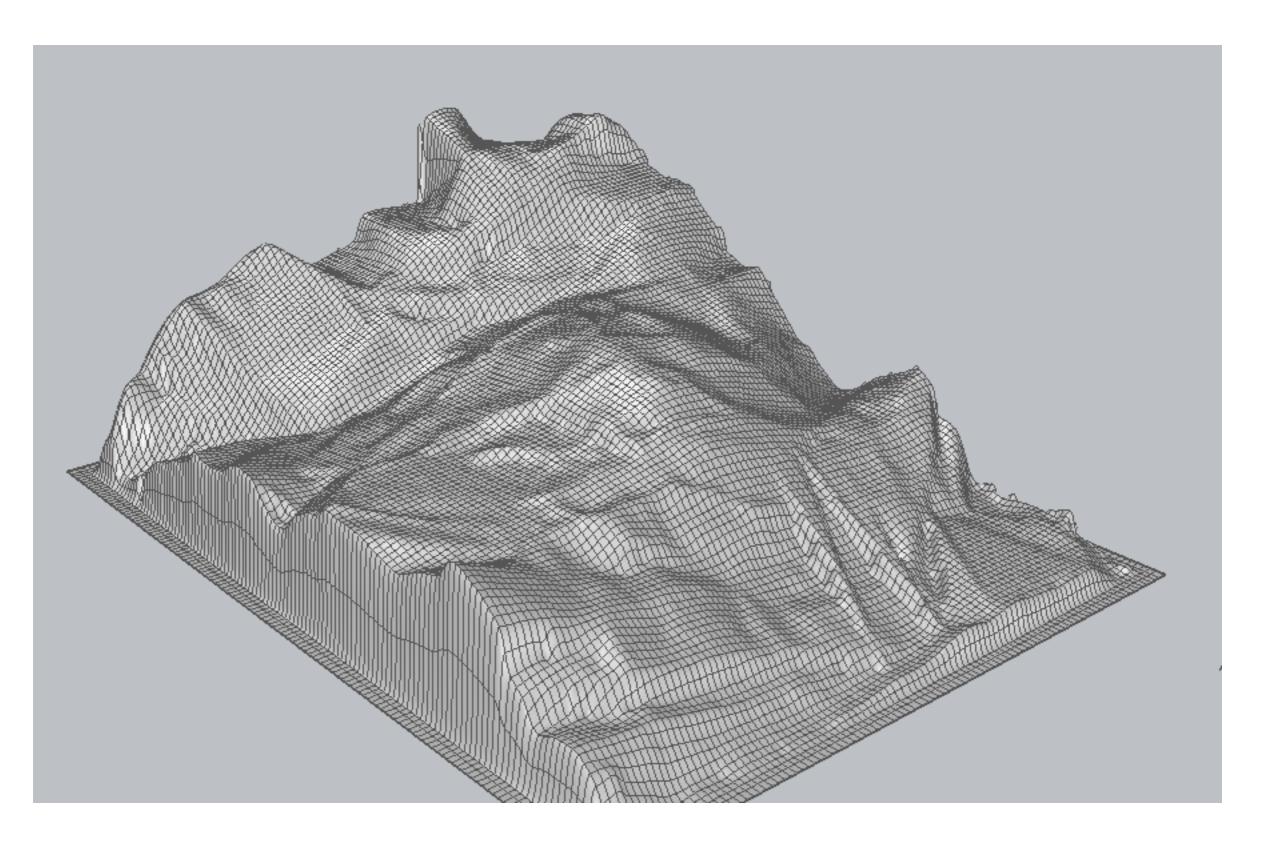
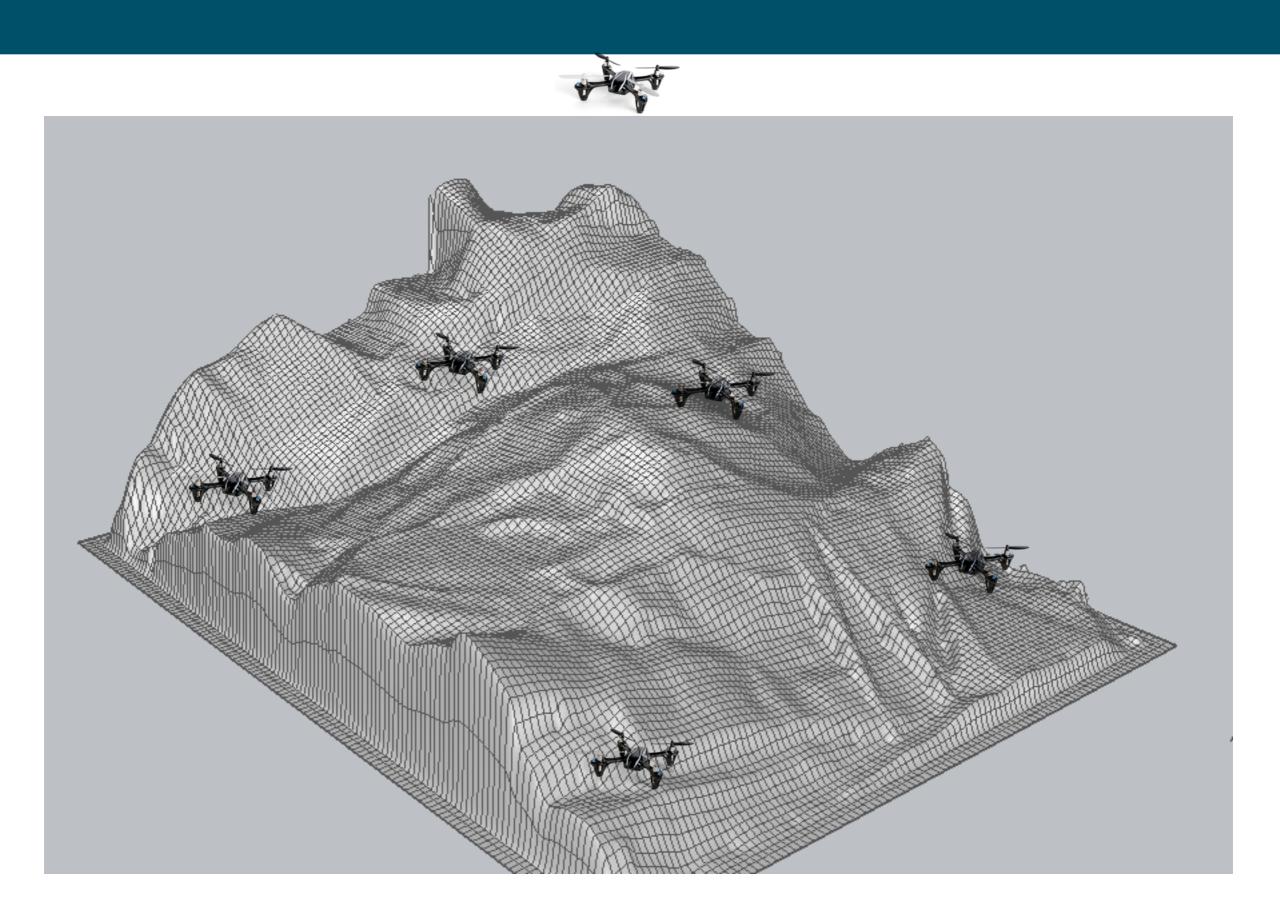
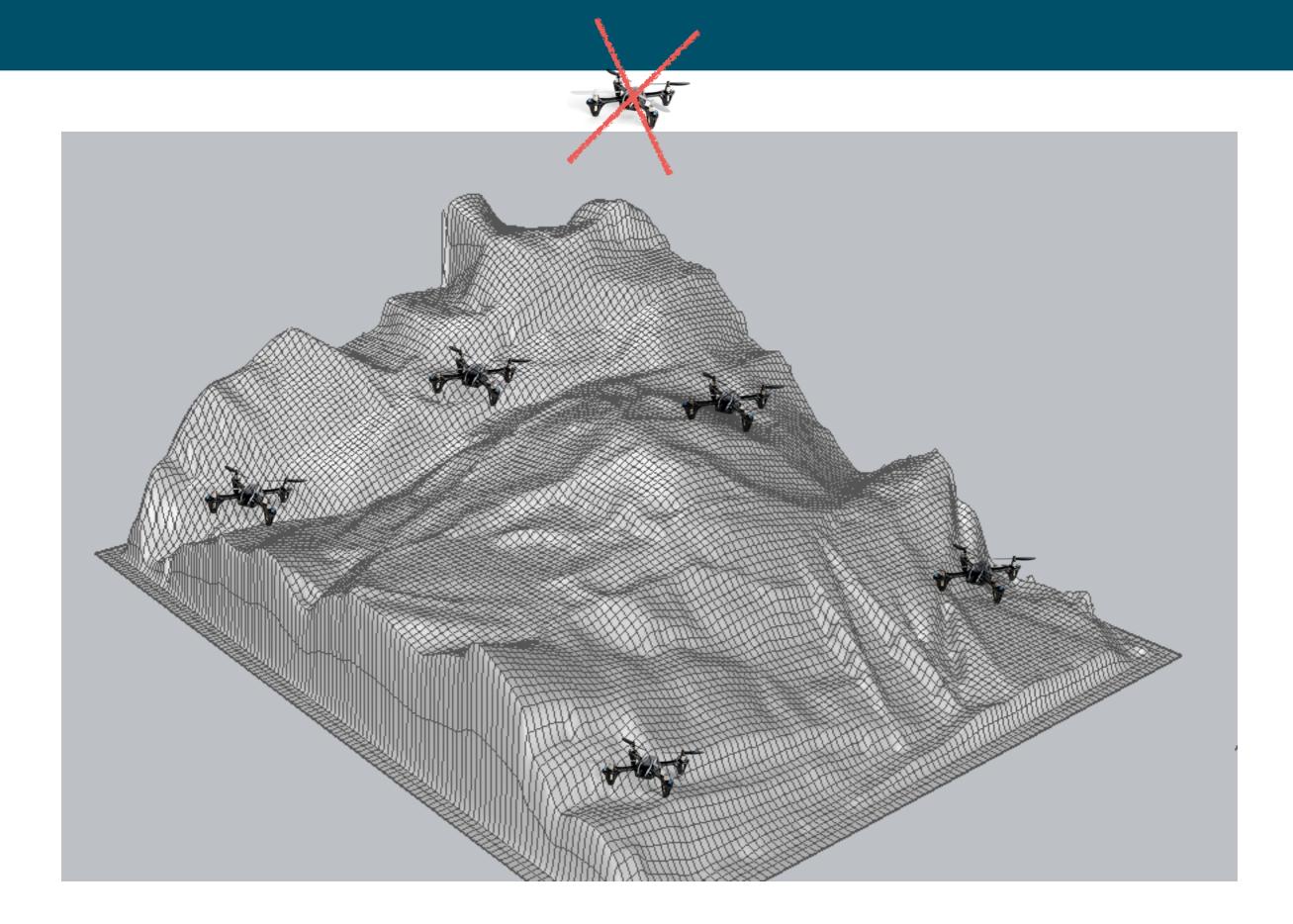
Altitude Terrain Guarding and Guarding Uni-Monotone Polygons

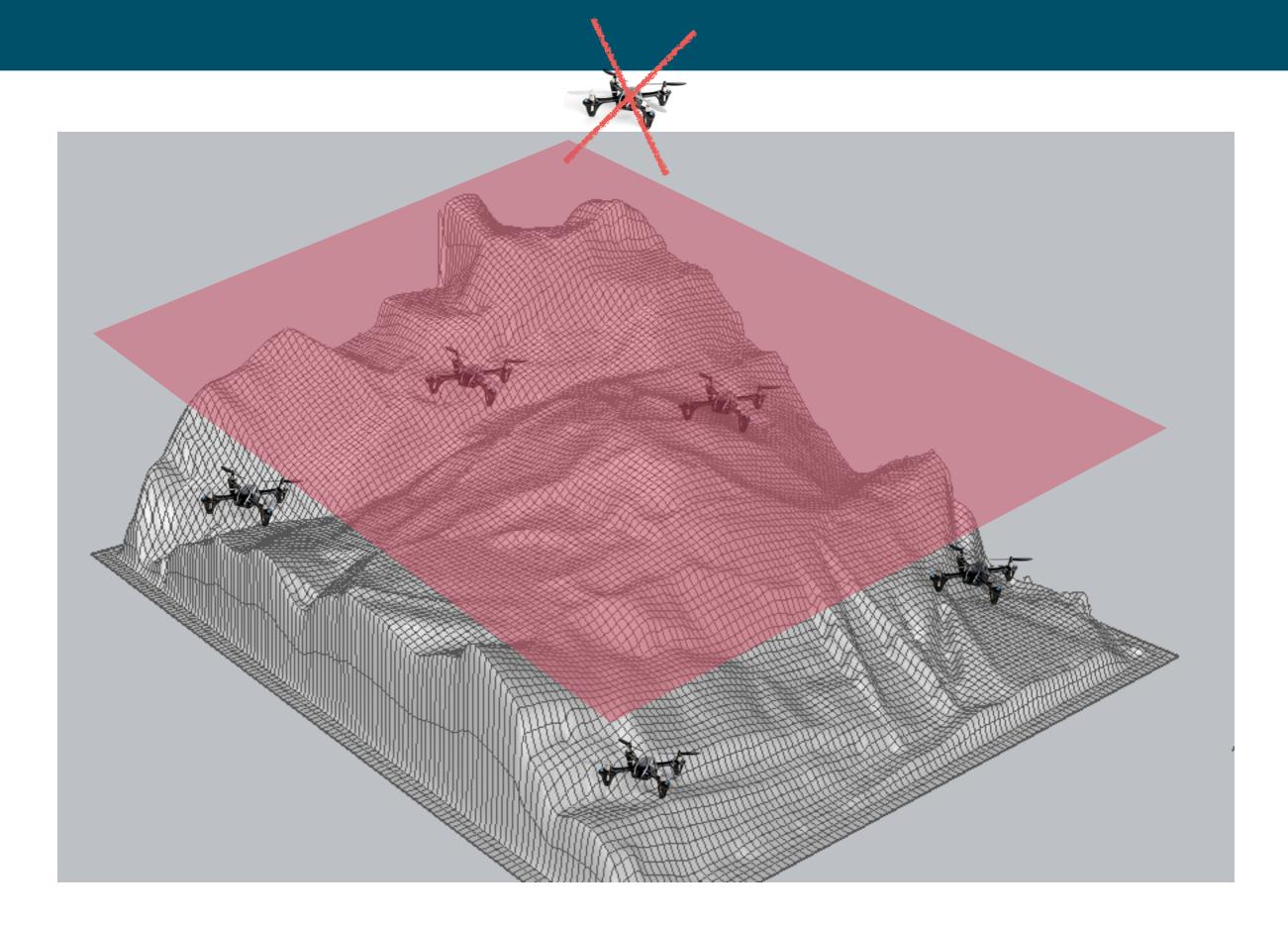
ichs Valentin Polishchuk Christiane Schmidt











