tol LINKÖPING Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
Salma Sadat Mahdavi, Saeed Seddighin, Mohammed Ghodsi. Covering Orthogonal Polygons with Sliding k-Transmitters

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding
LINKÖPING Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
Salma Sadat Mahdavi, Saeed Seddighin, Mohammed Ghodsi. Covering Orthogonal Polygons with Sliding k-Transmitters

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s

- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s

Sliding 2-transmitter

- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times

Sliding 4-transmitter

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s
- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$

Sliding 4-transmitter

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s

- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k

Sliding 4-transmitter

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s
- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k
- ST_{0} : NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters
- $\mathrm{ST}_{\mathrm{k}}, \mathrm{k}>\mathrm{O}$: NP-hard even for simple, monotone polygons

Sliding 4-transmitter

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s

Sliding 2-transmitter

- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k
- ST_{0} : NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters
- $\mathrm{ST}_{\mathrm{k}}, \mathrm{k}>\mathrm{O}$: NP-hard even for simple, monotone polygons
- $\lfloor\mathrm{n} / 4\rfloor$ horizontal sliding k-transmitters sometimes necessary and always sufficient in rectilinear polygons
- Simple, rectilinear polygons: $\lfloor(\mathrm{n}+1) / 5\rfloor$ sliding 0 -transmitters such that no two of them intersect each other are always sufficient

Sliding 4-transmitter

Therese Biedl, Timothy M. Chan, Stephanie Lee, Said Mehrabi, Fabrizio Montecchiani, Hamden Vosoughpour, Ziting You. Guarding

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s
- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k
- ST 0 : NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters
- $\mathrm{ST}_{\mathrm{k}}, \mathrm{k}>\mathrm{O}$: NP-hard even for simple, monotone polygons
- $\lfloor\mathrm{n} / 4\rfloor$ horizontal sliding k-transmitters sometimes necessary and always sufficient in rectilinear polygons
- Simple, rectilinear polygons: $\lfloor(\mathrm{n}+1) / 5\rfloor$ sliding 0 -transmitters such that no two of them intersect each other are always sufficient
- Goal: minimize total length of sliding k-transmitters to guard P

Sliding 4-transmitter

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s
- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k
- ST 0 : NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters
- $\mathrm{ST}_{\mathrm{k}}, \mathrm{k}>\mathrm{O}$: NP-hard even for simple, monotone polygons
- $\lfloor\mathrm{n} / 4\rfloor$ horizontal sliding k-transmitters sometimes necessary and always sufficient in rectilinear polygons
- Simple, rectilinear polygons: $\lfloor(\mathrm{n}+1) / 5\rfloor$ sliding 0 -transmitters such that no two of them intersect each other are always sufficient
- Goal: minimize total length of sliding k-transmitters to guard P

Sliding 4-transmitter

- NP-hard for $k=2$

Sliding k-Transmitters in Rectilinear Polygon

[Biedl, Chan, Lee, Mehrabi, Montecchiani, Vosoughpour, Yu, 2019]
[Mahdavi, Seddighin, Ghodsi, 2020]

- Axis-parallel line segment s in polygon P
- Point k-transmitter travelling along s
- k-transmitter can see a point in P if the perpendicular from p onto s intersects P 's boundary at most k times
- Goal: find minimum number of sliding k-transmitters to guard $P\left(\mathrm{ST}_{\mathrm{k}}\right)$
- Constant-factor approximation for any fixed non-negative k
- ST 0 : NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters
- $\mathrm{ST}_{\mathrm{k}}, \mathrm{k}>\mathrm{O}$: NP-hard even for simple, monotone polygons
- $\lfloor\mathrm{n} / 4\rfloor$ horizontal sliding k-transmitters sometimes necessary and always sufficient in rectilinear polygons
- Simple, rectilinear polygons: $\lfloor(\mathrm{n}+1) / 5\rfloor$ sliding 0 -transmitters such that no two of them intersect each other are always sufficient
- Goal: minimize total length of sliding k-transmitters to guard P

- NP-hard for $k=2$
- 2-approximation

The Watchman Route Problem [WRP]

Watchman Route Problem (WRP)

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move

Given: Polygon P

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move

Given: Polygon P
What is the shortest tour for a watchman along which all points of P become visible?

