Rectangular Spiral Galaxies are Still Hard

Erik D. Demaine

Maarten Löffler

Christiane Schmidt

Polygon Partitions

Polygon Partitions

\star Triangulation

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
* Minimum number of rectangles, polygons with holes: O(n3/2 $\log \mathrm{n}$) [Soltan, Gorpinevich, 1993]

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
* Minimum number of rectangles, polygons with holes: O(n3/2 $\log \mathrm{n}$) [Soltan, Gorpinevich, 1993]
* \#rectangles = r-l-h+1 (r=\#reflex vertices, $\mathrm{h}=$ \#holes, $\mathrm{l}=$ \#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
* Minimum number of rectangles, polygons with holes: O(n3/2 $\log \mathrm{n}$) [Soltan, Gorpinevich, 1993]
* \#rectangles = r-l-h+1 (r= \#reflex vertices, h=\#holes, l=\#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
* Minimum number of squares: NP-hard

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
* Minimum number of rectangles, polygons with holes: O(n3/2 $\log \mathrm{n})$ [Soltan, Gorpinevich, 1993]
* \#rectangles = r-l-h+1 (r=\#reflex vertices, $\mathrm{h}=$ \#holes, $\mathrm{l}=$ \#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
* Minimum number of squares: NP-hard
* Minimum edge-length rectangular partition: polytime in simple polygons, NP-hard in polygons with holes [Lingas, Pinter, Rivest, Shamir, 1982]

Polygon Partitions

\star Triangulation
\star Partition rectangular polygons into rectangles

* Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
* Minimum number of rectangles, polygons with holes: O(n3/2 $\log \mathrm{n}$) [Soltan, Gorpinevich, 1993]
* \#rectangles = r-l-h+1 (r=\#reflex vertices, h=\#holes, l=\#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
* Minimum number of squares: NP-hard
* Minimum edge-length rectangular partition: polytime in simple polygons, NP-hard in polygons with holes [Lingas, Pinter, Rivest, Shamir, 1982]
\star Partition rectangular polygons into polygons with at most 8 vertices: $\left\lfloor 3^{n+4} / 16\right\rfloor$ polygons with $O(n)$ algorithm [Győri, Mezei, 2016]

Polygon Partitions

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k
* Goal: Partition P into k polygons $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, all polygons are similar to each other

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k
* Goal: Partition P into k polygons $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, all polygons are similar to each other
* $\mathrm{k}=2$: $\mathrm{O}\left(\mathrm{n} 3\right.$) algorithm for $\mathrm{P}_{1}, \mathrm{P}_{2}$ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k
* Goal: Partition P into k polygons $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, all polygons are similar to each other
* $\mathrm{k}=2$: $\mathrm{O}(\mathrm{n} 3)$ algorithm for $\mathrm{P}_{1}, \mathrm{P}_{2}$ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
* Fission puzzle

http://puzzlepicnic.com/puzzle?3967

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k
* Goal: Partition P into k polygons $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, all polygons are similar to each other
* k=2: O(n3) algorithm for $\mathrm{P}_{1}, \mathrm{P}_{2}$ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
* Fission puzzle

* Also exists as a puzzle for polyominoes: http:// puzzlepicnic.com/genre?id=47

Polygon Partitions

^ Partition into "similar" polygons:

* Given: Polygon P, integer k
* Goal: Partition P into k polygons $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, all polygons are similar to each other
* k=2: O(n3) algorithm for $\mathrm{P}_{1}, \mathrm{P}_{2}$ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
* Fission puzzle

* Also exists as a puzzle for polyominoes: http:// puzzlepicnic.com/genre?id=47
\star Rectangular polygons \rightarrow let's look at polyominoes

Spiral Galaxies

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)
\star Goal:

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)

* Goal:
* Partition grid into polyominoes

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)
\star Goal:

* Partition grid into polyominoes
* Each polyomino contains one center

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)

* Goal:
* Partition grid into polyominoes
* Each polyomino contains one center
* Each polyomino is 180° symmetric about its center

Spiral Galaxies

^ Pencil-and-paper puzzle from Nikoli ("Tentai Show")

* Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)
* Goal:
* Partition grid into polyominoes
* Each polyomino contains one center
* Each polyomino is 180° symmetric about its center