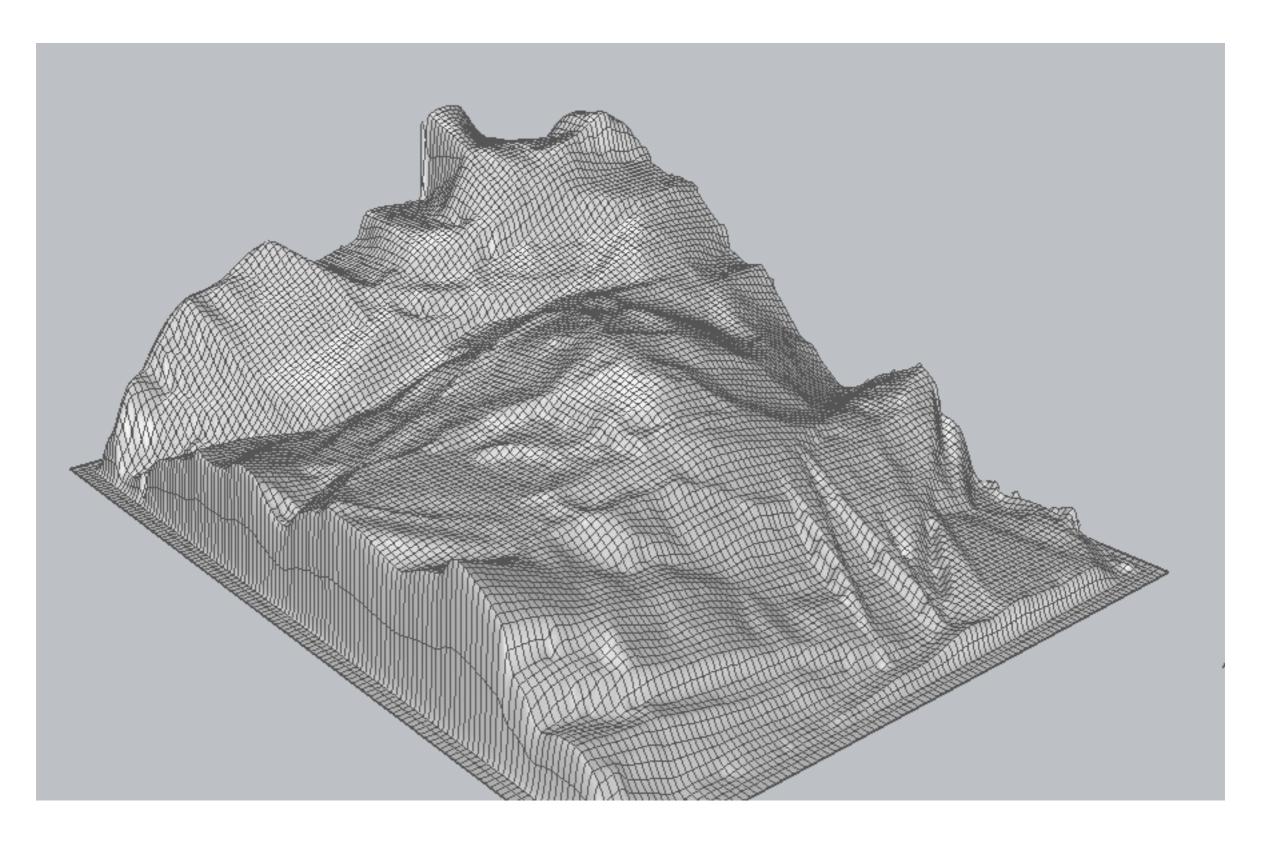


image source: http://2.bp.blogspot.com/-eUnhAo8SfFQ/VDaLij2_csI/AAAAAAAABPM/847rgT6VpQE/s1600/Screen%2BShot%2B2014-05-01%2Bat%2B00.02.54.png

image source: http://2.bp.blogspot.com/-eUnhAo8SfFQ/VDaLij2_csI/AAAAAAAABPM/847rgT6VpQE/s1600/Screen%2BShot%2B2014-05-01%2Bat%2B00.02.54.png

2.5D

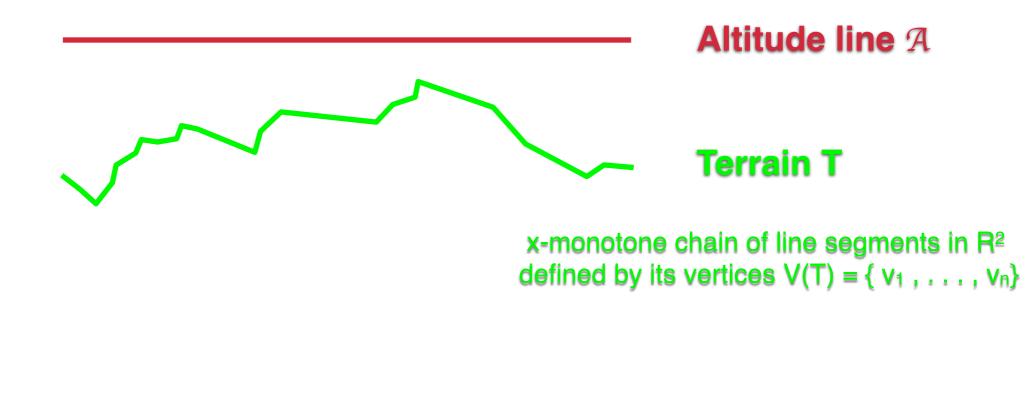
2.5D

1.5D

x-monotone chain of line segments in R^2 defined by its vertices $V(T) = \{v_1, \ldots, v_n\}$

x-monotone chain of line segments in R^2 defined by its vertices $V(T) = \{v_1, \ldots, v_n\}$

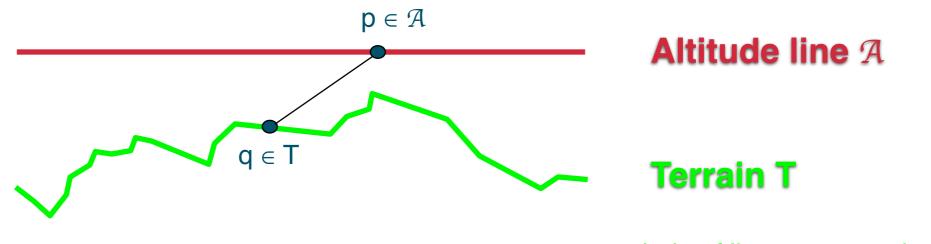
Monotonicity



Monotonicity

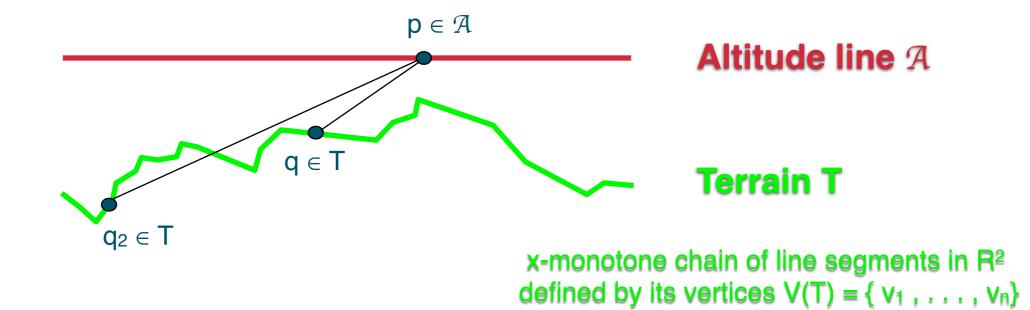
➡ Points on T are totally ordered wrt to x-coordinate: p < q.

A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T).

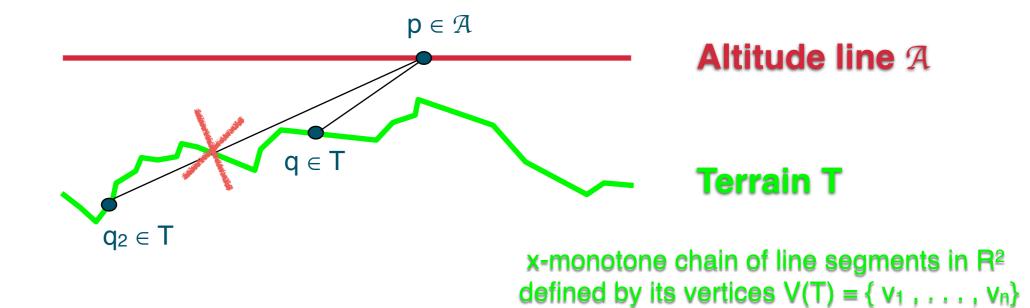


x-monotone chain of line segments in R^2 defined by its vertices $V(T) = \{v_1, \ldots, v_n\}$

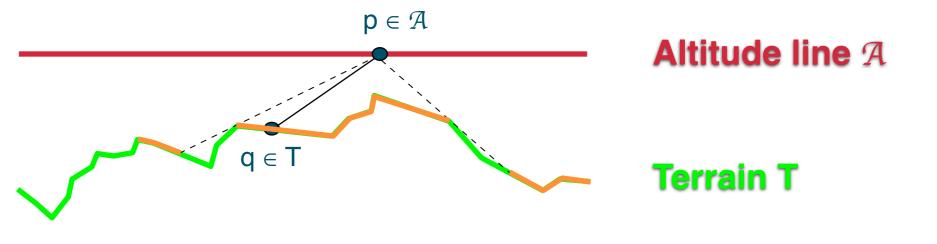
A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T).



A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T).

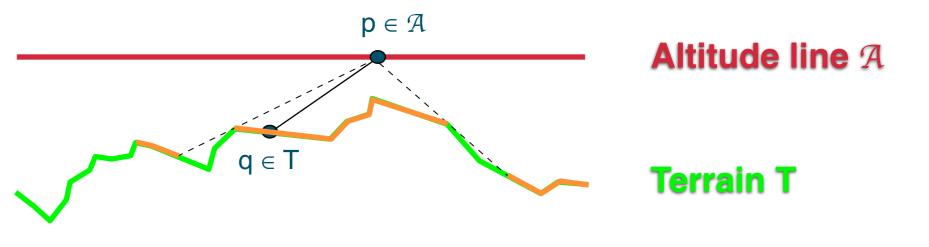


A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T). $V_T(p)$ is the visibility region of p with $V_T(p) := \{q \in T \mid p \text{ sees } q\}$.



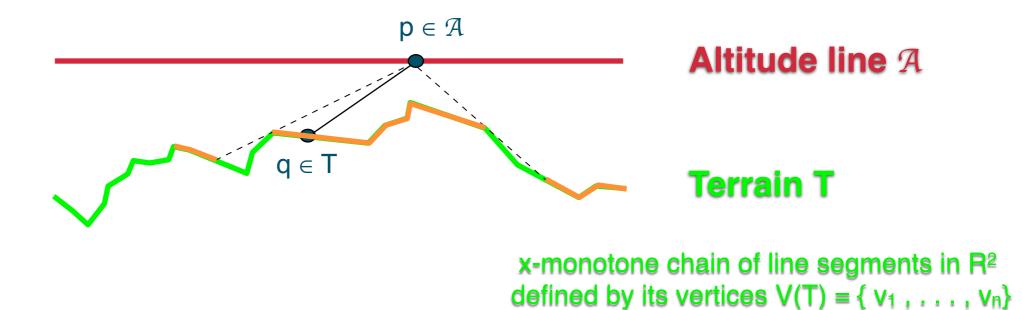
x-monotone chain of line segments in R^2 defined by its vertices V(T) = { v_1 , . . . , v_n }

A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T). $V_T(p)$ is the visibility region of p with $V_T(p) := \{q \in T \mid p \text{ sees } q\}$. For $G \subseteq A V_T(G) := U_{g \in G} V_T(g)$.



x-monotone chain of line segments in R^2 defined by its vertices V(T) = { v_1 , . . . , v_n }

A point $p \in A$ sees or covers $q \in T$ if and only if pq is nowhere below T (i.e. pq lies on or above T). $V_T(p)$ is the visibility region of p with $V_T(p) := \{q \in T \mid p \text{ sees } q\}$. For $G \subseteq A V_T(G) := U_{g \in G} V_T(g)$.



