Stakeholder Cooperation for Improved Predictability and Lower Cost Remote Services

Joen Dahlberg, Tatiana Polishchuk, Valentin Polishchuk, Christiane Schmidt

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost
\Rightarrow Significant cost savings for small airports (30-120movements a day)

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost
\Rightarrow Significant cost savings for small airports (30-120movements a day)
- To ensure safety: No simultaneous movements at airports controlled from the same module

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost
\Rightarrow Significant cost savings for small airports (30-120movements a day)
- To ensure safety: No simultaneous movements at airports controlled from the same module
\Rightarrow In extreme case in Sweden: simultaneous movements at all five airports

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost
\Rightarrow Significant cost savings for small airports (30-120movements a day)
- To ensure safety: No simultaneous movements at airports controlled from the same module
\Rightarrow In extreme case in Sweden: simultaneous movements at all five airports
\Rightarrow Each airport needs separate RTM

- Remotely operated towers enable control of multiple aerodromes from a single Remote Tower Module (RTM) in a Remote Tower Center.
- In Sweden: two remotely controlled airports in operation, five more studied.
- Splits the cost of Air Traffic Services (ATS) provision and staff management between several airports
- Labour accounts for up to 85% of ATS cost
\Rightarrow Significant cost savings for small airports (30-120movements a day)
- To ensure safety: No simultaneous movements at airports controlled from the same module
\Rightarrow In extreme case in Sweden: simultaneous movements at all five airports
\Rightarrow Each airport needs separate RTM
\Rightarrow Possibilities to perturb flight schedules? (current flight schedules consider only the single airport, ATCO might have to put a/c on hold anyhow...)

Problem Formulation

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot - Input matrix F:

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5 -min intervals, called slots, and put every flight into its slot - Input matrix F:
* Row per airport (a)

	04:00												05:00													06:00											
	0	5	10	15	20	25	30	35	40		50	55	5		5	10	15	20	25	30	35	40	45	50	55	0	5	10	15	20		30	35	40	45		55
AP1	0	0	1	1	0	0	0	0	0	1	0	0	0		1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1		1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0		1	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0		1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5 -min intervals, called slots, and put every flight into its slot - Input matrix F:
* Row per airport (a)
* Column per each slot (s)

	04:00												05:00													06:00											
	0	5	10	15	20	25	30	35				55	5		5	10	15	20	25	30	35	40	45		55	0	5	10	15	20	25	30	35	40	45	50	55
AP1	0	0	1	1	0	0	0	0	0	1	0	0		0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1	1	1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
- Input matrix F:
* Row per airport (a)
* Column per each slot (s)
* $\mathrm{F}_{\text {as }}=1$ if a movement happens at airport a at time slot s

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
- Input matrix F:
* Row per airport (a)
* Column per each slot (s)
* $\mathrm{F}_{\text {as }}=1$ if a movement happens at airport a at time slot s
* $\mathrm{Fas}_{\text {as }}=0$ otherwise

	04:00												05:00													06:00											
	0	5	10	15	20	25	30	35				55	5		5	10	15	20	25	30	35	40	45		55	0	5	10	15	20	25	30	35	40	45	50	55
AP1	0	0	1	1	0	0	0	0	0	1	0	0		0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1	1	1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
- Input matrix F:
* Row per airport (a)
* Column per each slot (s)
* $\mathrm{F}_{\text {as }}=1$ if a movement happens at airport a at time slot s
* $\mathrm{Fas}_{\text {as }}=0$ otherwise

	04:00												05:00													06:00											
	0	5	10	15	20	25	30	35	40	45		55	0	5	1		15	20	25	30	35	40	45		55	0	5	10	15	20			35		45		55
AP1	0	0	1	1	0	0	0	0	0	1	0	0	0	1	1		1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1	1	0		1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1		0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0		0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1		1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Conflict: two movements during the same slot in different airports (in F: two 1 s in the same column)
- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
- Input matrix F:
* Row per airport (a)
* Column per each slot (s)
* $\mathrm{F}_{\text {as }}=1$ if a movement happens at airport a at time slot s
* $\mathrm{Fas}_{\text {as }}=0$ otherwise

	04:00												05:00													06:00											
	0	5	10	15	20	25	30	35	40	45		55	0	5	1		15	20	25	30	35	40	45		55	0	5	10	15	20			35		45		55
AP1	0	0	1	1	0	0	0	0	0	1	0	0	0	1	1		1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1	1	0		1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1		0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0		0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1		1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Conflict: two movements during the same slot in different airports (in F: two 1s in the same column)
- Conflicting airports should never be assigned to the same RTM
- Input: Aircraft movements at each airport from Demand Data Repository (DDR) hosted by EUROCONTROL
- Split the time into 5-min intervals, called slots, and put every flight into its slot
\Rightarrow Input matrix F:
* Row per airport (a)
* Column per each slot (s)
* $\mathrm{F}_{\text {as }}=1$ if a movement happens at airport a at time slot s
* $\mathrm{F}_{\text {as }}=0$ otherwise

	04:00												05:00												06:00											
	0	5	10	15	20	25	30	35	40	45	50	55	0	5	10	15	20	25	30	35	40	45		55	0	5	10	15	20	25	30	35	40	45		55
AP1	0	0	1	1	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
AP2	0	0	1	0	1	0	0	1	0	1	1	0	1	1	0	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AP3	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0
AP4	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	0
AP5	0	0	1	1	0	0	0	1	0	0	1	0	0	1	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0

- Conflict: two movements during the same slot in different airports (in F: two 1s in the same column)
- Conflicting airports should never be assigned to the same RTM

Conflict count	AP1	AP2	AP3	AP4	AP5
AP1		1058	621	366	339
AP2	1058		6473	3400	3021
AP3	621	6473		2603	2517
AP4	366	3400	2603		1449
AP5	339	3021	2517	1449	

Conflict days	AP1	AP2	AP3	AP4	AP5
AP1		341	316	278	285
AP2	341		366	363	365
AP3	316	366		362	362
AP4	278	363	362		359
AP5	285	365	362	359	

