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Motivation
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๏ Air transportation grows:
‣ Beneficial for growing global economy
‣ Increased complexity for air traffic controllers (ATCOs)
‣ Environmental effects

๏ Terminal Maneuvering Areas (TMAs) most congested
➡ Optimization of arrival and departure procedures is needed:

‣ Lessen ATCO workload
‣ Mitigate environmental impact

Our solution: 
๏ Automatically temporally separated arrivals to reduce complexity and ATCO’s workload 
๏ Aircraft fly according to optimal continuous descent operations (CDOs): 

‣ Promising solution to mitigate environmental effects, according to ICAO and EUROCONTROL: 
CDOs "allow aircraft to follow a flexible, optimum flight  path  that  delivers  major  environmental  and  economic benefits—
reduced fuel burn, gaseous emissions, noise and fuel costs—without any adverse effect on safety”
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CDOs
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CDOs have shown important environmental benefits w.r.t. conventional 
(step-down) approaches in TMAs

Figure source: Performance comparison between TEMO and a typical FMS in presence of CTA and wind 
uncertainties, by Ramon Dalmau, Xavier Prats, Ronald Verhoeven and Nico de Gelder, DASC 2016 
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Previous Work
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• LiU-LFV:  
• Optimal standard arrival routes (STARs)  
• Time-separated demand-weighted arrival routes (dynamic, 

for pre-tactical planning), assuming unit edge traversal time 
• UPC: CDO-enabled optimized arrival procedures (engine-idle, 

low noise) 
• Here: Automated time-separated demand-weighted CDO-

enabled optimized arrival routes
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Grid-based MIP Formulation
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Input

• Location and direction  
 of the airport runway 

• Locations of the entry points to 
the TMA 

• Aircraft arrival times at the entry 
points for a fixed time period 

• Cruise conditions (altitude, true 
airspeed, distance to entry point 
+ path distance inside TMA) 
and aircraft type for CDO profile 
generation
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Output
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Ent 3

Ent 2

RWY

Ent 4

Ent 1

Optimal arrival tree that: 
•  Merges traffic from the entries to 

the runway  
• Ensures safe aircraft separation 

for the given time period 
⇨ A set of time-separated CDO-
enabled tree-shaped aircraft 
trajectories optimized w.r.t. the traffic 
demand during the given period

RWY



NTKt, October 23, 2019 

Operational Requirements
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๏ No more than two routes merge at a point: in-degree ≤ 2 
๏ Merge point separation: distance threshold L 
๏ No sharp turns: angle threshold α, minimum edge length L 
๏ Temporal separation of all aircraft along the routes
๏ All aircraft fly energy-neutral CDO:  

 idle thrust, no speed brakes (noise avoidance) 
๏ Smooth transition between consecutive trees when switching
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Grid-based MIP Formulation
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Ent 3

Ent 2

RWY

Ent 1

Ent 4

• Square grid in the TMA 
• Snap locations of the entry points 

and the runway into the grid 
• Grid cell side of the length L 

(separation parameter)
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Grid-based MIP Formulation
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Ent 3

Ent 2

RWY

Ent 1

Ent 4

• Square grid in the TMA 
• Snap locations of the entry points 

and the runway into the grid 
• Grid cell side of the length l 

(separation parameter) 
• Every node connected to its 8 

neighbours
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Grid-based MIP Formulation
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Ent 3

Ent 2

RWY

Ent 1

Ent 4

• Square grid in the TMA 
• Snap locations of the entry points 

and the runway into the grid 
• Grid cell side of the length l 

(separation parameter) 
• Every node connected to its 8 

neighbours 
• Problem formulated as MIP 
• Based on flow MIP formulation for 

Steiner trees
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MIP Formulation
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VARIABLES 

OBJECTIVES 

Demand-weighted path length: 

Total tree weight: 

- decision variable - indicates whether edge e participates in arrival tree 

- gives the flow on edge e = (i, j), non-negative 

Short flight routes for aircraft

Arrival tree should “occupy little space”
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Constraints
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๏ Flow constraints 
๏ Degree constraints 
๏ Turn angle constraints 
๏ Auxiliary constraints to prevent crossings 
๏ Temporal separation of all aircraft along the routes 
๏ Realistic CDO speed profiles 
๏ Consistency between trees of different time periods
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Flow from all entry points reaches runway 
Flow of #a/c leaves each entry point 
Flow conservation 