Altitude Terrain Guarding Problem (ATGP) ATGP(T,A)

Given: a terrain T and an altitude line $\ensuremath{\mathcal{R}}$.

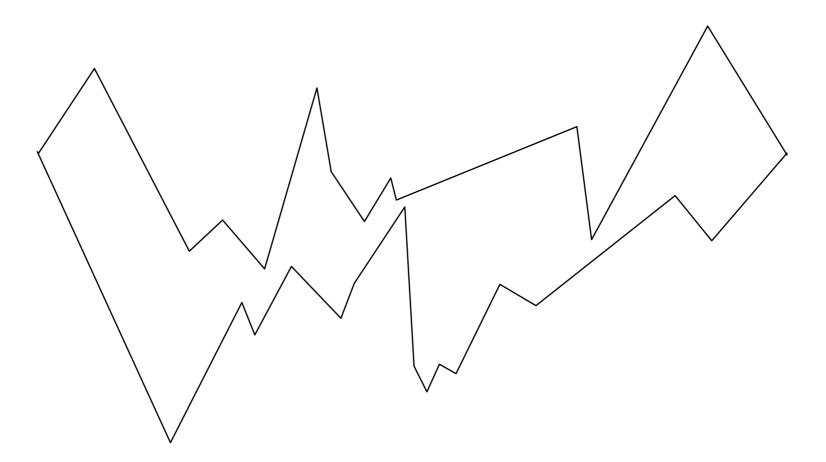
A minimum set of guards that see all of T.

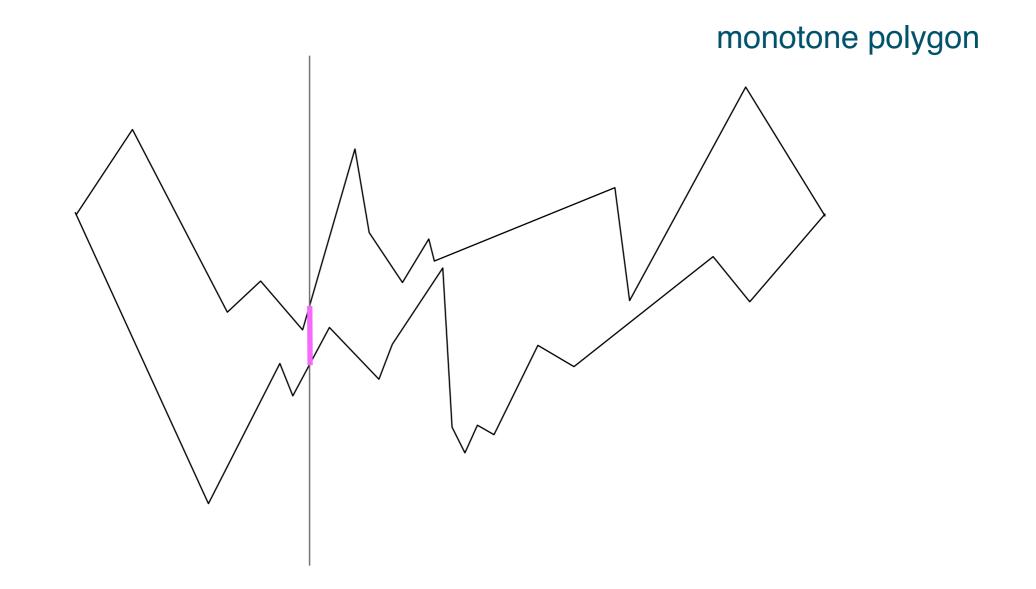
(Formally: A guard set $G \subset \mathcal{A}$ is optimal w.r.t. $ATGP(T, \mathcal{A})$ if G is feasible, that is, $T \subseteq V_T(G)$, and

 $IGI = OPT(T, \mathcal{A}) := min\{ICI \mid C \subset \mathcal{A} \text{ is feasible w.r.t. } ATGP(T, \mathcal{A})\}$.)

uni-monotone polygon?

monotone polygon





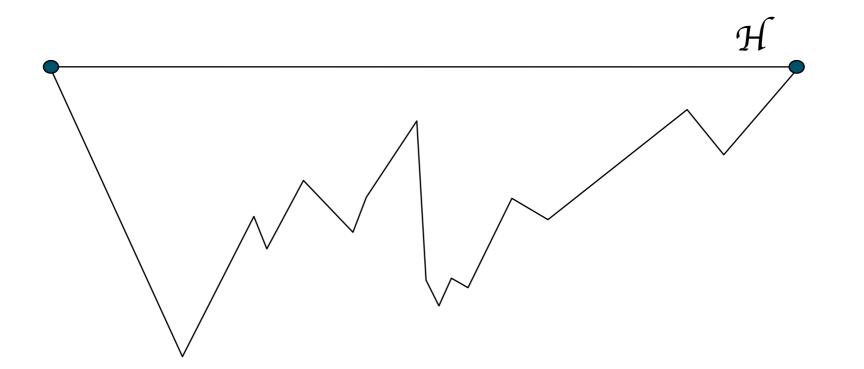
uni-monotone polygon?

monotone polygon

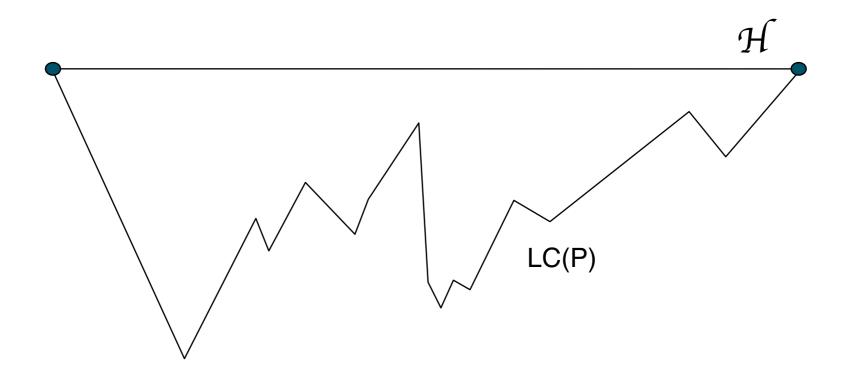


uni-monotone polygon?

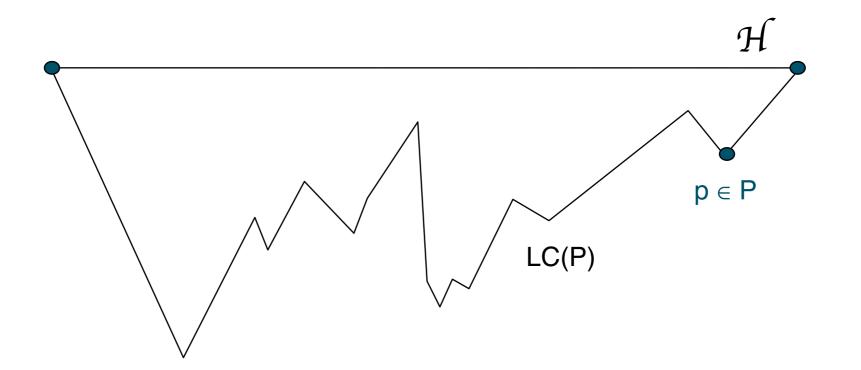
uni-monotone polygon?



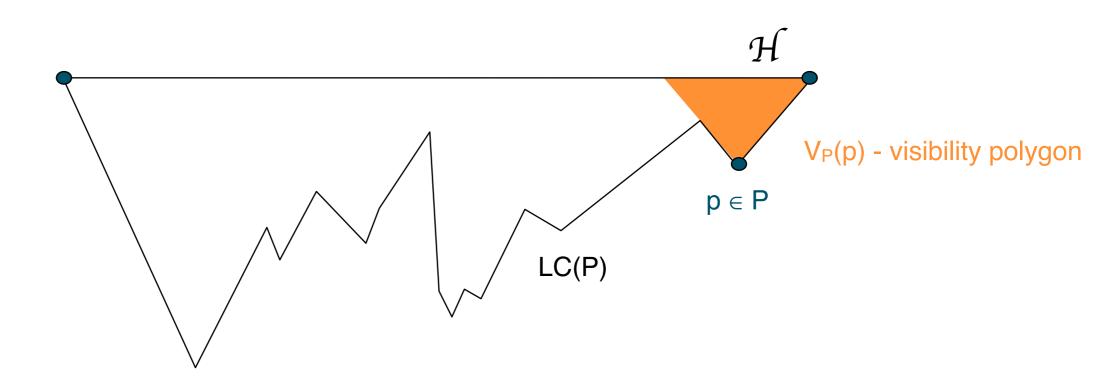
uni-monotone polygon?



uni-monotone polygon?

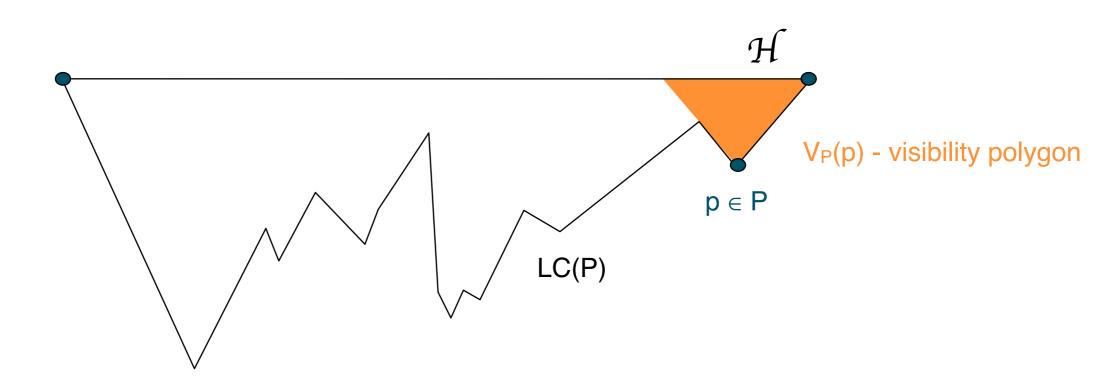


uni-monotone polygon?



uni-monotone polygon?

uni-monotone polygon



Formally:

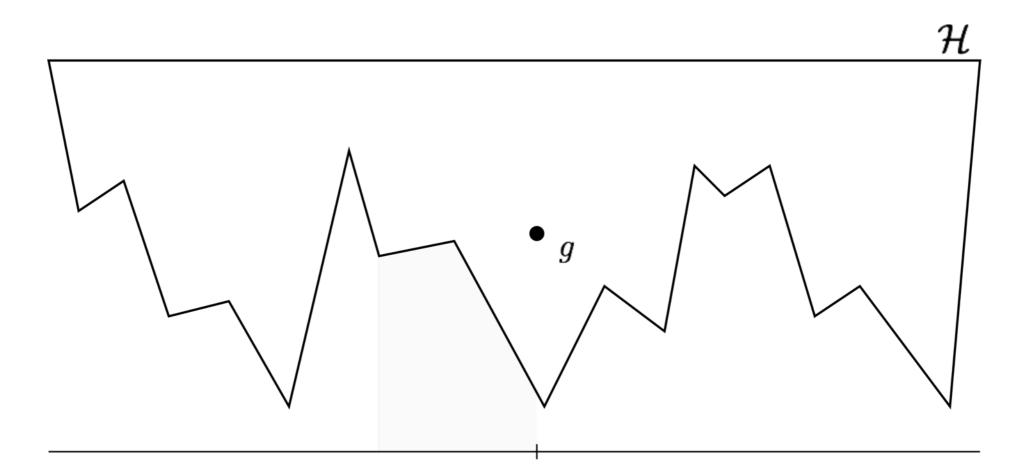
Art Gallery Problem (AGP) AGP(G,W)

Given: a polygon P and sets of guard candidates and points to cover $G,W \subseteq P$.

A minimum guard set $C \subseteq G$ that covers W (that is, $W \subseteq V_P(C)$). We want to solve AGP(P,P). If we want to solve the AGP for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on \mathcal{H} .