- Output: Shifted flights and Airport-to-RTM assignment
- Output: Shifted flights and Airport-to-RTM assignment
- Goal: "small" shifts to the flight schedules \rightarrow decreased number of required RTMs
- Output: Shifted flights and Airport-to-RTM assignment
- Goal: "small" shifts to the flight schedules \rightarrow decreased number of required RTMs
- Measure for shift?
- Output: Shifted flights and Airport-to-RTM assignment
- Goal: "small" shifts to the flight schedules \rightarrow decreased number of required RTMs
- Measure for shift?
* Maximum slot shift Δ (in minutes; multiple of 5 , as we shift only by whole slots)
- Output: Shifted flights and Airport-to-RTM assignment
- Goal: "small" shifts to the flight schedules \rightarrow decreased number of required RTMs
- Measure for shift?
* Maximum slot shift Δ (in minutes; multiple of 5 , as we shift only by whole slots)
* Number of shifts S
- Output: Shifted flights and Airport-to-RTM assignment
- Goal: "small" shifts to the flight schedules \rightarrow decreased number of required RTMs
- Measure for shift?
* Maximum slot shift Δ (in minutes; multiple of 5 , as we shift only by whole slots)
* Number of shifts S
- MAP = maximum number of airports per module

Formal problem definition:

Formal problem definition:
Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Formal problem definition:
Flights Rescheduling and Airport-to-Module Assignment (FRAMA) Given:

Formal problem definition:
Flights Rescheduling and Airport-to-Module Assignment (FRAMA) Given:

- Flight slots in a set of airports (the matrix F)

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

 Given:- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

 Given:- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

 Given:- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module
- At most M modules are used

Decision problem

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module
- At most M modules are used

Decision problem

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module
- At most M modules are used

For optimisation problem: Move one constraint in objective function

Decision problem

Formal problem definition:

Flights Rescheduling and Airport-to-Module Assignment (FRAMA)

Given:

- Flight slots in a set of airports (the matrix F)
- Maximum allowable shift of a flight
- Maximum total number of allowable shifts, S
- Maximum number of airports per RTM, MAP
- Total number of modules, M

Find: New slots for the flights and an assignment of airports to RTMs such that

- At most S flights are moved
- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module
- At most M modules are used

[^0]
Problem Complexity

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3. Proof: Reduction from Partition into Triangles (PIT)

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and $M A P=3$.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})?

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots,, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots,, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has |V| rows
- Time slot per non-existing edge in G (that is per edge in the G's complement)

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has |V| rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots,, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow|E c| E \mid$ time slots

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots,, \mathrm{~V}_{\mid \mathrm{V} / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow\left|E^{c}\right| E \mid$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1's to the time slot column: to the airports of v and w, all other entries in that column are 0's.

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid V / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow\left|E^{c}\right| E \mid$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1 's to the time slot column: to the airports of v and w, all other entries in that column are 0's.
Any solution to FRAMA with $\Delta=0$ and MAP=3 groups the airports (vertices) into triples, such that there are no conflicts between any of the three airports in a triple, that is, such that there is an edge between any of the three vertices in the triple.

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid V / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow|E \subset| E \mid$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1's to the time slot column: to the airports of v and w, all other entries in that column are 0's.
Any solution to FRAMA with $\Delta=0$ and MAP=3 groups the airports (vertices) into triples, such that there are no conflicts between any of the three airports in a triple, that is, such that there is an edge between any of the three vertices in the triple.

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid V / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow|E c| E \mid$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1 's to the time slot column: to the airports of v and w, all other entries in that column are 0's.
Any solution to FRAMA with $\Delta=0$ and MAP=3 groups the airports (vertices) into triples, such that there are no conflicts between any of the three airports in a triple, that is, such that there is an edge between any of the three vertices in the triple.

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid V / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow\left|E^{c}\right| E \mid$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1 's to the time slot column: to the airports of v and w, all other entries in that column are 0's.
Any solution to FRAMA with $\Delta=0$ and MAP=3 groups the airports (vertices) into triples, such that there are no conflicts between any of the three airports in a triple, that is, such that there is an edge between any of the three vertices in the triple.
- We would obtain a solution to PIT

	a	b	c	d	e	f
1	1	1	0	0	0	0
2	0	0	1	1	0	1
3	0	0	0	0	1	0
4	1	0	0	1	0	0
5	0	1	0	0	0	0
6	0	0	1	0	1	1

Theorem: FRAMA is NP-complete, even if $\Delta=0$ and MAP=3.
Proof: Reduction from Partition into Triangles (PIT)

- Graph $G=(V, E)$ (of maximum degree four)
- Can V be partitioned into triples $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mid V / 3}$, such that each V_{i} forms a triangle in G (for each triple of vertices V_{i} each vertex in V_{i} is connected to both other vertices in V_{i})? Given an instance of PIT (graph $G=(V, E)$ with max degree four) we construct the matrix F, the input of FRAMA:
- One airport per vertex \rightarrow F has $|\mathrm{V}|$ rows
- Time slot per non-existing edge in G (that is per edge in the G's complement) $\mathrm{G}^{\mathrm{c}}=\left(\mathrm{V}, \mathrm{E}^{\mathrm{c}}\right)$ complete graph on V
$\rightarrow|E \backslash \backslash E|$ time slots
- For time slot corresponding to $e^{c}=\{v, w\} \in E^{c} \backslash E$ we add two 1 's to the time slot column: to the airports of v and w, all other entries in that column are 0's.
Any solution to FRAMA with $\Delta=0$ and MAP=3 groups the airports (vertices) into triples, such that there are no conflicts between any of the three airports in a triple, that is, such that there is an edge between any of the three vertices in the triple.
- We would obtain a solution to PIT

Solution to FRAMA with $\Delta=0$ (and, thus, $S=0$) and MAP= 3 can be verified in polytime.

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.
No edge, as AP1 and AP2 are in conflict

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.
No edge, as AP1 and AP2 are in conflict

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.
No edge, as AP1 and AP2 are in conflict

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.
No edge, as AP1 and AP2 are in conflict

Theorem: For $\Delta=0$ and MAP=2 Minimizing the number of modules is equivalent to finding a maximum matching in the airport conflict graph (vertex for every airport and an edge between two airports if they can be put into the same module).

Maximum matching can be found in polynomial time.
No edge, as AP1 and AP2 are in conflict

Complexity for $\Delta>0$ and MAP=2 unknown.

