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➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization: 
- Compresses the timetable: existing train paths on the considered line section are 

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem: 
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal:   Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
- Consider a single type (outlook on several types given)
- Aim to disturb passenger traffic as little as possible—trade-off with temporal distance 

to other trains
- We present optimal solution
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• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite 

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

We start with 2
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Routing a Maximum Number of Thick Paths through a 
Polygonal Domain
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Polygonal  
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Sink 𝚪t
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Route thick paths from the source to the sink, avoiding all holes (=obstacles)
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Thin path π: simple curve
Let Cr denote the open desk of radius r centered at the origin
For S⊂R2: (S)r=S⊕Cr = {x+y| x∈S, y∈Cr} - Minkowski sum
Thick path 𝚷: Minkowski sum of a thin path and a unit disk  𝚷=(π)1
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We want: 
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
• No path runs outside of polygonal domain
• non-crossing: 𝚷i⋂𝚷j=∅ (interiors disjoint, may share boundary)
• Need some more concepts (Ω perforated at the source and sinks and Riemann 

flaps glued to Ω, …)
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Algorithm by Arkin et al. (2010) to compute maximum number of thick paths: 
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite 

speed
• We start setting the bottom on fire.
• Wavefront at time 𝛕: boundary of burnt grass by time 𝛕
• Whenever fire burns 2 time units w/o hitting hole —> we can route a thick path 

through the burnt grass
• Once path has been routed: wavefront is new bottom, and we start over
• Some additional tweaks when we hit a hole after 𝛕<2
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Thick Paths with Limited Slope
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We want: 
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone 
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum 
number of thick non-crossing paths with a given slope range (≙C-respecting)
Theorem: A representation of the maximum number of C-respecting thick-non-
crossing paths can be found in O(nh+nlogn) time.
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• We consider the time-space diagram—the geometric representation 
• Inserting a new train: Route path from start to end station 
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite 

direction) 
• We think of train paths as “blown-up” line segments = thick paths 
• Blown up by temporal distance (can be minimum, or more) 
• How to route those thick paths? Concepts from Computational Geometry 
• Need to make some adaptations, for example, if stations are lines, no path could cross these 
➡ 1. Show how to construct the appropriate polygonal domain 
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain: 

• Paths should be x-monotone (we cannot go back in time) 
• Trains have a maximum speed ⇨ paths have a limited slope 
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Construction of Polygonal Domain from the Timetable
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Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at 
a station
⇨ “Cut” each station open and blow up by 
vertical distance:
- If the station s has exactly k sidetracks, 

we insert a vertical distance of k*d 
- If no such limit exists, we can insert a 

vertical distance of min{|𝚪s|+d, |𝚪t|+d}

But now the time of departure cannot be 
reached by our paths with limited slope
⇨We need to shift the consecutive stations 
to the right, such that this path can be 
reached with limited slope
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We need to keep a temporal distance to 
the existing trains in the timetable
⇨ “Blow them up” as polygonal obstacles:
Insert the security distance (ds, do)

In the example we used ds=d, d0=d/2
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We need to limit our outer polygon:
• No train can run earlier than departing 

earliest with highest speed
⇨ l2

• No train can run later than arriving latest 
with highest speed
⇨ l1

• Some further boundary parts
• Intersect holes with boundary

cone:
thick path:
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Conclusion and Outlook
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• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is 

given: We simply make the new bottom respecting each consecutive 
cone

Outlook

• Application to real-world example
• What other geometric concepts can be used?
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cone:
thick path:

THANKS.