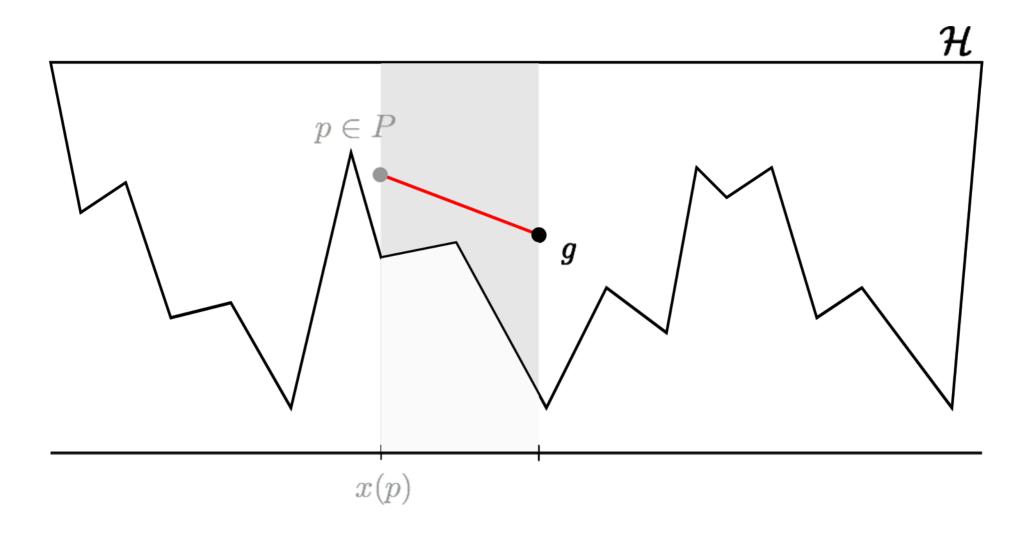
If we want to solve the AGP for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on \mathcal{H} .

Proof: Consider any optimal guard set G, let $g \in G$ be a guard not located on \mathcal{H}



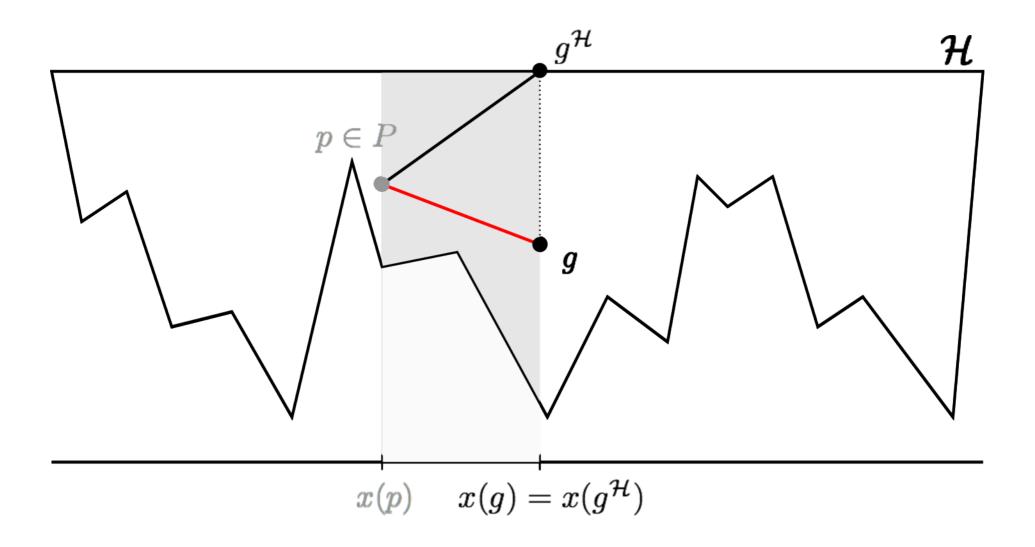
If we want to solve the AGP for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on \mathcal{H} .

Proof: Consider any optimal guard set G, let $g \in G$ be a guard not located on \mathcal{H}



If we want to solve the AGP for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on \mathcal{H} .

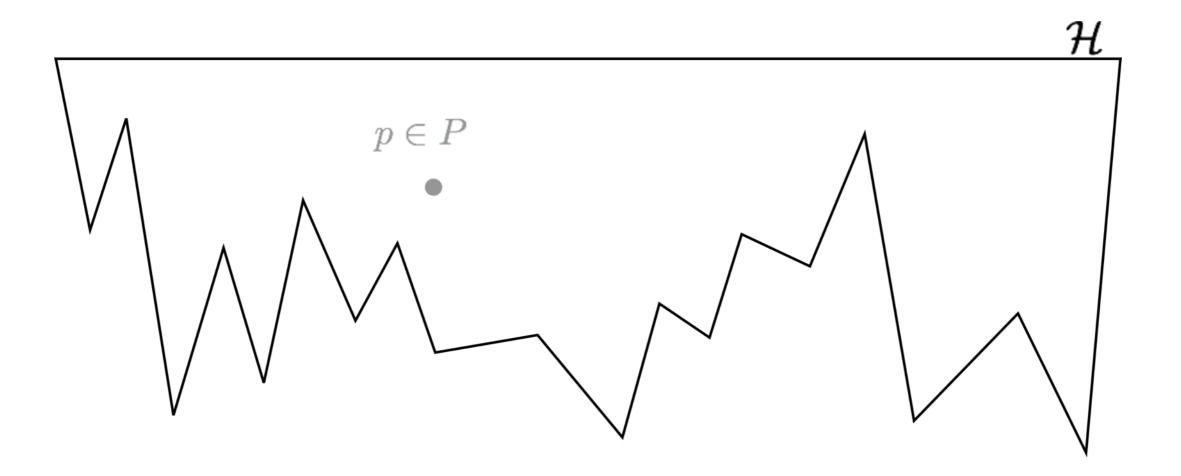
Proof: Consider any optimal guard set G, let $g \in G$ be a guard not located on \mathcal{H}



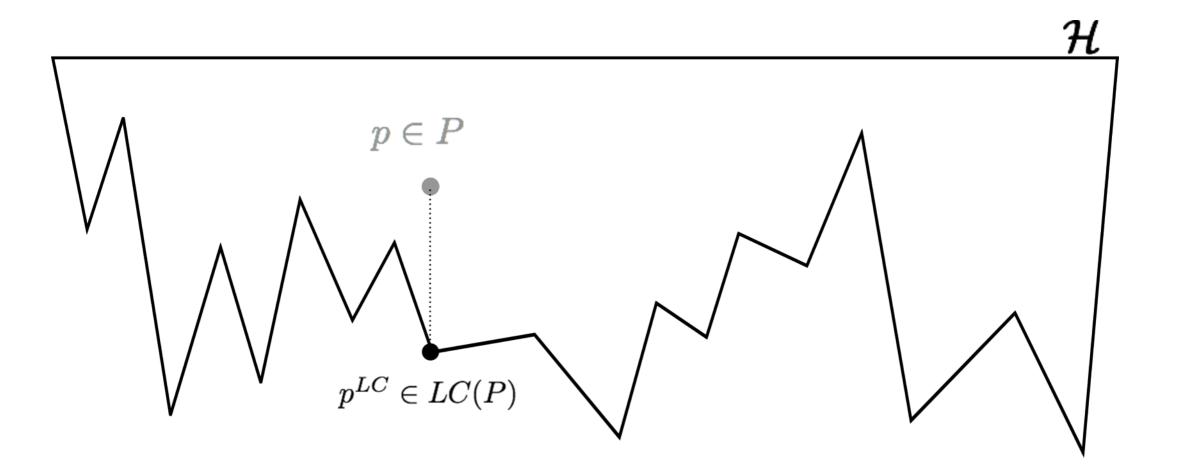
Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.

Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.

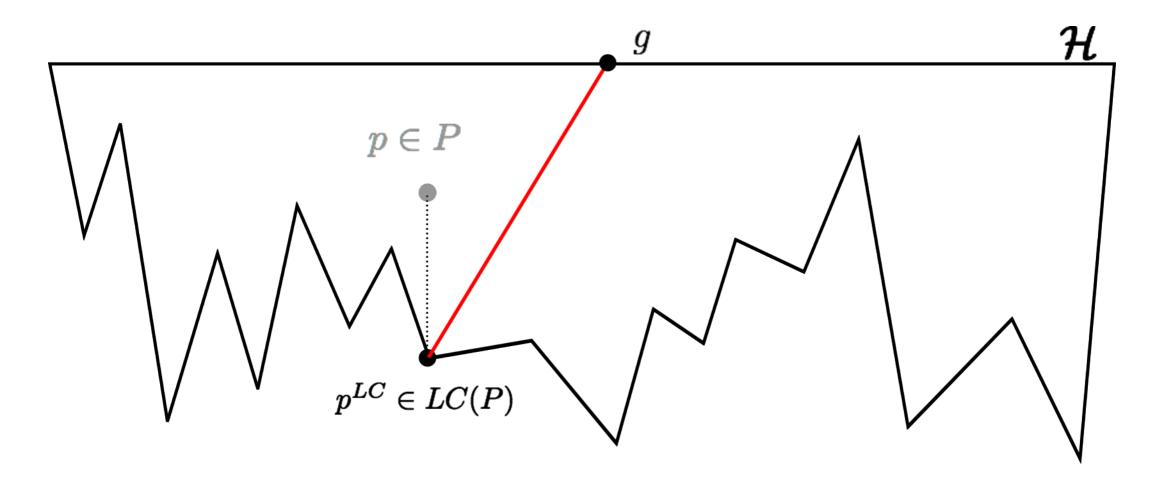
Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.



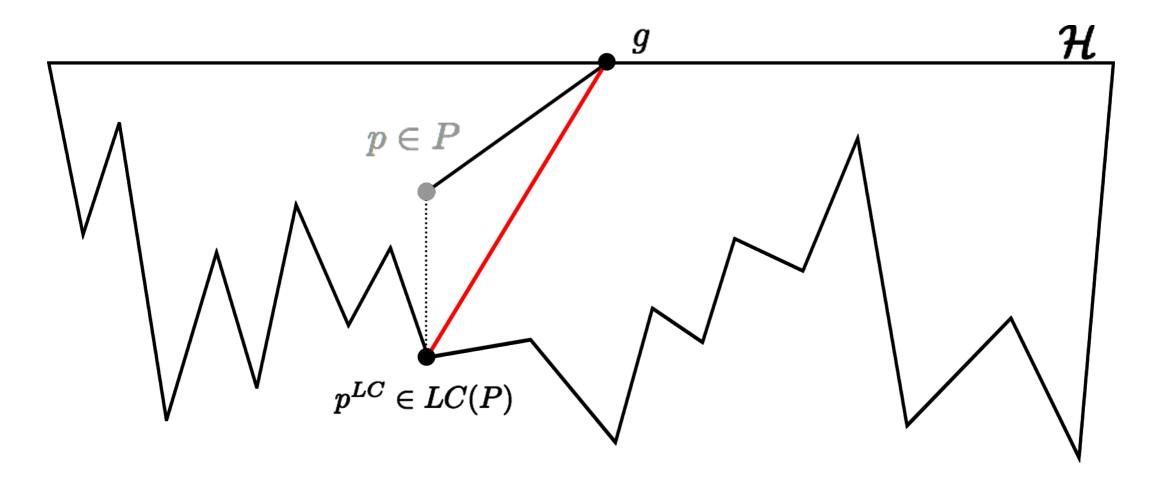
Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.



Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.

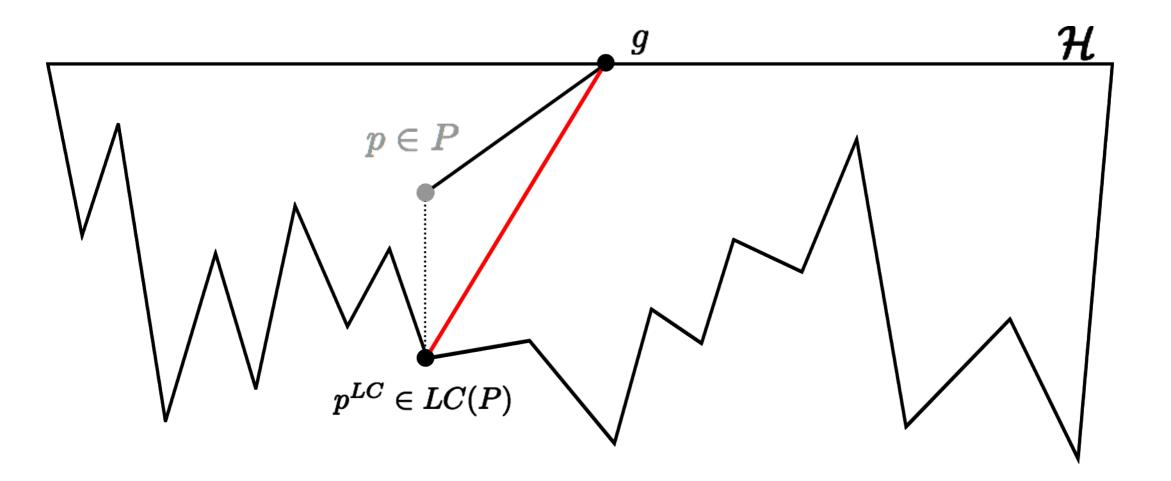


Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.