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts

Complexity for $\Delta>0$ and $M A P=2$ unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs

Complexity for $\Delta>0$ and $M A P=2$ unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:

Complexity for $\Delta>0$ and $M A P=2$ unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased
- We can also minimize the total amount of shifted minutes: set the weight of each edge equal to the length of the shift

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased
- We can also minimize the total amount of shifted minutes: set the weight of each edge equal to the length of the shift
Runs in polynomial time, but may find suboptimal solutions to FRAMA (not necessary to remove all the conflicts)

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased
- We can also minimize the total amount of shifted minutes: set the weight of each edge equal to the length of the shift
Runs in polynomial time, but may find suboptimal solutions to FRAMA (not necessary to remove all the conflicts)
For a small number of airports: enumerate all pairs of airports

Complexity for $\Delta>0$ and MAP=2 unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
\Rightarrow Solve rescheduling and assignment problem separately
Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:
- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased
- We can also minimize the total amount of shifted minutes: set the weight of each edge equal to the length of the shift
Runs in polynomial time, but may find suboptimal solutions to FRAMA (not necessary to remove all the conflicts)
For a small number of airports: enumerate all pairs of airports

flights completely eliminate all conflicts for the given pairs (matching) with a given $\Delta>0$

Complexity for $\Delta>0$ and $M A P=2$ unknown.

Possible heuristic:

- First remove all conflicts
- Then assign airports to RTMs
- Solve rescheduling and assignment problem separately

Assignment problem is trivial in the absence of conflicts (the airports are arbitrarily packed into the RTMs, with MAP airports per module)
\Rightarrow How to deconflict flight schedule?
We can reduce deconfliction problem to matching:

- Bipartite graph: all flights in one part and all slots in the other part
- Flight f is connected to all slots within distance $\Delta / 5$ from its original slot
- Edge weight:
- 0, for edge between flight f and its original slot (black edges)
- 1, otherwise (gray edges)
- Find the minimum-weight matching in the graph that matches all flights
- If no such matching exists, Δ must be increased
- We can also minimize the total amount of shifted minutes: set the weight of each edge equal to the length of the shift
Runs in polynomial time, but may find suboptimal solutions to FRAMA (not necessary to remove all the conflicts)
For a small number of airports: enumerate all pairs of airports

flights completely eliminate all conflicts for the given pairs (matching) with a given $\Delta>0$ chose combination with minimum possible number of modules

IP for FRAMA

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t Wab: conflict between airport a and airport b (some t)

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t
$S_{\text {af }}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.

Decision variables
xam: airport a assigned to module m
z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t wab: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S$ af; $P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $\mathrm{P}_{\text {atf }}=\mid t-$ Saf \mid

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{\text {af }}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.

Decision variables
xam: airport a assigned to module m
Z_{m} : module m is used
Yatf. flight f arrives/departs at/from airport a in time slot t $W_{a b}$: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { s.t. } x_{a m} \\
& \leqslant z_{m} \quad \forall(a, m) \in A \times M \tag{2}\\
& \sum_{m \in M} x_{a m} \tag{3}\\
& =1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \quad \leqslant 1 \quad \forall(a, t) \in A \times T \tag{4}\\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{5}\\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{6}\\
& x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{7}\\
& \sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \tag{8}\\
& x, y, w, z \quad \text { binary }
\end{align*}
$$

Decision variables

$$
A=\text { set of airports }
$$

$x_{\text {am: }}$ airport a assigned to module m

$$
\mathrm{M}=\text { set of modules }
$$

Z_{m} : module m is used

$$
\mathrm{T}=\text { set of time slots }
$$

yatf. flight f arrives/departs at/from airport a in time slot t

$$
V_{a}=f l i g h t s \text { at airport a }
$$ $W_{a b}$: conflict between airport a and airport b (some t)

min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

s.t. $x_{a m}$

$$
\begin{equation*}
\leqslant z_{m} \quad \forall(a, m) \in A \times M \tag{2}
\end{equation*}
$$

$\sum_{m \in M} x_{a m}$

$$
\begin{equation*}
=1 \quad \forall a \in A \tag{3}
\end{equation*}
$$

$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

$$
\begin{equation*}
\sum_{f \in V_{a}} y_{a t f} \tag{4}
\end{equation*}
$$

$$
\leqslant 1 \quad \forall(a, t) \in A \times T
$$

$$
\begin{equation*}
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{6}
\end{equation*}
$$

$$
\begin{array}{ll}
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \text { MAP } \forall m \in M \\
x, y, w, z & \text { binary } \tag{9}
\end{array}
$$

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
Z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t Wab: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af; }} p_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{\text {af }}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

$$
\begin{equation*}
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \tag{7}
\end{equation*}
$$

$x, y, w, z \quad$ binary

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
Z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t $W_{a b}$: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af; }} p_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used

$$
\begin{equation*}
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{a \in A} x_{a m} \quad \leqslant \mathrm{MAP} \quad \forall m \in M \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
x, y, w, z \quad \text { binary } \tag{8}
\end{equation*}
$$

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
Z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t $W_{a b}$: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af; }} p_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

A = set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module

$$
\begin{equation*}
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{a \in A} x_{a m} \quad \leqslant \mathrm{MAP} \quad \forall m \in M \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
x, y, w, z \quad \text { binary } \tag{8}
\end{equation*}
$$

Decision variables

$$
A=\text { set of airports }
$$

$x_{\text {am: }}$ airport a assigned to module m

$$
M=\text { set of modules }
$$

Z_{m} : module m is used

$$
T=\text { set of time slots }
$$

yatf. flight f arrives/departs at/from airport a in time slot t

$$
V_{a}=f l i g h t s \text { at airport a }
$$ $W_{a b}$: conflict between airport a and airport b (some t)

min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af; }} p_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$$
\begin{array}{lll}
\text { s.t. } x_{a m} & \leqslant z_{m} & \forall(a, m) \in A \times M \\
\sum_{m \in M} x_{a m} & =1 \quad \forall a \in A \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1 \quad \forall(a, t) \in A \times T \\
\min ^{\min \left(|T|, s_{a f}+\delta\right)} & \\
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{t} y_{a t f} & =1 \quad \forall(a, f) \in A \times V_{a} \\
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \operatorname{MAP} \quad \forall m \in M \\
x, y, w, z & \text { binary }
\end{array}
$$

$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

$$
\text { Some airport assigned to module } m
$$

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
${ }^{(4)}$ time slot t

Decision variables

$$
A=\text { set of airports }
$$

$x_{\text {am: }}$ airport a assigned to module m

$$
M=\text { set of modules }
$$

Z_{m} : module m is used

$$
T=\text { set of time slots }
$$

yatf. flight f arrives/departs at/from airport a in time slot t

$$
V_{a}=f l i g h t s \text { at airport a }
$$ $W_{a b}$: conflict between airport a and airport b (some t)

min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af; }} p_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$$
\begin{array}{lll}
\text { s.t. } x_{a m} & \leqslant z_{m} & \forall(a, m) \in A \times M \\
\sum_{m \in M} x_{a m} & =1 \quad \forall a \in A \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1 \quad \forall(a, t) \in A \times T \\
\min ^{\min \left(|T|, s_{a f}+\delta\right)} & \\
\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{t} y_{a t f} & =1 \quad \forall(a, f) \in A \times V_{a} \\
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \operatorname{MAP} \quad \forall m \in M \\
x, y, w, z & \text { binary }
\end{array}
$$