Edges with positive flow are in STAR 

Flow non-negative 
Edge decision variables are binary 
Degree constraints:  
Outdegree of every vertex at most 1, maximum 
indegree is 2. 
Runway only one ingoing, entry points only one 
outgoing edge.
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T. Andersson, T. Polishchuk, V. Polishchuk, C. Schmidt. Automatic Design of Aircraft Arrival Routes with 
Limited Turning Angle. ATMOS 2016, Aarhus, Denmark. 

If an edge xe the angle to the consecutive 
segment of a route is never smaller than 𝞪
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Constraints
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Auxiliary Constraints to Prevent Crossings
Why? Temporal Separation may enforce paths that are not shortest, hence, crossings may appear

J. Dahlberg, T. Andersson Granberg , T. Polishchuk, C. Schmidt, L. Sedov. Capacity-Driven Automac 
Design of Dynamic Aircraft Arrival Routes. DASC 2018, London, UK. 

For all points except last column, last row, entries and rwy:

For different entry point locations:
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Constraints
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Temporal Aircraft Separation 
Assumption: unit time u to cover a single edge 

More variables:              - binary, shows a/c a at node j  at time t 
                                        - binary: edge e in the route from entry point b 

Connect to                                                       plus several other constraints  

Set:

Forward the 
information on the 
times at which a 
arrives at nodes 
along the route from 
b to the rwy

J. Dahlberg, T. Andersson Granberg , T. Polishchuk, C. Schmidt, L. Sedov. Capacity-Driven 
Automatic Design of Dynamic Aircraft Arrival Routes. DASC 2018, London, UK. 

Aircraft arriving at entry point b

Time when aircraft a arrives at entry point b

Temporal separation:                                                                                 𝞂 -  separation parameter

Not linear  
⟹ we linearise using a new variable za,j,k,b,t



NTKt, October 23, 2019 

Constraints
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๏ Flow constraints 
๏ Degree constraints 
๏ Turn angle constraints 
๏ Auxiliary constraints to prevent crossings 
๏ Temporal separation of all aircraft along the routes 
๏ Realistic CDO speed profiles 
๏ Consistency between trees of different time periods
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Realistic CDO Speed Profiles
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• The state vector x represents the fixed initial conditions of the aircraft: TAS v, altitude 
h and distance to go s 

• To achieve environmentally friendly trajectories, idle thrust is assumed and speed-
brakes use is not allowed throughout the descent → energy-neutral CDO 

• The flight path angle is the only control variable in this problem → control vector u
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Realistic CDO Speed Profiles
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Dynamic constraints Path constraints Terminal constraints

• A point-mass representation of the aircraft reduced to a “gamma-command” is considered, 
where vertical equilibrium is assumed → Dynamic constraints f 

• Path constraints h are enforced to ensure that the aircraft airspeed remains within 
operational limits, and that the maximum and minimum descent gradients are not exceeded 

• Terminal constraints 𝜓 fix the final states vector
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Realistic CDO Speed Profiles
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 Sáez, R., Dalmau, R., & Prats, X. (2018 , Sep). Optimal assignment of 4D close-loop instructions to enable 
CDOs in dense TMAs. Proceedings of the 37th IEEE/AIAA Digital Avionics Systems Conference (DASC)

• The trajectory is divided in two phases: the latter part of the cruise phase prior 
the top of descent (TOD) and the idle descent 

• The original cruise speed is not modified after the optimization process, so the 
two-phases optimal control problem can be converted into a single-phase 
optimal control problem 

• BADA V4 is used to model the aircraft performance
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Constraints
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๏ Flow constraints 
๏ Degree constraints 
๏ Turn angle constraints 
๏ Auxiliary constraints to prevent crossings 
๏ Temporal separation of all aircraft along the routes 
๏ Realistic CDO speed profiles 
๏ Consistency between trees of different time periods
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Constraints
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Integration of CDO-enabled Realistic Speed Profiles
Substitute:              with                      - binary, indicates whether a/c a using speed profile p occupies the n-th vertex j at time t.