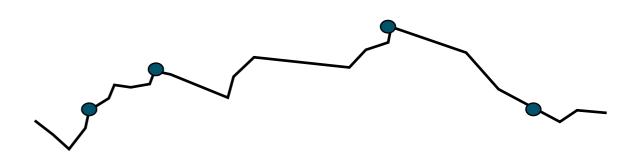
Let P be a uni-monotone polygon, let G be a guard set with $g \in \mathcal{H} \forall g \in G$ that covers LC(P), that is, LC(P) $\subset V_P(G)$. Then G covers all of P, that is, $P \subseteq V_P(G)$.

Proof: Assume $p \in P$, $p \notin LC(P)$, $p \notin V_P(G)$



→ATGP and AGP for uni-monotone polygons equivalent

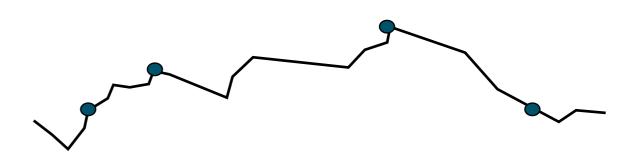
Art Gallery Problem (AGP) Given: a polygon P. A minimum guard set that covers P.



Terrain Guarding Problem (TGP) Given: a terrain T. Find: minimum number of guards located **on** T.



Art Gallery Problem (AGP) Given: a polygon P. A minimum guard set that covers P.



Terrain Guarding Problem (TGP) Given: a terrain T.

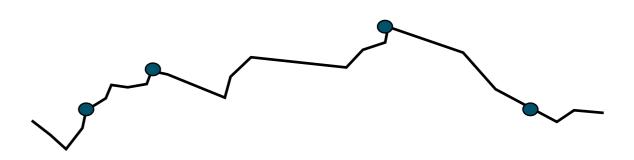
Find: minimum number of guards located on T.

EuroCG 2018



Art Gallery Problem (AGP) Given: a polygon P. A minimum guard set that covers P.

NP-hard, even in monotone polygons



Terrain Guarding Problem (TGP) Given: a terrain T.

Find: minimum number of guards located on T.

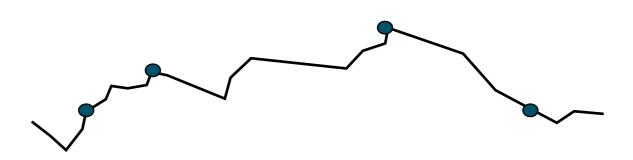
T

Altitude Terrain Guarding Problem (ATGP)

Given: a terrain T and an altitude line \mathcal{A} . A minimum set of guards that see all of T.

Art Gallery Problem (AGP) Given: a polygon P. A minimum guard set that covers P.

NP-hard, even in monotone polygons



Terrain Guarding Problem (TGP) Given: a terrain T. Find: minimum number of guards located **on** T.

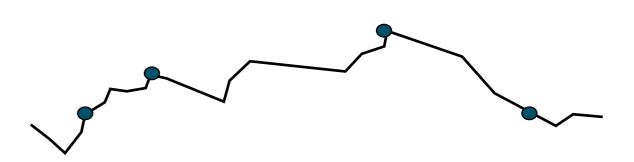
Altitude Terrain Guarding Problem (ATGP)

Given: a terrain T and an altitude line \mathcal{A} . A minimum set of guards that see all of T.

Art Gallery Problem (AGP) in Uni-Monotone Polygons Given: a uni-monotone polygon P. A minimum guard set that covers P.

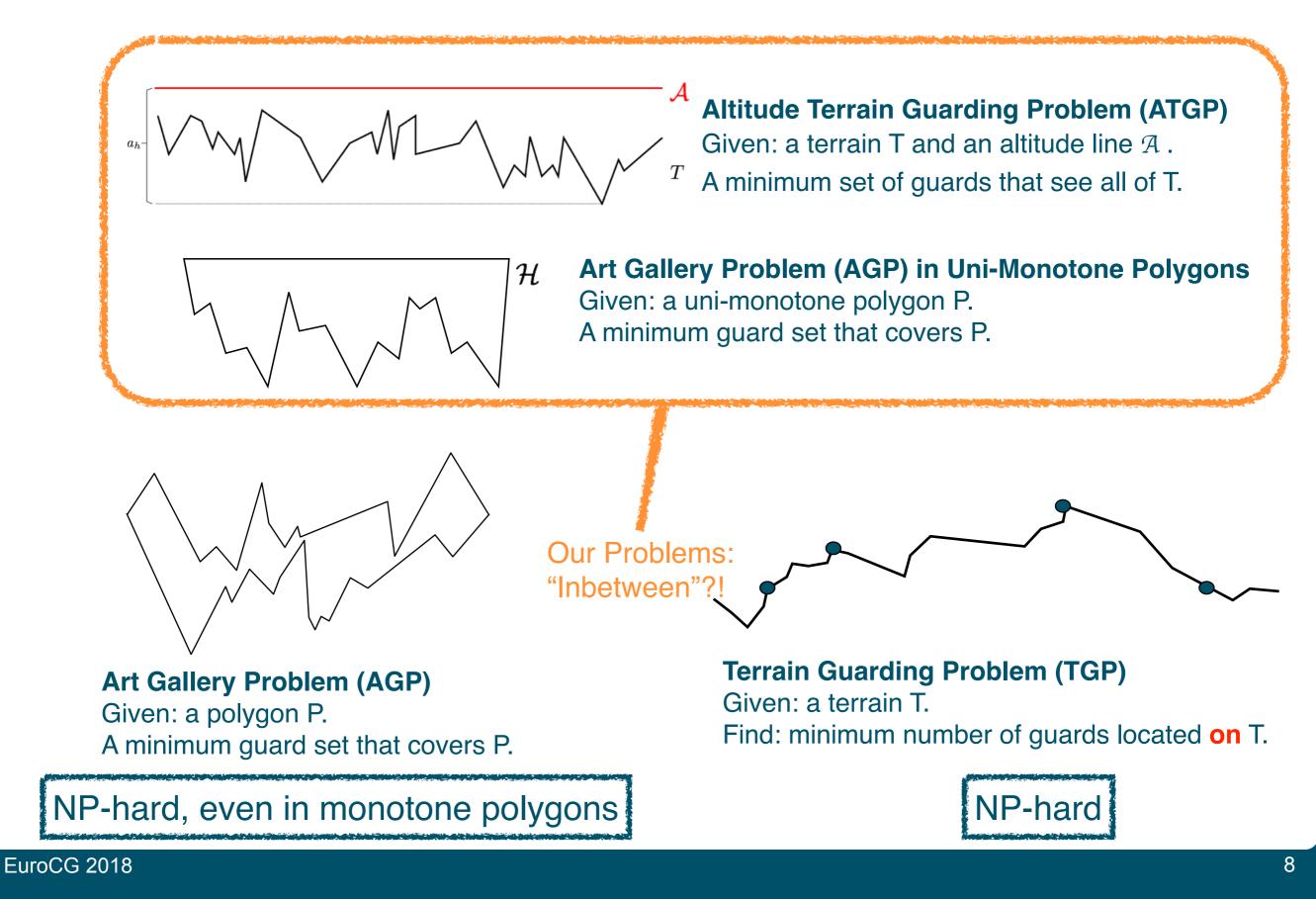
Art Gallery Problem (AGP) Given: a polygon P. A minimum guard set that covers P.

NP-hard, even in monotone polygons



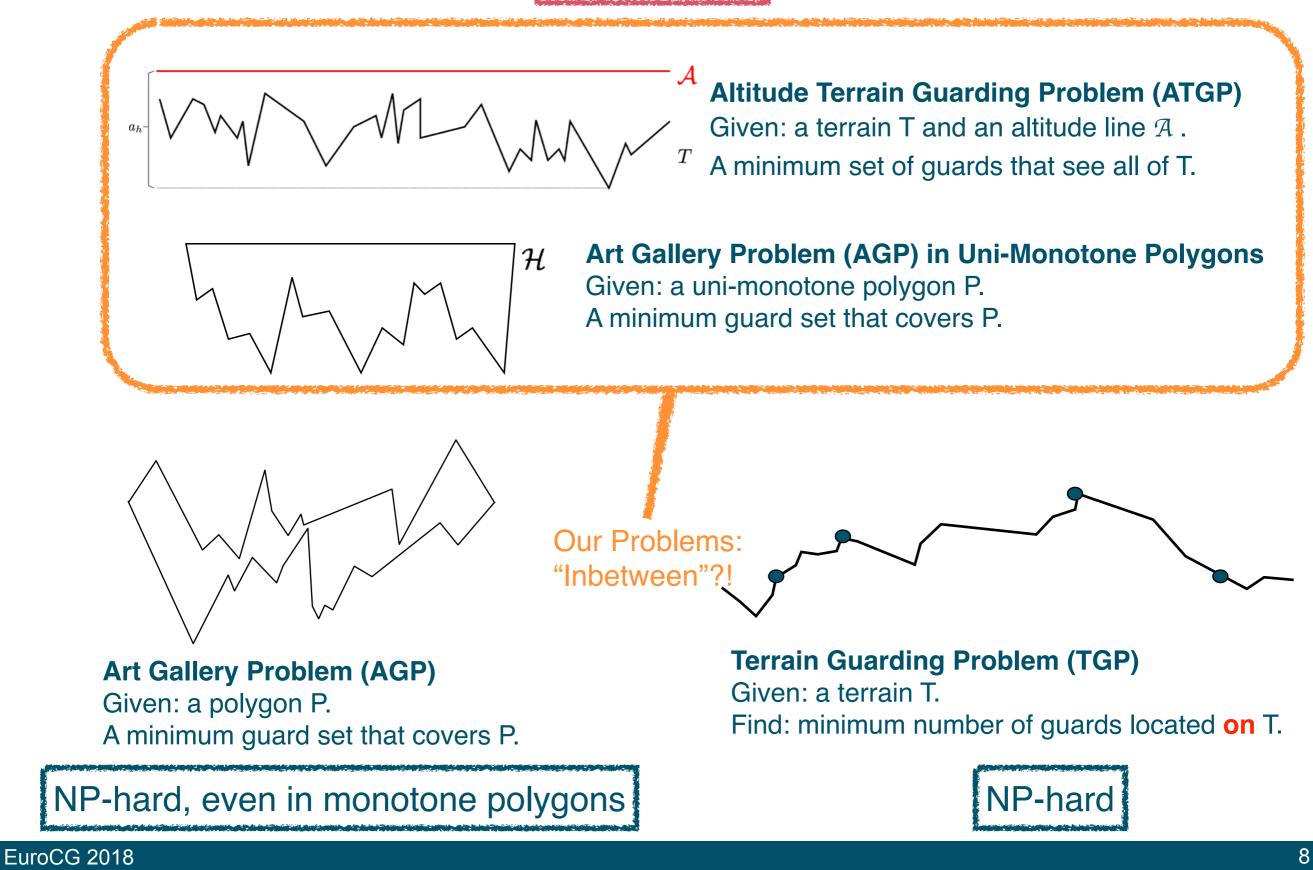
Terrain Guarding Problem (TGP) Given: a terrain T. Find: minimum number of guards located **on** T.

AGP-TGP-ATGP



AGP-TGP-ATGP

Both polytime



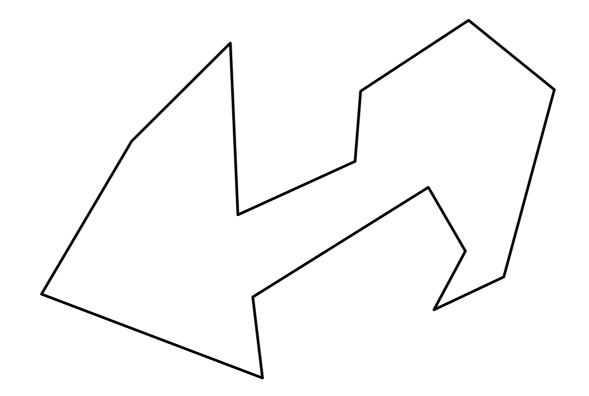
- A polytime algorithm for AGTP and AGP in uni-monotone polygons

- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are perfect first non-trivial class

- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

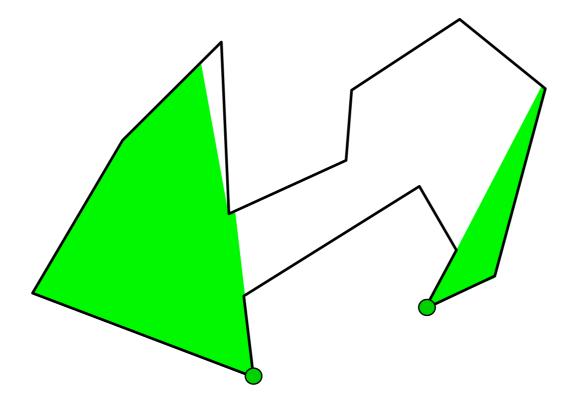
- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

A set WcP (WcT) is a *witness set* if $\forall w_i \neq w_j \in W$ we have $V_P(w_i) \cap V_P(w_j) = \emptyset$.



- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

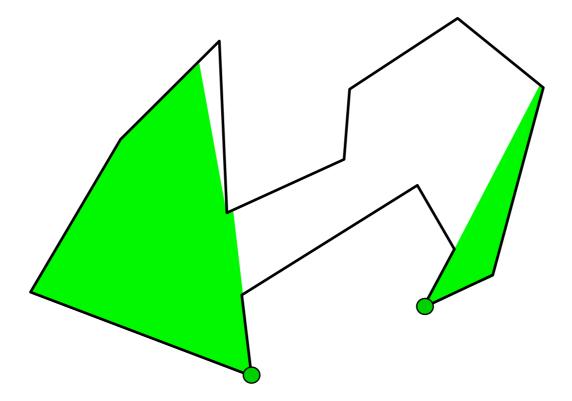
A set WcP (WcT) is a *witness set* if $\forall w_i \neq w_j \in W$ we have $V_P(w_i) \cap V_P(w_j) = \emptyset$.



- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

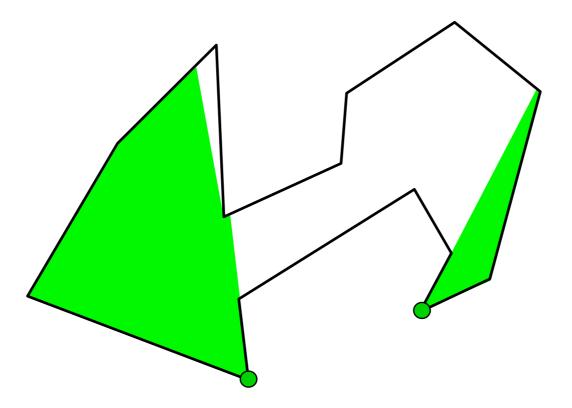
A set WcP (WcT) is a *witness set* if $\forall w_i \neq w_j \in W$ we have $V_P(w_i) \cap V_P(w_j) = \emptyset$.

A *maximum witness set* W_{opt} is a witness set of maximum cardinality, $|W_{opt}| = max\{|W|: witness set W\}$.



- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

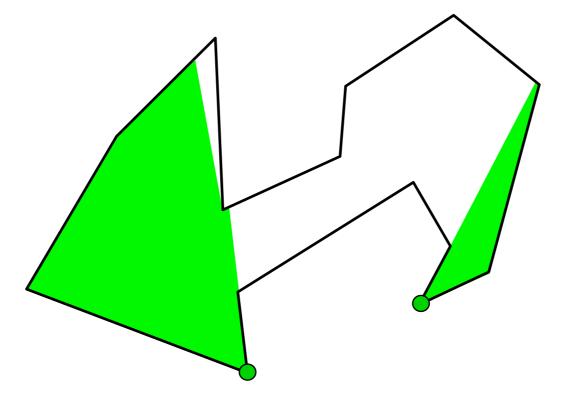
A set $W \in P(W \in T)$ is a *witness set* if $\forall w_i \neq w_j \in W$ we have $V_P(w_i) \cap V_P(w_j) = \emptyset$. A *maximum witness set* W_{opt} is a witness set of maximum cardinality, $|W_{opt}| = \max\{|W|: witness set W\}$. A polygon class \mathcal{P} is *perfect* if

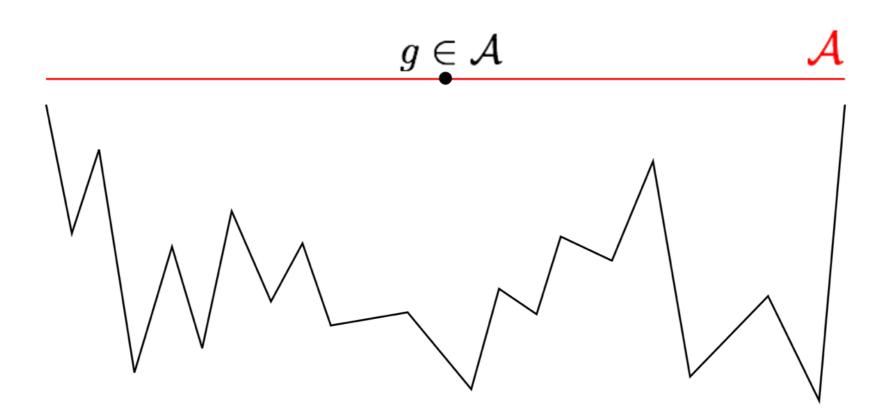


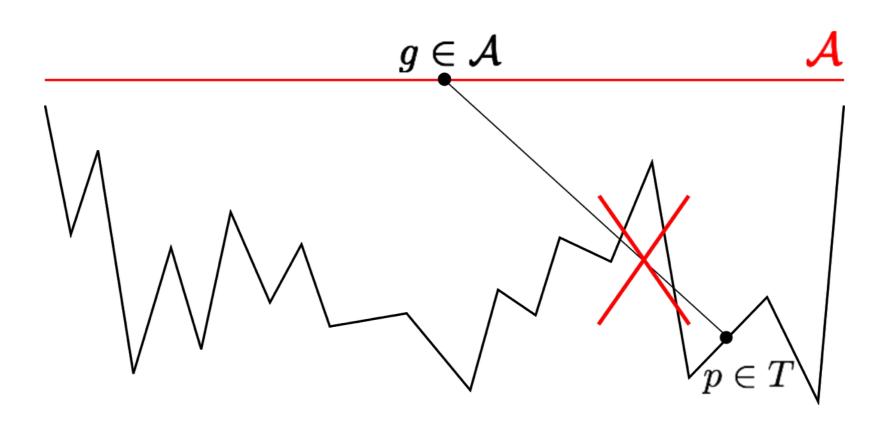
- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are **perfect ?** first non-trivial class

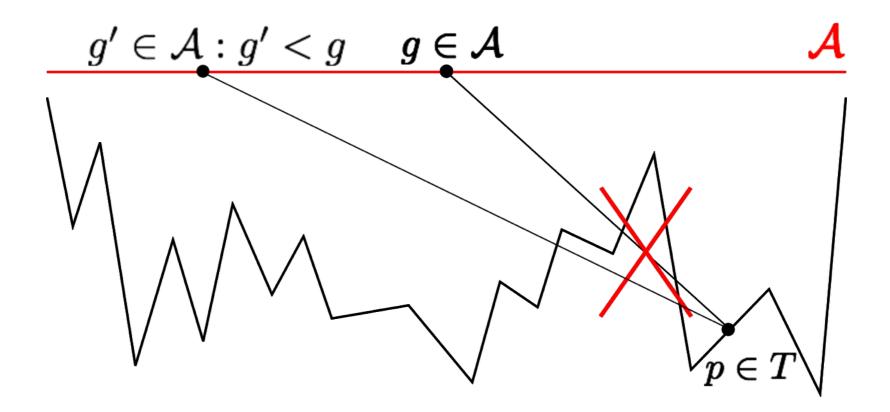
A set $W \in P(W \in T)$ is a *witness set* if $\forall w_i \neq w_j \in W$ we have $V_P(w_i) \cap V_P(w_j) = \emptyset$. A *maximum witness set* W_{opt} is a witness set of maximum cardinality, $|W_{opt}| = max\{|W|: witness set W\}$. A polygon class \mathcal{P} is *perfect* if

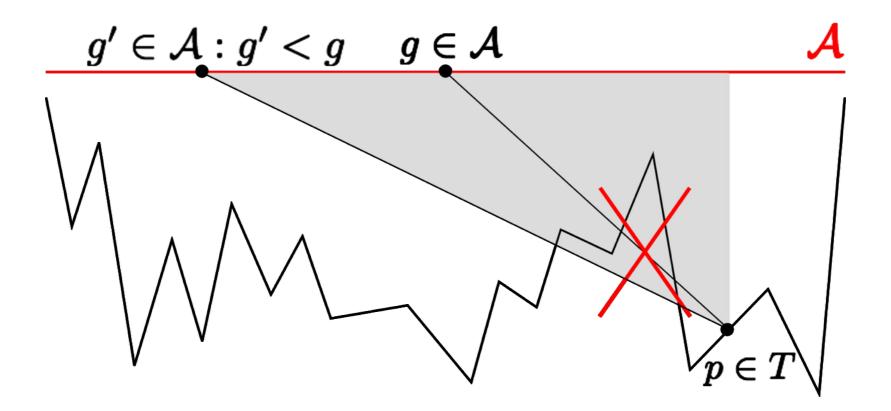
cardinality of an optimum guard set = cardinality of a maximum witness set $\forall P \in P$