$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
(4) time slot t
(5) Each flight $\pm \delta$ from scheduled time

Decision variables

$$
A=\text { set of airports }
$$

$x_{\text {am: }}$ airport a assigned to module m

$$
M=\text { set of modules }
$$

z_{m} : module m is used

$$
T=\text { set of time slots }
$$

yatf. flight f arrives/departs at/from airport a in time slot t

$$
V_{a}=\text { flights at airport a }
$$ Wab: conflict between airport a and airport b (some t)

min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
${ }^{(4)}$ time slot t
(5) Each flight $\pm \delta$ from scheduled time
(6) Two a/c at same slot at airports a and b

$$
\begin{align*}
& \text { s.t. } x_{a m} \\
& \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m} \\
& =1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \\
& \leqslant 1 \quad \forall(a, t) \in A \times T \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{7}\\
& \sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \tag{8}\\
& x, y, w, z \quad \text { binary } \tag{9}
\end{align*}
$$

Decision variables

$$
A=\text { set of airports }
$$

$x_{\text {am: }}$ airport a assigned to module m

$$
M=\text { set of modules }
$$

z_{m} : module m is used

$$
T=\text { set of time slots }
$$

yatf. flight f arrives/departs at/from airport a in time slot t

$$
V_{a}=\text { flights at airport a }
$$ Wab: conflict between airport a and airport b (some t)

min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
${ }^{(4)}$ time slot t
(5) Each flight $\pm \delta$ from scheduled time
(6) Two a/c at same slot at airports a and b \rightarrow two airports in conflict

$$
\begin{align*}
& \text { s.t. } x_{a m} \\
& \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m} \\
& =1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \\
& \leqslant 1 \quad \forall(a, t) \in A \times T \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \tag{7}\\
& \sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \tag{8}\\
& x, y, w, z \quad \text { binary } \tag{9}
\end{align*}
$$

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t Wab: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$$
\begin{aligned}
& \text { s.t. } x_{a m} \quad \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \begin{array}{lll}
\sum_{m \in M} x_{a m} & =1 & \forall a \in A \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1 & \forall(a, t) \in A \times T
\end{array} \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
& \sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \\
& x, y, w, z \quad \text { binary }
\end{aligned}
$$

$A=$ set of airports
$M=$ set of modules
$\mathrm{T}=$ set of time slots
$V_{a}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{\text {af }}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
${ }^{(4)}$ time slot t
(5) Each flight $\pm \delta$ from scheduled time
(6) Two a/c at same slot at airports a and b \rightarrow two airports in conflict
(7) If \exists conflict \rightarrow airports not same module

Decision variables
$x_{\text {am: }}$ airport a assigned to module m
z_{m} : module m is used
yatf. flight f arrives/departs at/from airport a in time slot t Wab: conflict between airport a and airport b (some t)
min \# shifts: $P_{\text {atf }}=1$ if $t \neq S_{\text {af }} ; P_{\text {atf }}=0$ if $t=S_{\text {af }}$ min total amount of shifts: $p_{\text {atf }}=\mid t-$ Saf \mid

$$
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f}
$$

$$
\begin{array}{ll}
\text { s.t. } \begin{array}{ll}
x_{a m} & \leqslant z_{m} \\
\sum_{m \in M} x_{a m} & \forall(a, m) \in A \times M \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1
\end{array} \quad \forall a \in A \\
\min ^{\min \left(T \mid, s_{a f}+\delta\right)} y_{a t f} & =1 \quad \forall(a, t) \in A \times T \\
\sum_{t=\max \left(1, s_{a f}-\delta\right)} & \forall(a, f) \in A \times V_{a} \\
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} & \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \operatorname{MAP} \quad \forall m \in M \\
x, y, w, z & \text { binary }
\end{array}
$$

$M=$ set of modules
$T=$ set of time slots
$\mathrm{V}_{\mathrm{a}}=$ flights at airport a
$p_{\text {atf }}=$ cost to move flight f at airport a to time slot t $S_{a f}=$ scheduled time for flight f at airport a i
δ maximum shift distance for scheduled aircraft in terms of time slots: $\delta=\Delta / 5$.
(1) $\mathrm{C}_{1}{ }^{*} \#$ modules $+\mathrm{C}_{2}{ }^{*}$ sum of shifts

Some airport assigned to module m

(2) \rightarrow module m used
(3) Each airport assigned to 1 module At most 1 flight arrives/departs at airport
${ }^{(4)}$ time slot t
(5) Each flight $\pm \delta$ from scheduled time
(6) Two a/c at same slot at airports a and b \rightarrow two airports in conflict
(7) If \exists conflict \rightarrow airports not same module
${ }^{(8)}$ Max MAP airports to each module

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { s.t. } x_{a m} \tag{2}\\
& \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m} \tag{3}\\
& =1 \quad \forall a \in A \\
& \leqslant 1 \quad \forall(a, t) \in A \times T \tag{4}\\
& \sum_{f \in V_{a}} y_{a t f} \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \tag{5}\\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \tag{6}\\
& x_{a m}+x_{b m} \\
& \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
& \sum_{a \in A} x_{a m} \quad \leqslant \mathrm{MAP} \quad \forall m \in M \tag{8}\\
& x, y, w, z \tag{9}\\
& \text { binary }
\end{align*}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{\star} \mathrm{M}+\mathrm{C}_{2}{ }^{\star} \mathrm{S}$ (could move one in constraint)

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { s.t. } \begin{aligned}
& x_{a m} \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m}=1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \leqslant 1 \quad \forall(a, t) \in A \times T \\
&{\min \left(|T|, s_{a f}+\delta\right)}^{\sum_{t=\max \left(1, s_{a f}-\delta\right)} y_{a t f}}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
& \sum_{a \in A} x_{a m} \leqslant \operatorname{MAP} \quad \forall m \in M \\
& x, y, w, z \text { binary }
\end{aligned}
\end{array}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint)
We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { s.t. } \begin{array}{ll}
x_{a m} & \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
\sum_{m \in M} x_{a m} & =1 \quad \forall a \in A \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1 \quad \forall(a, t) \in A \times T \\
{\min \left(|T|, s_{a f}+\delta\right)}^{\sum_{t=\max \left(1, s_{a f}-\delta\right)} y_{a t f}} & =1 \quad \forall(a, f) \in A \times V_{a} \\
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \operatorname{MAP} \quad \forall m \in M \\
x, y, w, z & \text { binary }
\end{array}
\end{array}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint) We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$ IP computes new slots for flights and assigns airports to RTMs, such that:

