
Applying Geometric Thick Paths to Compute the
Number of Additional Train Paths in a Railway

Timetable

Anders Peterson Valentin Polishchuk Christiane Schmidt

17.06.2019 RailNorrköping 2019 !2

Introduction

Routing a Maximum Number of Thick Paths through a Polygonal Domain

Thick Paths with Limited Slope

Construction of Polygonal Domain from the Timetable

Example

Conclusion and Outlook

17.06.2019 RailNorrköping 2019 !3

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
- Consider a single type (outlook on several types given)

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
- Consider a single type (outlook on several types given)
- Aim to disturb passenger traffic as little as possible—trade-off with temporal distance

to other trains

17.06.2019 RailNorrköping 2019 !3

• Marshalling yards: completed trains occupy highly demanded space until departure
➡ Depart ahead of schedule?
➡ Should not contribute to congestion—ensure train path to the destination available
➡ Here: what if we want to add several additional trains?
➡ Leave existing (passenger) traffic unaffected
➡ Q: How many can we add?
➡ Residual capacity for additional train paths in a given time window

- UIC compression technique for computing capacity utilization:
- Compresses the timetable: existing train paths on the considered line section are

shifted as close together as possible
➡ Trains no longer considered at the time at which they actually run

- Saturation problem:
Given: Existing (possibly empty) timetable, a set of saturation trains
Goal: Add as many trains as possible
- Various train types considered
- Solved with heuristics (CAPRES) or MILP (Pellegrini et al., 2017)

- We:
- Consider a single type (outlook on several types given)
- Aim to disturb passenger traffic as little as possible—trade-off with temporal distance

to other trains
- We present optimal solution

17.06.2019 RailNorrköping 2019 !4

Existing trains
Additional trains: need to keep temporal distance

17.06.2019 RailNorrköping 2019 !4

Existing trains
Additional trains: need to keep temporal distance
➡ Thick paths instead of lines

17.06.2019 RailNorrköping 2019 !4

Existing trains
Additional trains: need to keep temporal distance
➡ Thick paths instead of lines

17.06.2019 RailNorrköping 2019 !5

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

17.06.2019 RailNorrköping 2019 !5

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

We start with 2

17.06.2019 RailNorrköping 2019 !6

Routing a Maximum Number of Thick Paths through a
Polygonal Domain

17.06.2019 RailNorrköping 2019 !7

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

Source 𝚪s

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

Source 𝚪s

Sink 𝚪t

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

Source 𝚪s

Sink 𝚪t

Bottom

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

Source 𝚪s

Sink 𝚪t

Bottom

Top

17.06.2019 RailNorrköping 2019 !7

Simple polygon P

Holes
Polygonal
domain

Source 𝚪s

Sink 𝚪t

Bottom

Top

Route thick paths from the source to the sink, avoiding all holes (=obstacles)

17.06.2019 RailNorrköping 2019 !8

17.06.2019 RailNorrköping 2019 !8

Thin path π: simple curve

17.06.2019 RailNorrköping 2019 !8

Thin path π: simple curve
Let Cr denote the open desk of radius r centered at the origin

17.06.2019 RailNorrköping 2019 !8

Thin path π: simple curve
Let Cr denote the open desk of radius r centered at the origin
For S⊂R2: (S)r=S⊕Cr = {x+y| x∈S, y∈Cr} - Minkowski sum

17.06.2019 RailNorrköping 2019 !8

Thin path π: simple curve
Let Cr denote the open desk of radius r centered at the origin
For S⊂R2: (S)r=S⊕Cr = {x+y| x∈S, y∈Cr} - Minkowski sum
Thick path 𝚷: Minkowski sum of a thin path and a unit disk 𝚷=(π)1

17.06.2019 RailNorrköping 2019 !9

We want:

17.06.2019 RailNorrköping 2019 !9

We want:
• Maximum number of non crossing thick paths from source to sink

17.06.2019 RailNorrköping 2019 !9

We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles

17.06.2019 RailNorrköping 2019 !9

We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
• No path runs outside of polygonal domain

17.06.2019 RailNorrköping 2019 !9

We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
• No path runs outside of polygonal domain
• non-crossing: 𝚷i⋂𝚷j=∅ (interiors disjoint, may share boundary)

17.06.2019 RailNorrköping 2019 !9

We want:
• Maximum number of non crossing thick paths from source to sink
• Paths should avoid all obstacles
• No path runs outside of polygonal domain
• non-crossing: 𝚷i⋂𝚷j=∅ (interiors disjoint, may share boundary)
• Need some more concepts (Ω perforated at the source and sinks and Riemann

flaps glued to Ω, …)

17.06.2019 RailNorrköping 2019 !10

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed
• We start setting the bottom on fire.