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move

Given: Polygon P
What is the shortest tour for a watchman along which all points of P become visible?

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions

A cut c partitions polygon into two subpolygons:

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions

A cut c partitions polygon into two subpolygons: $\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s A cut c_{1} dominates c_{2} if $\mathrm{P}_{\mathrm{s}}\left(\mathrm{c}_{2}\right) \subseteq \mathrm{P}_{\mathrm{s}}\left(\mathrm{c}_{1}\right)$

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions
-Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions
-Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001] -WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

Watchman Route Problem (WRP)

- So far our guards were (mostly) stationary-or restricted to some line segment
- Now: one guard (watchman) that can move
- Central concept: extensions
-Watchman route can be computed in polynomial time in a simple polygon with or without a given starting point on the boundary [Chin\&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001] -WRP in polygons with holes is NP-hard [Chin\&Ntafos 1986] [Dumitrescu\&Tóth 2012]
- As for the AGP, we can alter the capabilities of the watchman or the area to be guarded

A cut c partitions polygon into two subpolygons:
$\mathrm{P}_{\mathrm{s}}(\mathrm{c})$-subpolygon that contains starting point s
A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

k-Transmitter Watchman Routes

[Bengt J. Nilsson, S., 2023]

k-Transmitter Watchman Routes

k-Transmitter Watchman Routes

- Mobile k-transmitter

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset $S \subset P$ of the) points of a polygon P ("sees" all of S or P)

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset $S \subset P$ of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a k transmitter)

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset $S \subset P$ of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a k transmitter)
○ With or without a given starting point s k-TrWRP(S,P,s) or k-TrWRP(S,P)

k-Transmitter Watchman Routes

- Mobile k-transmitter
- Goal:
o Establish a connection with all (or a discrete subset $S \subset P$ of the) points of a polygon P ("sees" all of S or P)
o Find shortest tour for the k-transmitter that "sees" all of S or P and moves in P (a watchman route for a k transmitter)
○ With or without a given starting point s $k-\operatorname{TrWRP}(S, P, s)$ or $k-\operatorname{TrWRP}(S, P)$

- Extensions do not translate to k-transmitters for $k \geq 2$ (no longer local!)

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

Even for a tour in a simple polygon seeing the boundary is not enough:

k-Transmitter Watchman Routes

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2$.

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \mathrm{In} \mathrm{ISI}$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln \operatorname{ISI}$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $\mathrm{P}=\mathrm{NP}$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Theorem 1: For a discrete set of points S and a simple polygon P, the $k-\operatorname{TrWRP}(S, P)$ does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless $P=N P$, even for $k=2 . \rightarrow$ Inapproximability: Cannot be approximated to within a logarithmic factor
Proof: reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
Start: Histograms (orthogonal, x-monotone polygons, one monotone chain is a single (horizontal) edge)

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
Start: Histograms (orthogonal, x-monotone polygons, one monotone chain is a single (horizontal) edge)

Proof: Again reduction from Set Cover

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
Start: Histograms (orthogonal, x-monotone polygons, one monotone chain is a single (horizontal) edge)

Proof: Again reduction from Set Cover
Set Cover instance: universe U and collection of sets C

UNIVERSITY

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
Start: Histograms (orthogonal, x-monotone polygons, one monotone chain is a single (horizontal) edge)

Proof: Again reduction from Set Cover
Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{v\}$

k-Transmitter Watchman Routes

Set Cover instance: universe U and collection of sets C
We construct a polygon P with $S=U \cup\{\vee\}$

very long

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
When we map a point (x, y) to $(x, y+c x)$ for a large enough constant c, we obtain a x - y-monotone polygon for which the visibility properties are maintained

k-Transmitter Watchman Routes

Well, actually, for $k \geq 4$ hard to approximate even for "simpler" polygon classes (than simple polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
When we map a point (x, y) to $(x, y+c x)$ for a large enough constant c, we obtain a x - y-monotone polygon for which the visibility properties are maintained
We can even transform our histogram into a star-shaped polygon:

Small detour for a recent result

Small detour for a recent result

Here, we need a starting point

k-Transmitter Watchman Routes

Theorem 2: For a discrete set of points S and a polygon P, the k-TrWRP(S,P) does not admit a polynomial-time approximation algorithm with approximation ratio $c \ln |S|$ unless P=NP, even for $k=4$ and for P being a histogram, or an x - y-monotone polygon; for the k-TrWRP(S, P, s), this holds even for star-shaped polygons.