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint) We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$ IP computes new slots for flights and assigns airports to RTMs, such that:

- Each flight is moved by at most Δ

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { s.t. } \begin{aligned}
& x_{a m} \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m}=1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \leqslant 1 \quad \forall(a, t) \in A \times T \\
& \min \left(|T|, s_{a f}+\delta\right) \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
& \sum_{a \in A} x_{a m} \leqslant \operatorname{MAP} \quad \forall m \in M \\
& x, y, w, z \text { binary }
\end{aligned}
\end{array}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint)
We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$ IP computes new slots for flights and assigns airports to RTMs, such that:

- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { s.t. } \begin{aligned}
& x_{a m} \leqslant z_{m} \quad \forall(a, m) \in A \times M \\
& \sum_{m \in M} x_{a m}=1 \quad \forall a \in A \\
& \sum_{f \in V_{a}} y_{a t f} \leqslant 1 \quad \forall(a, t) \in A \times T \\
& \min \left(|T|, s_{a f}+\delta\right) \\
& \sum_{t=\max \left(1, s_{a f}-\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a} \\
& \sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
& x_{a m}+x_{b m} \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
& \sum_{a \in A} x_{a m} \leqslant \operatorname{MAP} \quad \forall m \in M \\
& x, y, w, z \text { binary }
\end{aligned}
\end{array}
$$

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint)
We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$ IP computes new slots for flights and assigns airports to RTMs, such that:

- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

```
s.t. \(x_{a m} \quad \leqslant z_{m} \quad \forall(a, m) \in A \times M\)
    \(\begin{array}{lll}\sum_{m \in M} x_{a m} & =1 & \forall a \in A \\ \sum_{f \in V_{a}} y_{a t f} & \leqslant 1 & \forall(a, t) \in A \times T\end{array}\)
    \(\sum_{t=\max \left(1, s_{a f}-\delta\right)}^{\min \left(|T|, s_{a f}+\delta\right)} y_{a t f}=1 \quad \forall(a, f) \in A \times V_{a}\)
    \(\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b\)
    \(x_{a m}+x_{b m} \quad \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b\)
\[
\begin{equation*}
\sum_{a \in A} x_{a m} \quad \leqslant \text { MAP } \quad \forall m \in M \tag{7}
\end{equation*}
\]
\[
\begin{equation*}
x, y, w, z \quad \text { binary } \tag{8}
\end{equation*}
\]
```

IP formulation of FRAMA optimises $\mathrm{C}_{1}{ }^{*} \mathrm{M}+\mathrm{C}_{2}{ }^{*} \mathrm{~S}$ (could move one in constraint) We choose c_{1} and c_{2} such that minimizing the modules is the primary objective: $c_{1} \gg c_{2}$ IP computes new slots for flights and assigns airports to RTMs, such that:

- Each flight is moved by at most Δ
- No conflicting airports are assigned to the same RTM
- At most MAP airports are assigned per module
- IP formulation solves FRAMA!

$$
\begin{equation*}
\min c_{1} \sum_{m \in M} z_{m}+c_{2} \sum_{a \in A} \sum_{t \in T} \sum_{f \in V_{a}} p_{a t f} y_{a t f} \tag{1}
\end{equation*}
$$

$$
\begin{array}{lll}
\text { s.t. } x_{a m} & \leqslant z_{m} & \forall(a, m) \in A \times M \\
\sum_{m \in M} x_{a m} & =1 \quad \forall a \in A \\
\sum_{f \in V_{a}} y_{a t f} & \leqslant 1 \quad \forall(a, t) \in A \times T \\
{\min \left(|T|, s_{a f}+\delta\right)}^{\sum_{t=\max \left(1, s_{a f}-\delta\right)} y_{a t f}} & =1 \quad \forall(a, f) \in A \times V_{a} \\
\sum_{f \in V_{a}} y_{a t f}+\sum_{f \in V_{b}} y_{b t f} \leqslant 1+w_{a b} \forall(a, b, t) \in A \times A \times T, a<b \\
x_{a m}+x_{b m} & \leqslant 2-w_{a b} \forall(a, b, m) \in A \times A \times M, a<b \\
\sum_{a \in A} x_{a m} & \leqslant \operatorname{MAP} \quad \forall m \in M \\
x, y, w, z & \text { binary }
\end{array}
$$

Experimental Study

Additional airports considered for remote operation in Sweden:

Additional airports considered for remote operation in Sweden:

- Airport 1 (AP1): Small airport with low traffic, few scheduled flights per hour, nonregular helicopter traffic, sometimes special testing activities.
- Airport 2 (AP2): Low to medium-sized airport, multiple scheduled flights per hour, regular special traffic flights (usually open 24/7, with exceptions).
- Airport 3 (AP3): Small regional airport with regular scheduled flights (usually open 24/7, with exceptions)
- Airport 4 (AP4): Small airport with significant seasonal variations.
- Airport 5 (AP5): Small airport with low scheduled traffic, non-regular helicopter flights.

Additional airports considered for remote operation in Sweden:

- Airport 1 (AP1): Small airport with low traffic, few scheduled flights per hour, nonregular helicopter traffic, sometimes special testing activities.
- Airport 2 (AP2): Low to medium-sized airport, multiple scheduled flights per hour, regular special traffic flights (usually open 24/7, with exceptions).
- Airport 3 (AP3): Small regional airport with regular scheduled flights (usually open 24/7, with exceptions)
- Airport 4 (AP4): Small airport with significant seasonal variations.
- Airport 5 (AP5): Small airport with low scheduled traffic, non-regular helicopter flights.

We use traffic data from October 19, 2016—the day with highest traffic in 2016

Additional airports considered for remote operation in Sweden:

- Airport 1 (AP1): Small airport with low traffic, few scheduled flights per hour, nonregular helicopter traffic, sometimes special testing activities.
- Airport 2 (AP2): Low to medium-sized airport, multiple scheduled flights per hour, regular special traffic flights (usually open 24/7, with exceptions).
- Airport 3 (AP3): Small regional airport with regular scheduled flights (usually open 24/7, with exceptions)
- Airport 4 (AP4): Small airport with significant seasonal variations.
- Airport 5 (AP5): Small airport with low scheduled traffic, non-regular helicopter flights.