Compute l(b) - path length from b to the rwy

For each a/c a arriving from b we pick the speed 
profile from S(a) that has the length l(b), i.e., we want:

l(b) is a variable ⟹ We use auxiliary binary variables 
and constraints to achieve this.
Separation constraint:

 𝞂 -  separation parameter

 Substitute the corresponding equations with: 
Set of all speed profiles  
(different lengths) for aircraft a 
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Constraints
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 Consistency between trees of consecutive time periods 

Define:                             - edge indicators for current and previous periods 

              U - limits the number of differing edges in the two trees
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Experimental Study: Stockholm Arlanda Airport
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Experimental Airport: Stockholm Arlanda Airport
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๏ Data: Stockholm Arlanda airport arrivals during one hour of 

operation 

๏ Source: EUROCONTROL DDR2, BADA 4 

๏ High-traffic scenario on October 3, 2017, time: 15:00 - 16:00 

๏ Solved using GUROBI 
๏ Run on a powerful Tetralith server, provided by SNIC, LIU:  

Intel  HNS2600BPB  nodes  with  32  CPU  cores and 384 GiB 
RAM  
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CDO profiles inside TMA
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๏ Cruise conditions are obtained from 

DDR2  

๏ TOD position and descent phase are 

optimized 

๏ Same time at the entry point for 

different path lengths inside TMA
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CDO profiles inside TMA
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๏ A set of realistic alternative speed 

profiles for different possible route 

lengths inside TMA 

๏ Generated for all a/c types arriving 

to Arlanda during the given period 

๏ Used as input to MIP

Example of A320 speed profiles for 
different path lengths inside TMA 
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Results: Stockholm Arlanda Airport
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Tree 1: time: 15:00 - 15:30 (10 a/c)                Tree 2: time: 15:30 - 16:00 (7 a/c) 
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Results: Stockholm Arlanda Airport
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๏ Tree 1: time: 15:00 - 15:30 (10 a/c) 

๏ Tree 2: time: 15:30 - 16:00 (7 a/c) 

๏ Optimized for 30 min intervals (longer periods may be 
sub-optimal. Note: time within TMA 5-18 min) 

๏ U = 23 provides consistency between the trees   

๏ Separation: 2 min, ~6 nm 

๏ 17 out of 22 arrivals scheduled 

๏ 5 filtered out, because of:  
-  Initial violation of separation at entry points 
-  Potential overtaking problem 
-  In general, about 10-15% are not scheduled
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Comparison against historical trajectories (Open Sky Network)
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Time Schedule
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t = 15:00
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t = 15:03
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t = 15:04
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t = 15:05
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t = 15:07
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t = 15:08
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t = 15:09
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t = 15:10



NTKt, October 23, 2019 !40

t = 15:11
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t = 15:12
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t = 15:13
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t = 15:14
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t = 15:15
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t = 15:16
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t = 15:17
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t = 15:18
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t = 15:19
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t = 15:20
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t = 15:21
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t = 15:22
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t = 15:23
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t = 15:24
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t = 15:25
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t = 15:26
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t = 15:27
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t = 15:28
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t = 15:29
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t = 15:30
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t = 15:30
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t = 15:30
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t = 15:30
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t = 15:30
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t = 15:31



NTKt, October 23, 2019 !65

t = 15:32
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Conclusions and Future Work
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Conclusions and Future Work
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๏ Flexible optimization framework for dynamic route planning inside TMA 
๏ Automated spatial and temporal separation  
๏ Environmentally-friendly speed profiles (CDO) 
๏ Applicable to any other realistic speed profiles 
๏ May be used for TMA capacity evaluation

๏ Account for uncertainties due to variations in arrival times 
๏ Solve overtaking problem (allow non-optimal profiles, or route stretching) 
๏ Consider fleet diversity  
๏ Elaborate on implementation possibilities, link to the future operational 

enablers (data links, technologies) for air-ground synchronisation (EPP)

Conclusions

Future Work
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THANKS.