Also gives us a tiling using the solution galaxies as polyominoes

Spiral Galaxies

* Pencil-and-paper puzzle from Nikoli ("Tentai Show")
\star Played on square grid
\star Given: centers (on grid vertices, square centers, or edge midpoints)
\star Goal:
* Partition grid into polyominoes
* Each polyomino contains one center
* Each polyomino is 180° symmetric about its center
\star Do you want to solve some puzzles?
http://www.nikoli.co.jp/en/puzzles/astronomical show.html http://puzzlepicnic.com/genre?id=17
https://www.gmpuzzles.com/blog/spiral-galaxies-rules-info/

Solving Spiral Galaxies Puzzles

Solving Spiral Galaxies Puzzles

* NP-complete for general polyomino shapes [Friedman, 2002]

Solving Spiral Galaxies Puzzles

* NP-complete for general polyomino shapes [Friedman, 2002]
\star NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]

Solving Spiral Galaxies Puzzles

* NP-complete for general polyomino shapes [Friedman, 2002]
\star NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]
* Today: all Spiral Galaxies are rectangles

Solving Spiral Galaxies Puzzles

* NP-complete for general polyomino shapes [Friedman, 2002]
\star NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]
\star Today: all Spiral Galaxies are rectangles

Generating Spiral Galaxies Puzzles

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?
\star Interesting optimization question for a coloured version:

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?
\star Interesting optimization question for a coloured version:

* Some centers are coloured black

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?
\star Interesting optimization question for a coloured version:

* Some centers are coloured black
* Polyominoes with coloured centers yield picture/letter

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?
\star Interesting optimization question for a coloured version:

* Some centers are coloured black
* Polyominoes with coloured centers yield picture/letter
* Trivial: we could just place a center in each grid cell

Generating Spiral Galaxies Puzzles

\star What do we want to optimize when we generate a puzzle?
\star Interesting optimization question for a coloured version:

* Some centers are coloured black
* Polyominoes with coloured centers yield picture/letter
* Trivial: we could just place a center in each grid cell
\Rightarrow Minimum number of centers, such that there exist Spiral Galaxies that exactly cover a given shape

Results

\star Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.
\star Determining if a Spiral Galaxies board is solvable with only 1×1, 1×3 and 3×1 galaxies is NP-complete and counting the number of solutions is \#P-complete and ASP-complete.
\star Non-crossing matching in squared grid graphs is NP-complete.
\star Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

Results

Ł Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.

Squared grid graph:
Edges connect vertices at distance 2

\star Determining if a Spiral Galaxies board is solvable with only 1×1, 1×3 and 3×1 galaxies is NP-complete and counting the number of solutions is \#P-complete and ASP-complete.

* Non-crossing matching in
 is NP-complete.
\star Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

Results

Ł Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.

Squared grid graph:

Edges connect vertices at distance 2

* Determining if a Spiral Galaxies board is solvable with only 1×1, 1×3 and 3×1 galaxies is NP-complete and counting the number of solutions is \#P-complete and ASP-complete.
* Non-crossing matching in \square is NP-complete.
\star Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

- Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

* Reduction from PLANAR 1-IN-3 SAT

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

- \#P-complete and ASP-complete

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

- \#P-complete and ASP-complete
\star Disks with distance 2 can be connected by an edge

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

- \#P-complete and ASP-complete
\star Disks with distance 2 can be connected by an edge
\star Centers $\mathbf{~}$ in middle of each potential edge

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

- \#P-complete and ASP-complete
\star Disks with distance 2 can be connected by an edge
\star Centers $\$$ in middle of each potential edge
$\square 1 \times 3$ and 3×1 galaxies cover both disks $\hat{\underline{\wedge}}$ edge between disks

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

\star Reduction from PLANAR 1-IN-3 SAT
\star Instance F of PLANAR 1-IN-3 SAT \rightarrow Spiral Galaxies board B
\star One-to-one correspondence of solutions of B and solutions of F

- \#P-complete and ASP-complete
\star Disks with distance 2 can be connected by an edge
\star Centers $\$$ in middle of each potential edge
$\square 1 \times 3$ and 3×1 galaxies cover both disks $\hat{\underline{\wedge}}$ edge between disks

\Rightarrow 1x1 galaxy does not cover disks $\hat{=}$ non-existing edge between disks

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Variable loop

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Variable loop

> Two possible states-"true" and "false":

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Negation gadget

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Clause gadget

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Clause gadget

Spiral Galaxies with 1x1, 1x3 and 3x1 Rectangles

Clause gadget

Can be solved for the letters A, B, H, P, R, S, Z [+E for disconnected galaxies]

SCAN ME