We use traffic data from October 19, 2016—the day with highest traffic in 2016 286 flight movements were scheduled on this day for the five airports

Additional airports considered for remote operation in Sweden:

- Airport 1 (AP1): Small airport with low traffic, few scheduled flights per hour, nonregular helicopter traffic, sometimes special testing activities.
- Airport 2 (AP2): Low to medium-sized airport, multiple scheduled flights per hour, regular special traffic flights (usually open 24/7, with exceptions).
- Airport 3 (AP3): Small regional airport with regular scheduled flights (usually open 24/7, with exceptions)
- Airport 4 (AP4): Small airport with significant seasonal variations.
- Airport 5 (AP5): Small airport with low scheduled traffic, non-regular helicopter flights.

We use traffic data from October 19, 2016-the day with highest traffic in 2016 286 flight movements were scheduled on this day for the five airports For first set of experiments: without self-conflicts $\rightarrow 233$ movements

Additional airports considered for remote operation in Sweden:

- Airport 1 (AP1): Small airport with low traffic, few scheduled flights per hour, nonregular helicopter traffic, sometimes special testing activities.
- Airport 2 (AP2): Low to medium-sized airport, multiple scheduled flights per hour, regular special traffic flights (usually open 24/7, with exceptions).
- Airport 3 (AP3): Small regional airport with regular scheduled flights (usually open 24/7, with exceptions)
- Airport 4 (AP4): Small airport with significant seasonal variations.
- Airport 5 (AP5): Small airport with low scheduled traffic, non-regular helicopter flights.

We use traffic data from October 19, 2016-the day with highest traffic in 2016 286 flight movements were scheduled on this day for the five airports For first set of experiments: without self-conflicts $\rightarrow 233$ movements One optimization problem for each pair (Δ, MAP)

$$
M A P=5
$$

δ	\# of modules	\# of shifts $=S$	maximum shift (in mins) $=\Delta$
0	5	0	-
1	2	32	5
2	2	27	10
3	2	26	15
4	2	26	-
5	2	26	-
6	2	26	-
7	1	118	35
8	1	108	40
9	1	99	45
10	1	91	50
11	1	85	55
12	1	83	60
13	1	81	65
14	1	79	70
15	1	78	75
16	1	75	80
17	1	75	85
18	1	75	90
19	1	74	95
20	1	74	100
21	1	73	105

We have $12 \times 24=288$ slots for flight movements
\Rightarrow with sufficiently large shifts 233 flight movements in single module

$$
\mathrm{MAP}=5
$$

δ	\# of modules	\# of shifts $=S$	maximum shift (in mins) $=\Delta$
0	5	0	-
1	2	32	5
2	2	27	10
3	2	26	15
4	2	26	-
5	2	26	-
6	2	26	-
7	1	118	35
8	1	108	40
9	1	99	45
10	1	91	50
11	1	85	55
12	1	83	60
13	1	81	65
14	1	79	70
15	1	78	75
16	1	75	80
17	1	75	85
18	1	75	90
19	1	74	95
20	1	74	100
21	1	73	105

No rescheduling allowed: need 5 RTMs

We have $12 \times 24=288$ slots for flight movements
\Rightarrow with sufficiently large shifts 233 flight movements in single module

$$
\mathrm{MAP}=5
$$

δ	\# of modules	\# of shifts $=S$	maximum shift (in mins) $=\Delta$
0	5	0	-
1	2	32	5
2	2	27	10
3	2	26	15
4	2	26	-
5	2	26	-
6	2	26	-
7	1	118	35
8	1	108	40
9	1	99	45
10	1	91	50
11	1	85	55
12	1	83	60
13	1	81	65
14	1	79	70
15	1	78	75
16	1	75	80
17	1	75	85
18	1	75	90
19	1	74	95
20	1	74	100
21	1	73	105

No rescheduling allowed: need 5 RTMs Reschedule at most ± 5 minutes: 2 RTMs

We have $12 \times 24=288$ slots for flight movements
\Rightarrow with sufficiently large shifts 233 flight movements in single module

$$
\mathrm{MAP}=5
$$

δ	\# of modules	\# of shifts $=S$	maximum shift (in mins) $=\Delta$
0	5	0	-
1	2	32	5
2	2	27	10
3	2	26	15
4	2	26	-
5	2	26	-
6	2	26	-
7	1	118	35
8	1	108	40
9	1	99	45
10	1	91	50
11	1	85	55
12	1	83	60
13	1	81	65
14	1	79	70
15	1	78	75
16	1	75	80
17	1	75	85
18	1	75	90
19	1	74	95
20	1	74	100
21	1	73	105

No rescheduling allowed: need 5 RTMs Reschedule at most ± 5 minutes: 2 RTMs

For 1 RTM: we need to reschedule by ± 35 mins

We have $12 \times 24=288$ slots for flight movements
\Rightarrow with sufficiently large shifts 233 flight movements in single module

Original Traffic

- 1RTM (5AP/RTM) 2RTMs (2-3AP/RTM)

Original Traffic

Shows tradeoffs: more shifts — larger shifts (more minutes) — more APs/module

$\mathrm{MAP}=4$

δ	M	S
0	5	0
1	2	32
2	2	27
3	2	26

$M A P=3$

δ	M	S
0	5	0
1	2	32

MAP $=2$		
δ	\# of modules	\# of shifts
0	5	0
1	3	7

All 286 movements

In case of a self-induced conflict: model shifts either of them

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition
MAP=5

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition

$$
\mathrm{MAP}=5
$$

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

$$
\text { For } 233 \text { movs } 2 \text { RTMs were enough for } \delta=1 \text {, now } \delta=2
$$

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition

$$
\mathrm{MAP}=5
$$

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

$$
\text { For } 233 \text { movs } 2 \text { RTMs were enough for } \delta=1 \text {, now } \delta=2
$$

For 233 movs 1RTM was enough for $\delta=7$, now $\delta=37$

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition

$$
\mathrm{MAP}=5
$$

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

$$
\text { For } 233 \text { movs } 2 \text { RTMs were enough for } \delta=1 \text {, now } \delta=2
$$

