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Face gadget, for any open region:

Corridor gadget, propagates variable value:

Variable loop
“false” “true”

Wires for both variable and its negation: connect to appropriate place of variable loop.
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Corridor gadget:  linearly repeat this pattern.

Must be filled with a T.
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Bend gadget:

Must be filled 
 with an S.

Must be filled 
 with a T.

“false” “true”

Other I would leave S disconnected.

The other T wouldn’t connect  
to the incoming I.

Other I would result in 2x2 block.
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1-in-3 gadget:

At-most gadget (Two C-shaped regions connect to variable corridors):

Both variables truth setting  
that fulfils the clause.

Both variables truth setting  
that does not fulfil the clause.

Only one variable  
fulfils the clause.Clause gadget:

All variables do not fulfil the clause 
➜ no tetromino in the pink region  
can be connected.

At least one fulfils the clause 
➜ An I can connect to other  
tetrominoes.
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UN(n,m) = minimum number of regions among all nxm Norinori boards with unique solutions
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THANK YOU.

✴Determining if a Norinori board is solvable is NP-complete and 
counting the number of solutions is #P-complete. 

✴Determining if a LITS board is solvable is NP-complete and 
counting the number of solutions is #P-complete. 

✴Bounds on the minimum number of regions among all nxm 
Norinori/LITS boards with unique solutions.