Approximation Algorithm for k-TrWRP(S,P,s)

Approximation Algorithm for k-TrWRP(S,P,s)

Theorem 3: Let P be a simple polygon with $n=\mid P I$. Let OPT(S, P, s) be the optimal solution for the $k-\operatorname{TrWRP}(S, P, s)$ and let R be the solution by our algorithm $\operatorname{ALG}(S, P, s)$. Then R yields an approximation ratio of $\mathrm{O}\left(\log ^{2}(\mathrm{ISI} n) \log \log (I S I n) \log \mid S I\right)$.

Approximation Algorithm for k-TrWRP(S,P,s)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

UNIVERSITY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

IINKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

IINKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)

Example: When we visit $k_{3}{ }^{3}$ (in point $p_{3}{ }^{3}$), we also visit the cuts of $k_{3}{ }^{3}, k_{2}{ }^{1}$ and $k_{1}{ }^{5}$. Thus, we have edges from $p_{3}{ }^{3}$ to $\hat{c}_{3}{ }^{3}, \hat{c}_{2}{ }^{1}$, and $\hat{\mathrm{c}}_{1}{ }^{5}$.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)

Example: When we visit $k_{3}{ }^{3}$ (in point $p_{3}{ }^{3}$), we also visit the cuts of $k_{3}{ }^{3}, k_{2}{ }^{1}$ and $k_{1}{ }^{5}$. Thus, we have edges from $p_{3}{ }^{3}$ to $\hat{c}_{3}{ }^{3}, \hat{c}_{2}{ }^{1}$, and $\hat{\mathrm{c}}_{1}{ }^{5}$.

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

18.0

INKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
INKÖPING
UNVERSTTY

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$

Here:

γ_{1} candidate points that belong to s_{1} γ_{2} candidate points that belong to S_{2}, γ_{3} candidate points that belong to S_{3},

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

INKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

1.0

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- $\operatorname{IV}(\mathrm{G}) \mid=O(n \mid S I)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

180
LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{i, j}$)
- |V(G)|=O(n|SI)
- Group all candidate points that belong to the same point in $S: \gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{\mathrm{c}}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by [Garg, Konjevod, Ravi '00] with approximation ratio $O(\log 2 \mathrm{~m} \log \log m \log Q)$

Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{\mathrm{c}}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by [Garg, Konjevod, Ravi '00] with approximation ratio $O(\log 2 m \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$

[^0]
Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

LINKÖPING
UNIVERSITY

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$ must visit $\hat{c}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by [Garg, Konjevod, Ravi '00] with approximation ratio $O(\log 2 \mathrm{~m} \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$
- Double this tree and obtain a route R the route is feasible as we visit one point per γ_{i}

[^1]
Approximation Algorithm for k-TrWRP(S,P,s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)
- Build complete graph G on candidate points $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$:
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit $\hat{c}_{\mathrm{i}, \mathrm{j}}$)
- $|\mathrm{V}(\mathrm{G})|=O(n|S|)$
- Group all candidate points that belong to the same point in S : $\gamma_{i}=\bigcup_{j=1}^{J_{i}} p_{i, j} \cup \bigcup_{j=1}^{J_{i}} \hat{c}_{i, j}$
- Add $\gamma_{0}=s$
- Approximate a group Steiner tree:
- Graph, with m vertices and Q vertex subsets ("groups")
- Goal: find a minimum-cost subtree T of the graph that contains at least one vertex from each group and minimizes the weight of the tree
- Approximation by [Garg, Konjevod, Ravi '00] with approximation ratio $O(\log 2 \mathrm{~m} \log \log m \log Q)$
- We have $m=O(n|S|), Q=|S|+1$
- Double this tree and obtain a route R
the route is feasible as we visit one point per γ_{i}

To do: why do we achieve the claimed approximation factor? $p_{3,1}$

- Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, \mathrm{~s})$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i, j}$ (first time)
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)
- Identify subset C ' of essential cuts ($C ‘ \subseteq$)

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT (S, P, s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)

A cut c partitions polygon into two subpolygons: $P_{s}(c)$-subpolygon that contains starting point s A cut c_{1} dominates C_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$ Essential cut: not dominated by other cut