For 233 movs 1RTM was enough for $\delta=7$, now $\delta=37$

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
288	2	79

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition
MAP=5

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

For 233 movs 2 RTMs were enough for $\delta=1$, now $\delta=2$

For 233 movs 1RTM was enough for $\delta=7$, now $\delta=37$

δ	M	S			
0	infeasible	infeasible		M	S
1	infeasible	infeasible	0	infeasible	infeasible
2	2	103	1	infeasible	infeasible
3	2	80	2	103	
4	2	79	3	2	80
288	2	79	4	2	79
288	2	79			

All 286 movements

In case of a self-induced conflict: model shifts either of them
\Rightarrow we start with possible more than one flight movement per time slot and airport
$\Rightarrow \delta=0$ infeasible by definition
MAP=5

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
36	2	79
37	1	158
38	1	154

For 233 movs 2 RTMs were enough for $\delta=1$, now $\delta=2$

For 233 movs 1RTM was enough for $\delta=7$, now $\delta=37$

δ	M	S
0	infeasible	infeasible
1	infeasible	infeasible
2	2	103
3	2	80
4	2	79
288	2	79

δ	M	S	δ	M	S
0	infeasible	infeasible	0	infeasible	infeasible
1	infeasible	infeasible	1	infeasible	infeasible
2	2	103	2	3	61
3	2	80	3	3	61
4	2	79	4	3	60
288	2	79	288	3	60

Computation times: Solve in two steps

We solve two optimisation with $c_{2}=0$ and $c_{1}=0$ respectively and fix the Σz_{k} to the optimal number of modules used when solving the second optimization problem.

Computation times: Solve in two steps

We solve two optimisation with $c_{2}=0$ and $c_{1}=0$ respectively and fix the Σz_{k} to the optimal number of modules used when solving the second optimization problem.

MAP=5				
δ	\# of modules	\# of shifts $=S$	computation time in sec	
0	infeasible	-	-	
1	infeasible	-	-	
2	2	103	1,40	
3	2	80	1,26	
4	2	79	1,79	
36	2	79	7,97	
37	1	158	8,42	
38	1	154	9,34	
39	1	151	40,84	
40	1	149	46,61	
41	1	147	45,12	
42	1	144	38,10	
43	1	141	40,20	
44	1	139	43,57	
45	1	137	9,24	
46	1	136	106,31	
47	1	135	148,79	
48	1	134	100,03	
49	1	133	94,08	
50	1	132	479,12	
51	1	130	433,79	
52	1	128	348,83	
53	1	126	11,65	
288	1	126	46,49	

Computation times: Solve in two steps

We solve two optimisation with $c_{2}=0$ and $c_{1}=0$ respectively and fix the Σz_{k} to the optimal number of modules used when solving the second optimization problem.

MAP=5				
δ	\# of modules	\# of shifts $=S$	computation time in sec	
0	infeasible	-	-	
1	infeasible	-	-	
2	2	103	1,40	
3	2	80	1,26	
4	2	79	1,79	
36	2	79	7,97	
37	1	158	8,42	
38	1	154	9,34	
39	1	151	40,84	
40	1	149	46,61	
41	1	147	45,12	
42	1	144	38,10	
43	1	141	40,20	
44	1	139	43,57	
45	1	137	9,24	
46	1	136	106,31	
47	1	135	148,79	
48	1	134	100,03	
49	1	133	94,08	
50	1	132	479,12	
51	1	130	433,79	
52	1	128	348,83	
53	1	126	11,65	
288	1	126	46,49	

$M A P=4$

δ	\# of modules	\# of shifts $=S$	computation time in sec
0	infeasible	-	-
1	infeasible	-	-
2	2	103	1,31
3	2	80	1,06
4	2	79	1,22
288	2	79	60,92

Computation times: Solve in two steps

We solve two optimisation with $c_{2}=0$ and $c_{1}=0$ respectively and fix the Σz_{k} to the optimal number of modules used when solving the second optimization problem.

MAP=5				
δ	\# of modules	\# of shifts $=S$	computation time in sec	
0	infeasible	-	-	
1	infeasible	-	-	
2	2	103	1,40	
3	2	80	1,26	
4	2	79	1,79	
36	2	79	7,97	
37	1	158	8,42	
38	1	154	9,34	
39	1	151	40,84	
40	1	149	46,61	
41	1	147	45,12	
42	1	144	38,10	
43	1	141	40,20	
44	1	139	43,57	
45	1	137	9,24	
46	1	136	106,31	
47	1	135	148,79	
48	1	134	100,03	
49	1	133	94,08	
50	1	132	479,12	
51	1	130	433,79	
52	1	128	348,83	
53	1	126	11,65	
288	1	126	46,49	

MAP=4
δ \# of modules \# of shifts $=S$ computation time in sec 0 infeasible - - 1 infeasible - - 2 2 103 1,31 3 2 80 1,06 4 2 79 1,22 288 2 79 60,92 MAP=3 δ \# of modules \# of shifts computation 0 infeasible - - 1 infeasible - - 2 2 103 1,36 3 2 80 1,28 4 2 79 1,09 288 2 79 51,79 $.\left\{\begin{array}{c}\text { time in sec } \\ \hline\end{array}\right.$

Computation times: Solve in two steps

We solve two optimisation with $c_{2}=0$ and $c_{1}=0$ respectively and fix the Σz_{k} to the optimal number of modules used when solving the second optimization problem.

MAP=5				
δ	\# of modules	\# of shifts $=S$	computation time in sec	
0	infeasible	-	-	
1	infeasible	-	-	
2	2	103	1,40	
3	2	80	1,26	
4	2	79	1,79	
36	2	79	7,97	
37	1	158	8,42	
38	1	154	9,34	
39	1	151	40,84	
40	1	149	46,61	
41	1	147	45,12	
42	1	144	38,10	
43	1	141	40,20	
44	1	139	43,57	
45	1	137	9,24	
46	1	136	106,31	
47	1	135	148,79	
48	1	134	10,03	
49	1	133	94,08	
50	1	132	479,12	
51	1	130	433,79	
52	1	128	348,83	
53	1	126	11,65	
288	1	126	46,49	

δ	\# of modules	\# of shifts $=S$	computation time in sec
0	infeasible	-	-
1	infeasible	-	-
2	2	103	1,31
3	2	80	1,06
4	2	79	1,22
288	2	79	60,92
MAP=3			

δ	\# of modules	\# of shifts $=S$	computation time in sec
0	infeasible	-	-
1	infeasible	-	-
2	2	103	1,36
3	2	80	1,28
4	2	79	1,09
288	2	79	51,79

MAP=2

δ	\# of modules	\# of shifts $=S$	computation time in sec
0	infeasible	-	-
1	infeasible	-	-
2	3	61	0,55
3	3	61	1,09
4	3	60	0,98
288	3	60	100,30