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed
• We start setting the bottom on fire.
• Wavefront at time 𝛕: boundary of burnt grass by time 𝛕

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed
• We start setting the bottom on fire.
• Wavefront at time 𝛕: boundary of burnt grass by time 𝛕
• Whenever fire burns 2 time units w/o hitting hole —> we can route a thick path

through the burnt grass

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed
• We start setting the bottom on fire.
• Wavefront at time 𝛕: boundary of burnt grass by time 𝛕
• Whenever fire burns 2 time units w/o hitting hole —> we can route a thick path

through the burnt grass
• Once path has been routed: wavefront is new bottom, and we start over

17.06.2019 RailNorrköping 2019 !10

Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:
• Grass-fire analogy
• Free space is grass over which fire travels with speed 1
• Holes are highly flammable: once ignited, fire moves through them with infinite

speed
• We start setting the bottom on fire.
• Wavefront at time 𝛕: boundary of burnt grass by time 𝛕
• Whenever fire burns 2 time units w/o hitting hole —> we can route a thick path

through the burnt grass
• Once path has been routed: wavefront is new bottom, and we start over
• Some additional tweaks when we hit a hole after 𝛕<2

17.06.2019 RailNorrköping 2019 !11

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn
• If we hit a hole in the process, outer-monotonize holes using waterfalls

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn
• If we hit a hole in the process, outer-monotonize holes using waterfalls

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn
• If we hit a hole in the process, outer-monotonize holes using waterfalls

17.06.2019 RailNorrköping 2019 !11

Polishchuk (2007) extended this to x-monotone paths:
• Need a monotone boundary, if not, add “waterfalls”
• Again, let fire burn
• If we hit a hole in the process, outer-monotonize holes using waterfalls

17.06.2019 RailNorrköping 2019 !12

Thick Paths with Limited Slope

17.06.2019 RailNorrköping 2019 !13

We want:

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)

17.06.2019 RailNorrköping 2019 !13

We want:
• Maximum number of non crossing thick paths from source to sink
• Slope should be within a given cone C

- X-monotone
- Limited speed ⇨ Limited slope

• We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (≙C-respecting)
Theorem: A representation of the maximum number of C-respecting thick-non-
crossing paths can be found in O(nh+nlogn) time.

17.06.2019 RailNorrköping 2019 !14

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

17.06.2019 RailNorrköping 2019 !14

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

✔

17.06.2019 RailNorrköping 2019 !14

Still left to do

• We consider the time-space diagram—the geometric representation
• Inserting a new train: Route path from start to end station
• Paths not arbitrarily close ⇨ temporal distance (different to trains running in same or opposite

direction)
• We think of train paths as “blown-up” line segments = thick paths
• Blown up by temporal distance (can be minimum, or more)
• How to route those thick paths? Concepts from Computational Geometry
• Need to make some adaptations, for example, if stations are lines, no path could cross these
➡ 1. Show how to construct the appropriate polygonal domain
➡ 2. Show how to route the maximum number of thick non-crossing paths in that domain:

• Paths should be x-monotone (we cannot go back in time)
• Trains have a maximum speed ⇨ paths have a limited slope

✔

17.06.2019 RailNorrköping 2019 !15

Construction of Polygonal Domain from the Timetable

17.06.2019 RailNorrköping 2019 !16

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink
⇨ Possible thick paths would correspond
to train paths in a smaller time interval

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink
⇨ Possible thick paths would correspond
to train paths in a smaller time interval
⇨ Extend the time windows by d/2 to both
sides to create 𝚪s and 𝚪t

(𝚪s=[p1,p2], 𝚪t=[p3,p4])

17.06.2019 RailNorrköping 2019 !16

If we would define the time windows as
source and sink
⇨ Possible thick paths would correspond
to train paths in a smaller time interval
⇨ Extend the time windows by d/2 to both
sides to create 𝚪s and 𝚪t