5 UNKÖPING

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set C ($\left.C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime} \prime}\right)$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k V R\left(s_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set C ($\left.C \subseteq C_{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime}}\right)$
- C"'>C'

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\mathrm{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C^{\text {all }}\right)$
-Let $o_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i j}$ (first time)

- Identify subset C ' of essential cuts ($C \times C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\mid c^{\prime}}\right)$
- C"' ${ }^{\prime \prime}$ C'
-For $\mathrm{t}=1$ TO IC'

Proof idea: alter(unknown) optimal route OPT(S, P, s) to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT(S,P,s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

Proof idea: alter(unknown) optimal route OPT(S, P, s) to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that OPT(S,P,s) visits-set $C\left(C \subseteq C^{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects
$-C^{\prime \prime} \leftarrow C^{\prime \prime} 1 C_{t}$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
- For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C " \leftarrow C " 1 C_{t}
$$

$-G_{C}$ set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s) - Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$

- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left|c^{\prime}\right|}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by $\operatorname{OPT}(S, P, s)$ (each cut in C^{\prime}) is touched by exactly one of the geodesics.
- The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C} "

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$

Proof idea: alter(unknown) optimal route $\operatorname{OPT}(S, P, s)$ to pass through points from $V(G)$, and new tour has length at most constant• OPT(S, P, s)

- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $O_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $O_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO IC'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$, set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S, P, s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $o_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ between a point $O_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
- Claim 4: $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per $\gamma_{\mathrm{i}}\left(\right.$ except for $\left.\gamma_{0}\right)$.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S, P, s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts ($C^{\prime} \subseteq C$)
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
$-C^{\prime \prime}-C^{\prime}$
-For t=1 TO |C'|
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$ set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in G_{C}, are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $O_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
${ }^{-}$Claim 4: $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per $\gamma_{\mathrm{i}}\left(\right.$ except for $\left.\gamma_{0}\right)$.
- To connect s (which may lie in the interior of $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime \prime}}\right)$, we need to connect s, which costs at most IIOPT(S,P,s)II.
- Identify all cuts of the $k \mathrm{VR}\left(\mathrm{si}_{\mathrm{i}}\right)$ that $\operatorname{OPT}(S, P, s)$ visits - set $C\left(C \subseteq C_{\text {all }}\right)$
- Let $O_{i, j}$ denote the point where OPT(S,P,s) visits $c_{i, j}$ (first time)
- Identify subset C^{\prime} of essential cuts $\left(C^{\prime} \subseteq C\right)$
- Order geodesics to essential cuts by decreasing Euclidean length: $\ell\left(\mathrm{g}_{1}\right) \geq \ell\left(\mathrm{g}_{2}\right) \geq \ldots \geq \ell\left(\mathrm{g}_{\left.\mid c^{\prime}\right)}\right)$
- $C^{\prime \prime} \leftarrow C^{\prime}$
-For $\mathrm{t}=1 \mathrm{TO}\left|\mathrm{C}^{\prime}\right|$
- Identify all $C_{t} \subset C^{\prime}$ that g_{t} intersects

$$
-C^{\prime \prime} \leftarrow C^{\prime \prime} C_{t}
$$

$-G_{C}$ set of geodesics that end at cuts in $C^{\prime \prime}$
Claim 1: The geodesics in $G_{c "}$ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

- Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C^{\prime}) is touched by exactly one of the geodesics.
-The geodesics in G_{C} " intersect the cuts in C " in points of the type $p_{i, j}-$ set \mathcal{P}_{C}
-Build relative convex hull of all $O_{i, j}$ and all points in $\mathcal{P}_{C^{\prime \prime}}$ (relative w.r.t. polygon P): $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$
Claim 3: No geodesic can intersect $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ between a point $o_{i, j}$ and a point $p_{i, j}$ on the same cut. Thus, between any pair of points of the type $o_{i, j}$ on $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$, we have at most two points of $\mathcal{P}_{C^{\prime \prime}} . \mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime \prime}}\right)$ has length at most $3 \cdot\|O P T(S, P, s)\|$.
${ }^{-}$Claim 4: $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ is not longer than $\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{C^{\prime}}\right)$ and $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$ visits one point per $\gamma_{\mathrm{i}}\left(\right.$ except for $\left.\gamma_{0}\right)$.
To connect s (which may lie in the interior of $\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime}}\right)$, we need to connect s, which costs at most IIOPT $(S, P, s) \|$.
$\|R\| \leq \alpha_{1} \cdot f(|V(G)|,|S|)\left\|\mathrm{OPT}_{G}(S, P, s)\right\| \leq \alpha_{2} \cdot f(n|S|,|S|)\left\|\mathrm{CH}_{P}\left(\mathcal{P}_{C^{\prime \prime}}\right)\right\| \leq \alpha_{3} \cdot f(n|S|,|S|)\left\|\mathrm{CH}_{P}\left(\mathrm{OPT}, \mathcal{P}_{\mathcal{C}^{\prime \prime}}\right)\right\|$
$\leq \alpha_{4} \cdot f(n|S|,|S|)\|\operatorname{OPT}(S, P, s)\|$
with $f(N, M)=\log ^{2} N \log \log N \log M$