Increased Traffic Volume

Increased Traffic Volume

Duplicate each of the original flight movements

Increased Traffic Volume

Duplicate each of the original flight movements Shift randomly by plus/minus one hour

Increased Traffic Volume

Duplicate each of the original flight movements Shift randomly by plus/minus one hour Shift again, randomly, by plus/minus 15 minutes

Increased Traffic Volume

Duplicate each of the original flight movements
Shift randomly by plus/minus one hour
Shift again, randomly, by plus/minus 15 minutes
If two flight movements end up in the same slot, one of the movements is deleted

Increased Traffic Volume

Duplicate each of the original flight movements
Shift randomly by plus/minus one hour
Shift again, randomly, by plus/minus 15 minutes
If two flight movements end up in the same slot, one of the movements is deleted " $2 x$ " data created from all data of the year 2016

Duplicate each of the original flight movements Shift randomly by plus/minus one hour Shift again, randomly, by plus/minus 15 minutes If two flight movements end up in the same slot, one of the movements is deleted " $2 x$ " data created from all data of the year 2016
\Rightarrow shifted duplicates of flights from October 18, 2016 and October 20, 2016 may now happen on October 19, 2016

Duplicate each of the original flight movements
Shift randomly by plus/minus one hour
Shift again, randomly, by plus/minus 15 minutes
If two flight movements end up in the same slot, one of the movements is deleted
" $2 x$ " data created from all data of the year 2016
\Rightarrow shifted duplicates of flights from October 18, 2016 and October 20, 2016 may now happen on October 19, 2016
\Rightarrow Not exactly twice the number of movements

Increased Traffic Volume

Duplicate each of the original flight movements Shift randomly by plus/minus one hour Shift again, randomly, by plus/minus 15 minutes If two flight movements end up in the same slot, one of the movements is deleted " $2 x$ " data created from all data of the year 2016
\Rightarrow shifted duplicates of flights from October 18, 2016 and October 20, 2016 may now happen on October 19, 2016
\Rightarrow Not exactly twice the number of movements

- October 19: data set has 416 flight movements (after deleting double movements in time slots) out of 575 flight movements (all of the movements from 2016 that the duplication and shifting process produces)

Increased Traffic Volume

Increased Traffic Volume

For MAP=2 we get the optimum of 3RTMs for $\delta=1$ 33 shifts $\leftrightarrow 7$ shifts for original traffic

Increased Traffic Volume

Same tradeoffs: more shifts — larger shifts (more minutes) — more APs/module

δ	$\begin{gathered} \text { \# of } \\ \text { modules } \end{gathered}$	S	Δ	$\begin{aligned} & S \text { for 3RTMs } \\ & \text { (1-3AP/RTM) } \end{aligned}$	$\begin{aligned} & S \text { for 3RTMs } \\ & (1-2 A P / R T M) \end{aligned}$		- 2RTMs (2-3AP/RTM)	- 3RTMs (1-3AP/RTM)	M)
0	5	0	-	-	-				
1	3	30	5	30	33				
2	3	24	10	24	25			,	
3	3	23	15	23	24	100			
4	3	23	20	-	23	100			
5	2	111	25	-	-				
6	2	101	30	-	-	75			
7	2	96	35	-	-	75			
8	2	92	40	-	-				
9	2	88	45	-	-				
10	2	87	50	-	-	50			
11	2	84	55	-	-				
12	2	81	60	-	-		\cdots		
13	2	81	65	-	-	25	-		
14	2	81	70	-	-				
15	2	81	75	-	-				
16	2	80	80	-	-		20	40	60

For MAP=2 we get the optimum of 3RTMs for $\delta=1$
33 shifts $\leftrightarrow 7$ shifts for original traffic

Conclusion/Future Work

Conclusion

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
- Show applicability of our approach

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts — larger shifts (more minutes) — more APs/module

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
- Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
- Continues discussion with operations

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
- Continues discussion with operations
\Rightarrow Possibly: distinguish arrival/departures

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
- Continues discussion with operations
= Possibly: distinguish arrival/departures
\boldsymbol{r} Possibly: consider uncertainty

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts — larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
\Rightarrow Continues discussion with operations
= Possibly: distinguish arrival/departures
\Rightarrow Possibly: consider uncertainty
- Computational complexity of FRAMA with $\Delta>0$ and even MAP=2 is open

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
\Rightarrow Continues discussion with operations
- Possibly: distinguish arrival/departures
\Rightarrow Possibly: consider uncertainty
- Computational complexity of FRAMA with $\Delta>0$ and even MAP $=2$ is open
- Currently we do not care which airlines affected by shift (possibly all to a single airline)

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary
- They cannot be discarded, and will influence staff planning
\Rightarrow Continues discussion with operations
\Rightarrow Possibly: distinguish arrival/departures
\Rightarrow Possibly: consider uncertainty
- Computational complexity of FRAMA with $\Delta>0$ and even MAP=2 is open
- Currently we do not care which airlines affected by shift (possibly all to a single airline)
\Rightarrow Take equity into account (2 airlines, airline A operating 150 flights, airline B operating 75; reassign slot for 60 flights \rightarrow aim for 40 new slots for airline A, 20 new slots for airline B)

Conclusion

- Optimization problem for remote towers (FRAMA):
- Shifts flights to other, nearby, slots
- To minimize the total number of modules in the RTC
- Discussed computational complexity
- Presented different solution approaches
- Experiments for IP for five Swedish airports
= Show applicability of our approach
\Rightarrow Tradeoffs: more shifts - larger shifts (more minutes) — more APs/module
\Rightarrow Minor shifts (few minutes) can significantly reduce necessary number of modules
\Rightarrow Cooperation between airlines, airport owners and ANSPs may help in reduction of RTC operation costs

Future Work

- Our conflict definition may be too conservative/precautionary

Thank you.

- They cannot be discarded, and will influence staff planning
- Continues discussion with operations
- Possibly: distinguish arrival/departures
- Possibly: consider uncertainty
- Computational complexity of FRAMA with $\Delta>0$ and even MAP $=2$ is open
- Currently we do not care which airlines affected by shift (possibly all to a single airline)
\Rightarrow Take equity into account (2 airlines, airline A operating 150 flights, airline B operating 75; reassign slot for 60 flights \rightarrow aim for 40 new slots for airline A, 20 new slots for airline B)

[^0]: For optimisation problem: Move one constraint in objective function For us: Minimize number M of used RTMs, while respecting the bounds Δ, S, MAP