(𝚪s=[p1,p2], 𝚪t=[p3,p4])

17.06.2019 RailNorrköping 2019 !17

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station
⇨ “Cut” each station open and blow up by
vertical distance:

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station
⇨ “Cut” each station open and blow up by
vertical distance:
- If the station s has exactly k sidetracks,

we insert a vertical distance of k*d

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station
⇨ “Cut” each station open and blow up by
vertical distance:
- If the station s has exactly k sidetracks,

we insert a vertical distance of k*d
- If no such limit exists, we can insert a

vertical distance of min{|𝚪s|+d, |𝚪t|+d}

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station
⇨ “Cut” each station open and blow up by
vertical distance:
- If the station s has exactly k sidetracks,

we insert a vertical distance of k*d
- If no such limit exists, we can insert a

vertical distance of min{|𝚪s|+d, |𝚪t|+d}

But now the time of departure cannot be
reached by our paths with limited slope

17.06.2019 RailNorrköping 2019 !17

Vertical lines at stations are obstacles
⇨ We need to delete them
We need to be able to spend some time at
a station
⇨ “Cut” each station open and blow up by
vertical distance:
- If the station s has exactly k sidetracks,

we insert a vertical distance of k*d
- If no such limit exists, we can insert a

vertical distance of min{|𝚪s|+d, |𝚪t|+d}

But now the time of departure cannot be
reached by our paths with limited slope
⇨We need to shift the consecutive stations
to the right, such that this path can be
reached with limited slope

17.06.2019 RailNorrköping 2019 !18

⇨

17.06.2019 RailNorrköping 2019 !19

17.06.2019 RailNorrköping 2019 !19

We need to keep a temporal distance to
the existing trains in the timetable

17.06.2019 RailNorrköping 2019 !19

We need to keep a temporal distance to
the existing trains in the timetable
⇨ “Blow them up” as polygonal obstacles:

17.06.2019 RailNorrköping 2019 !19

We need to keep a temporal distance to
the existing trains in the timetable
⇨ “Blow them up” as polygonal obstacles:
Insert the security distance (ds, do)

17.06.2019 RailNorrköping 2019 !19

We need to keep a temporal distance to
the existing trains in the timetable
⇨ “Blow them up” as polygonal obstacles:
Insert the security distance (ds, do)

In the example we used ds=d, d0=d/2

17.06.2019 RailNorrköping 2019 !20

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed
⇨ l2

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed
⇨ l2

• No train can run later than arriving latest
with highest speed

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed
⇨ l2

• No train can run later than arriving latest
with highest speed
⇨ l1

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed
⇨ l2

• No train can run later than arriving latest
with highest speed
⇨ l1

• Some further boundary parts

17.06.2019 RailNorrköping 2019 !20

We need to limit our outer polygon:
• No train can run earlier than departing

earliest with highest speed
⇨ l2

• No train can run later than arriving latest
with highest speed
⇨ l1

• Some further boundary parts
• Intersect holes with boundary

cone:
thick path:

17.06.2019 RailNorrköping 2019 !21

Example

17.06.2019 RailNorrköping 2019 !22

cone:
thick path:

17.06.2019 RailNorrköping 2019 !22

cone:
thick path:

17.06.2019 RailNorrköping 2019 !22

cone:
thick path:

17.06.2019 RailNorrköping 2019 !22

cone:
thick path:

17.06.2019 RailNorrköping 2019 !22

17.06.2019 RailNorrköping 2019 !23

cone:
thick path:

17.06.2019 RailNorrköping 2019 !24

Conclusion and Outlook

17.06.2019 RailNorrköping 2019 !25

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is

given: We simply make the new bottom respecting each consecutive
cone

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is

given: We simply make the new bottom respecting each consecutive
cone

Outlook

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is

given: We simply make the new bottom respecting each consecutive
cone

Outlook

• Application to real-world example

17.06.2019 RailNorrköping 2019 !25

• Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given

• Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is

given: We simply make the new bottom respecting each consecutive
cone

Outlook

• Application to real-world example
• What other geometric concepts can be used?

17.06.2019 RailNorrköping 2019 !26

cone:
thick path:

THANKS.