Open Problem: k-Transmitter Watchmen

Open Problem k-Transmitter Watchman Routes

- Structural analogue for extensions, which we have for 0-transmitters?

Open Problem k-Transmitter Watchman Routes

- Structural analogue for extensions, which we have for 0-transmitters?

[^2]
Open Problem k-Transmitter Watchman Routes

- Structural analogue for extensions, which we have for 0-transmitters?

A cut c partitions polygon into two subpolygons:
$P_{s}(c)$-subpolygon that contains starting point s
A cut C_{1} dominates C_{2} if $\mathrm{P}_{\mathrm{s}}\left(\mathrm{C}_{2}\right) \subseteq \mathrm{P}_{\mathrm{s}}\left(\mathrm{C}_{1}\right)$
Essential cut: not dominated by other cut

- We see all of P iff we visit all essential cuts.

Open Problem k-Transmitter Watchman Routes

- Structural analogue for extensions, which we have for 0-transmitters?

A cut c partitions polygon into two subpolygons:
$P_{s}(c)$-subpolygon that contains starting point s
A cut C_{1} dominates C_{2} if $\mathrm{P}_{\mathrm{s}}\left(\mathrm{c}_{2}\right) \subseteq \mathrm{P}_{\mathrm{s}}\left(\mathrm{C}_{1}\right)$
Essential cut: not dominated by other cut

- We see all of P iff we visit all essential cuts.

Open Problem k-Transmitter Watchman Routes

- Structural analogue for extensions, which we have for 0-transmitters?

A cut c partitions polygon into two subpolygons:
$P_{s}(c)$-subpolygon that contains starting point s
A cut C_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
Essential cut: not dominated by other cut

- OPEN PROBLEM \#2: Is there a structure like essential cuts that guarantees k-visibility of P when visited?
- We see all of P iff we visit all essential cuts.

Outlook
1.0

Outlook

Outlook

- Improved combinatorial bounds for 2-/k-transmitter covers-in particular: Open Problem \#1. Better upper bounds for simple polygons than the one stemming from 0-transmitters

Outlook

- Improved combinatorial bounds for 2-/k-transmitter covers-in particular: Open Problem \#1. Better upper bounds for simple polygons than the one stemming from 0-transmitters
- Open Problem \#2: Structural analogue for extensions for 0-transmitters?

Outlook

- Improved combinatorial bounds for 2-/k-transmitter covers-in particular: Open Problem \#1. Better upper bounds for simple polygons than the one stemming from 0-transmitters
- Open Problem \#2: Structural analogue for extensions for 0-transmitters?
- Approximation for watchmen routes for k-transmitters without given starting point and/or when all of P should be monitored?

Outlook

- Improved combinatorial bounds for 2-/k-transmitter covers-in particular: Open Problem \#1. Better upper bounds for simple polygons than the one stemming from 0-transmitters
- Open Problem \#2: Structural analogue for extensions for 0-transmitters?
- Approximation for watchmen routes for k-transmitters without given starting point and/or when all of P should be monitored?
- Generally: More structural insights for k-transmitters

[^0]: Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem

[^1]: Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem

[^2]: A cut c partitions polygon into two subpolygons:
 $P_{s}(c)$-subpolygon that contains starting point s
 A cut c_{1} dominates c_{2} if $P_{s}\left(c_{2}\right) \subseteq P_{s}\left(c_{1}\right)$
 Essential cut: not dominated by other cut