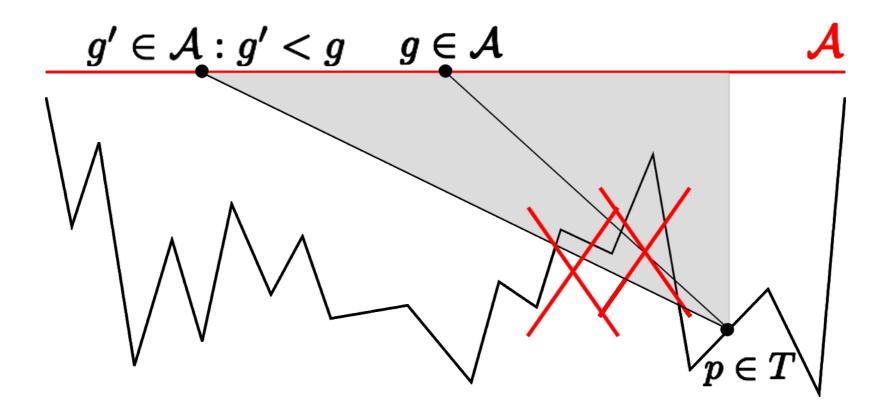


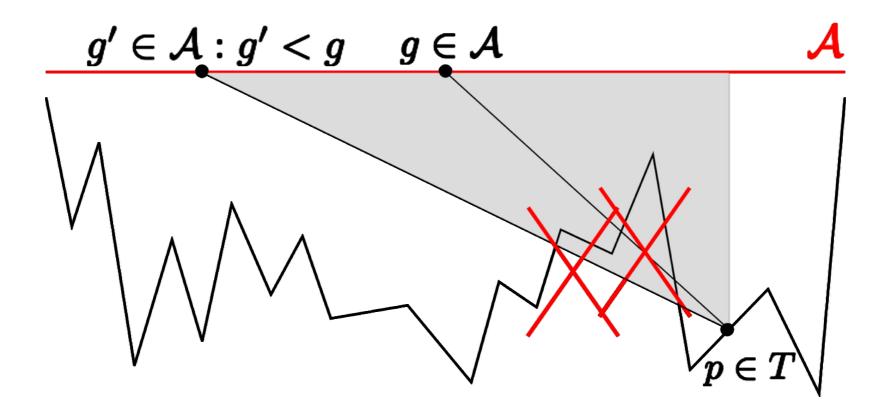


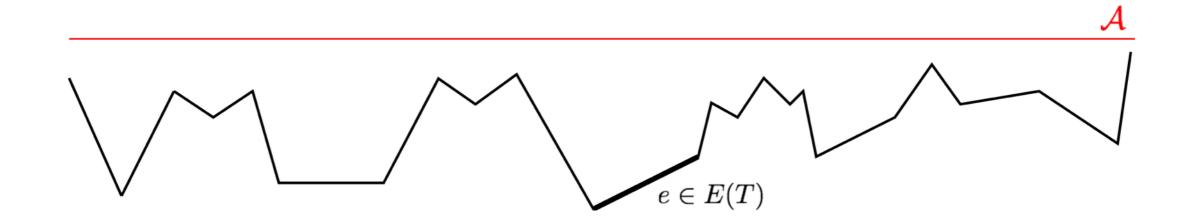


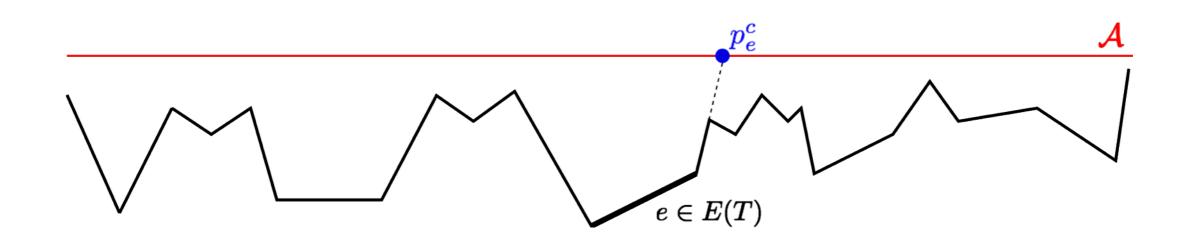


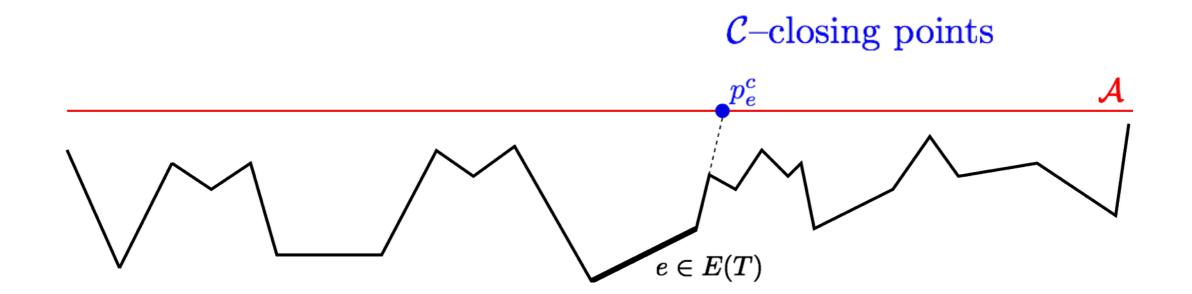


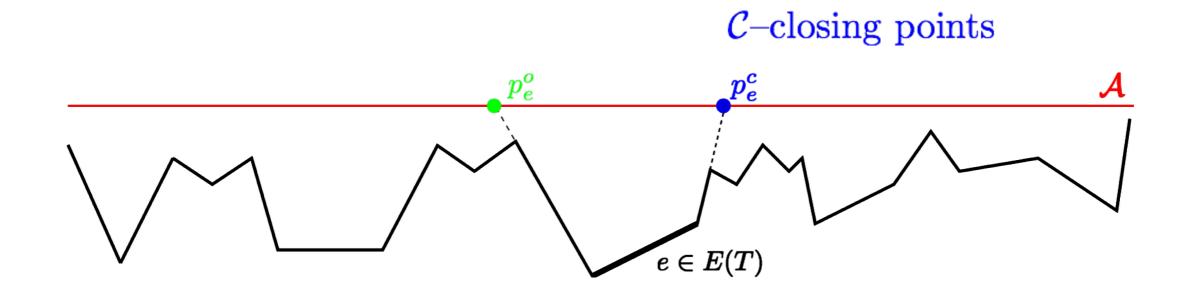


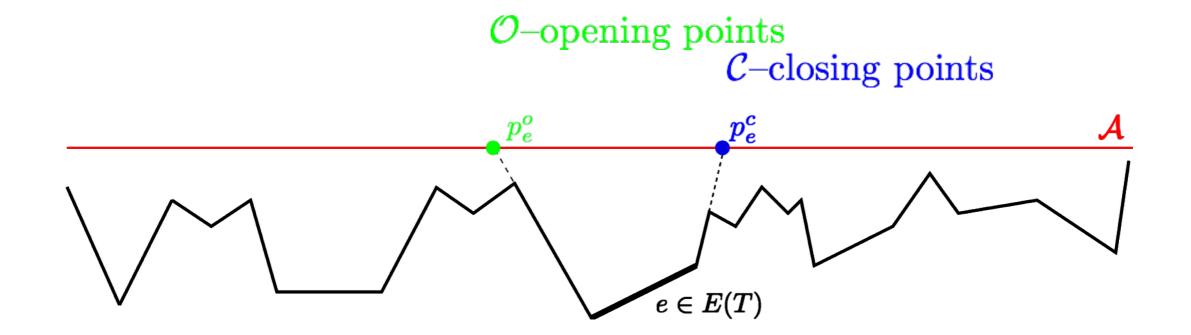


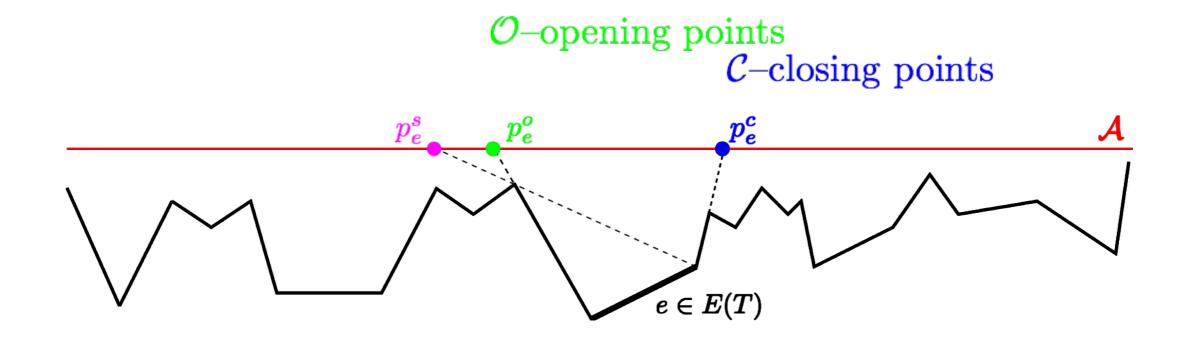


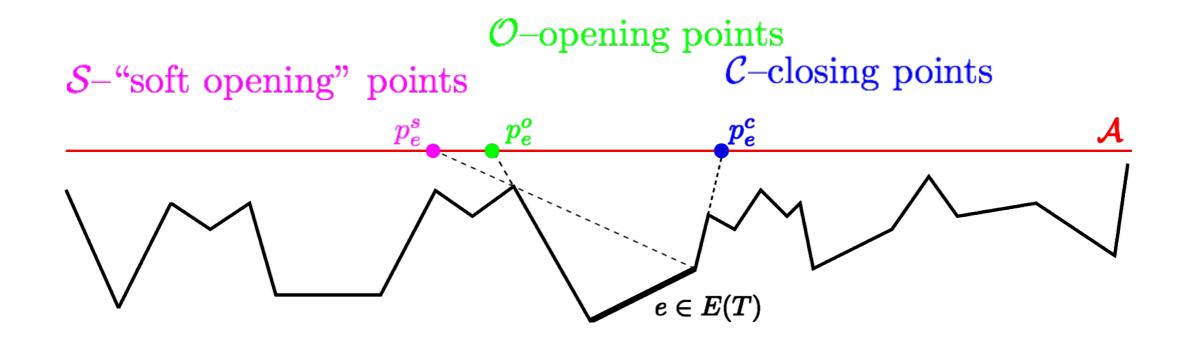




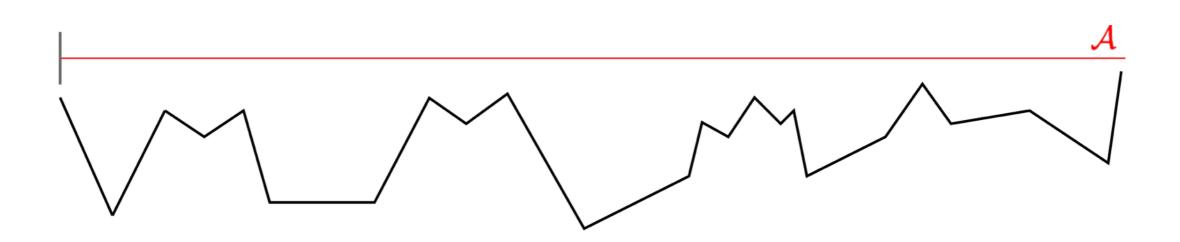




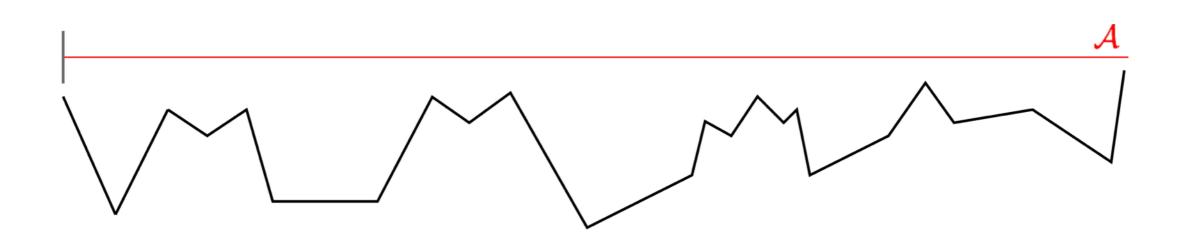




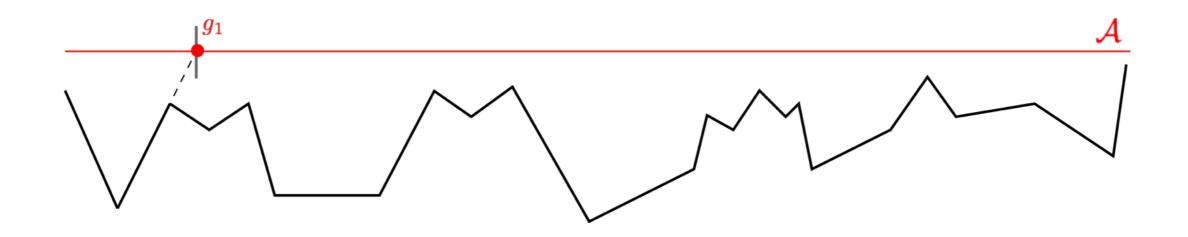
 Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).



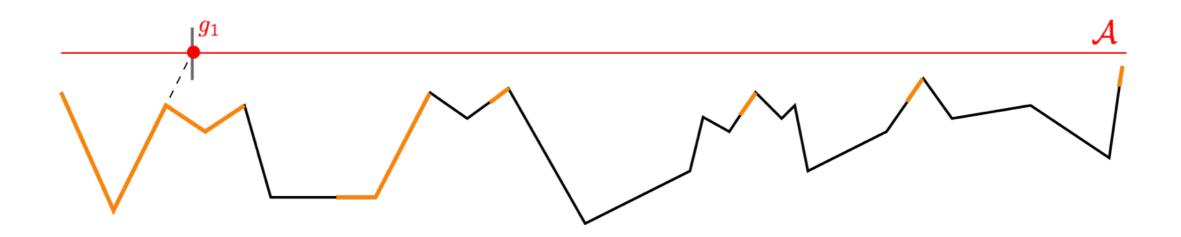
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- Sweep along \mathcal{A} from left to right



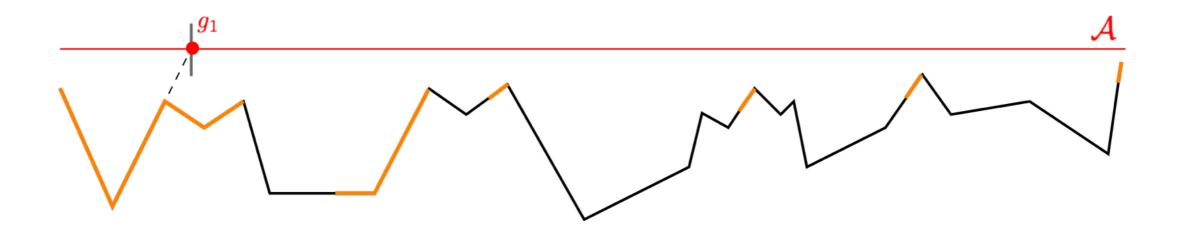
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 - first point in *C*.



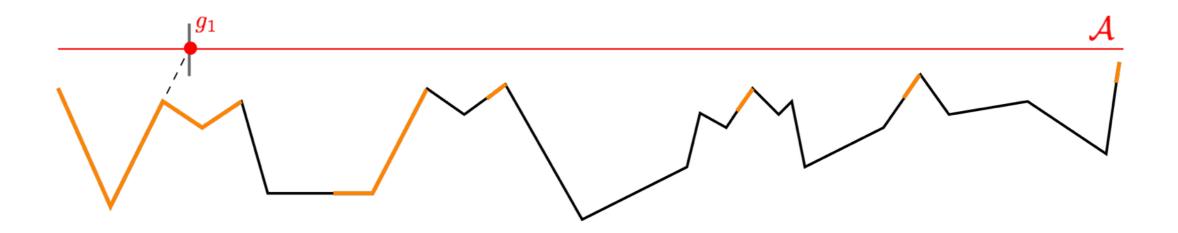
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)



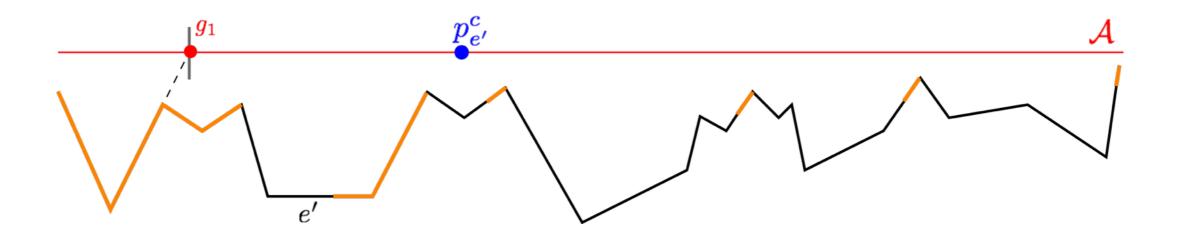
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg



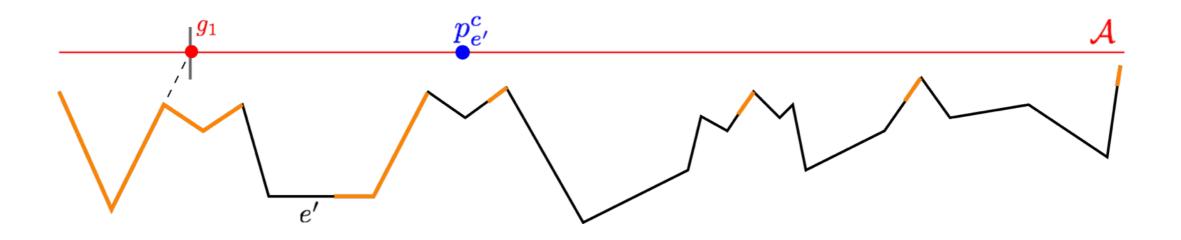
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce



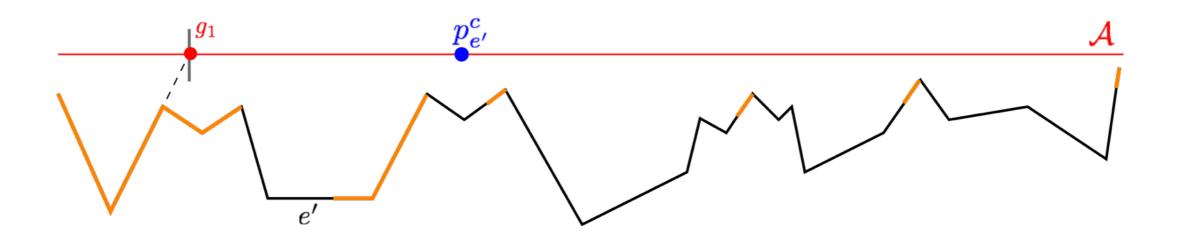
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce



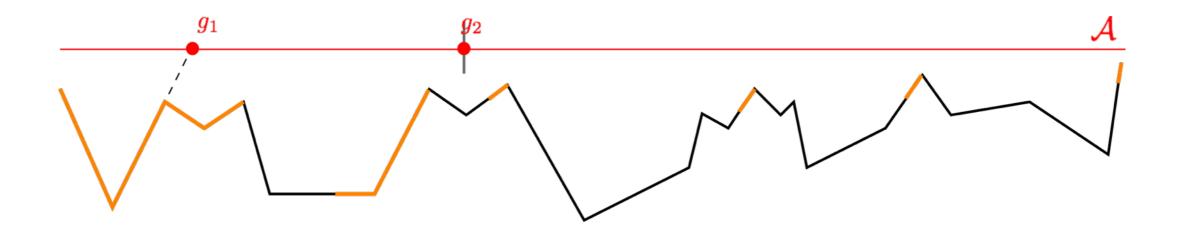
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce
- Delete $p_e{}^c$ and add $p_e{}^{,c}$ to ${\cal C}$



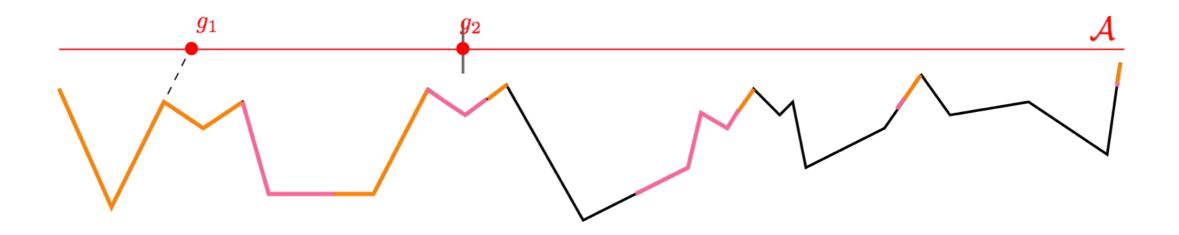
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce
- Delete $p_e{}^c$ and add $p_e{}^{,c}$ to ${\cal C}$
- Delete e from Eg and add e'



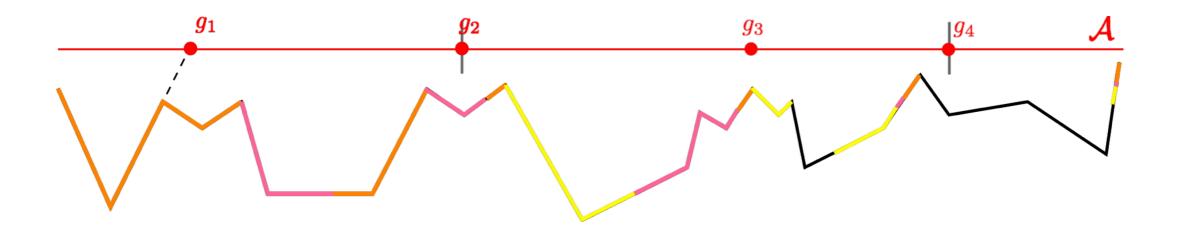
- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce
- Delete $p_e{}^c$ and add $p_e{}^{,c}$ to ${\cal C}$
- Delete e from Eg and add e'



- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce
- Delete $p_{e^{c}}$ and add $p_{e^{,c}}$ to ${\ensuremath{\mathcal{C}}}$
- Delete e from Eg and add e'

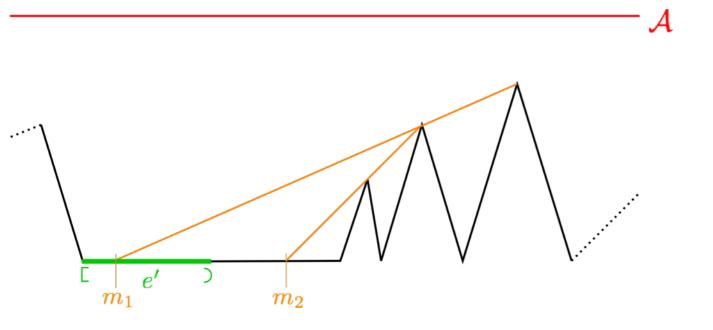


- Start: empty set of guards G = Ø; at leftmost point of A; all edges in E(T) are completely unseen (Eg=E(T)).
- \bullet Sweep along $\ensuremath{\mathcal{R}}$ from left to right
- Place a guard g_i whenever we could no longer see all of an "edge" e if we would move more to the right
 – first point in C.
- Compute V_T(g_i)
- Remove all completely seen edges from Eg
- For each edge e = {v,w} partially seen by g_i: split edge, keep the open interval that is not yet guarded —>new "edge" e'ce
- Delete p_e^c and add $p_{e'}^c$ to C
- Delete e from Eg and add e'

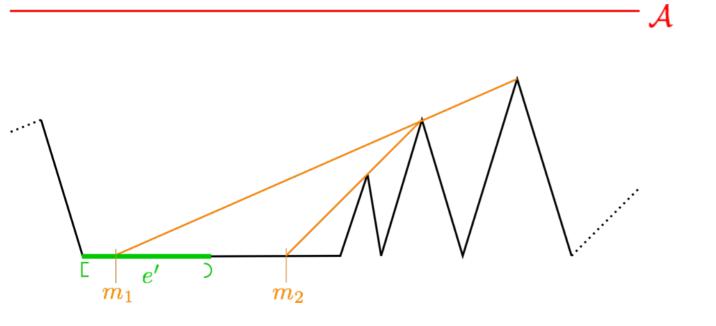


• Sweep rightmost to leftmost vertex

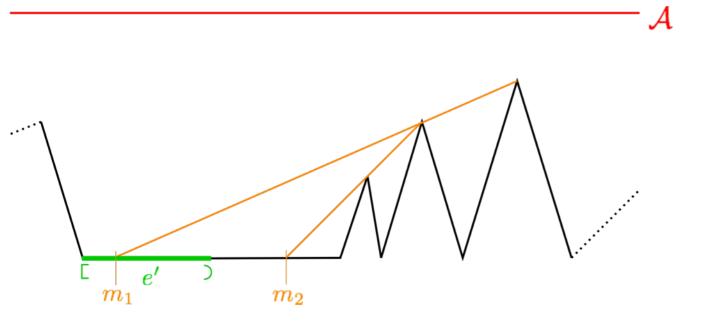
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left



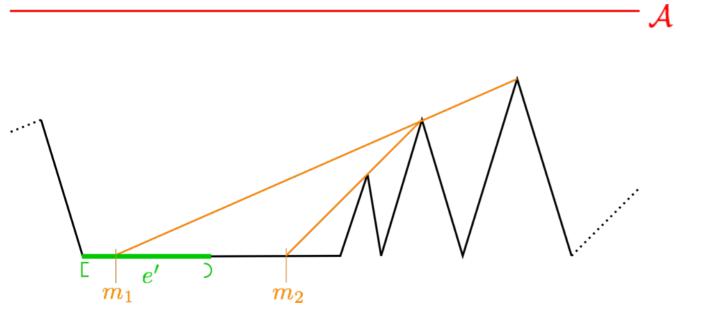
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: *mark points*



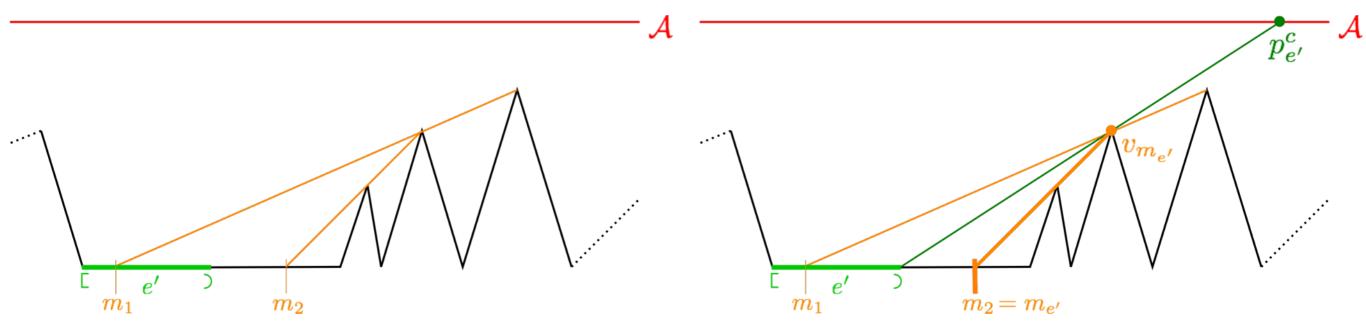
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: *mark points*
- O(n²) preprocessed intervals



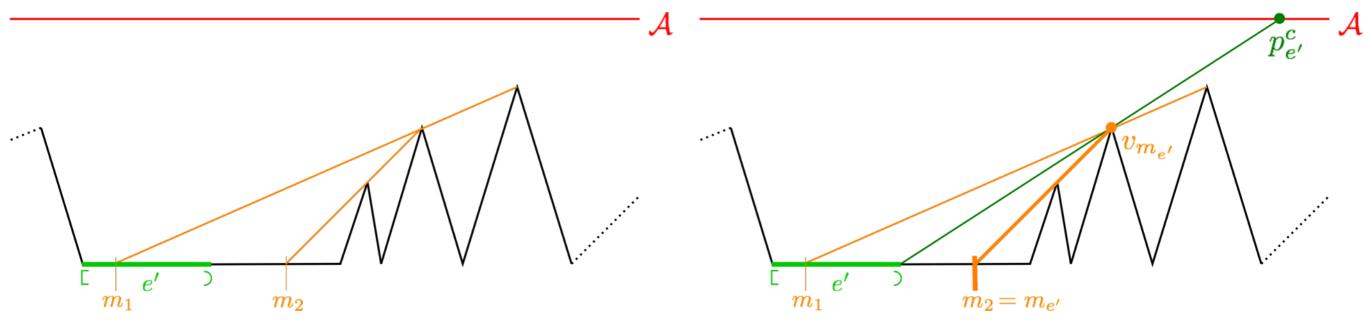
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: *mark points*
- O(n²) preprocessed intervals
- For each mark point *m* remember the rightmost of the two ray-vertices *v_m*



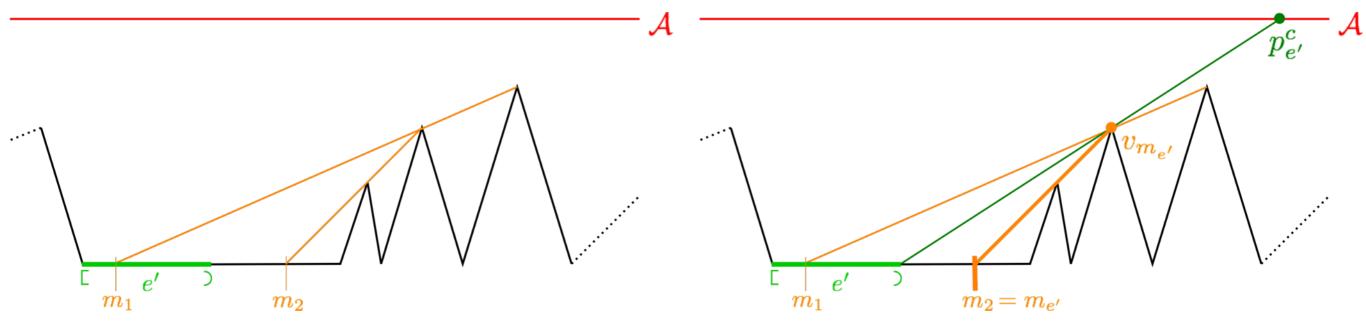
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: *mark points*
- O(n²) preprocessed intervals
- For each mark point *m* remember the rightmost of the two ray-vertices *v_m*
- When placing guard g splits edge e, and we are left with interval e'ce:



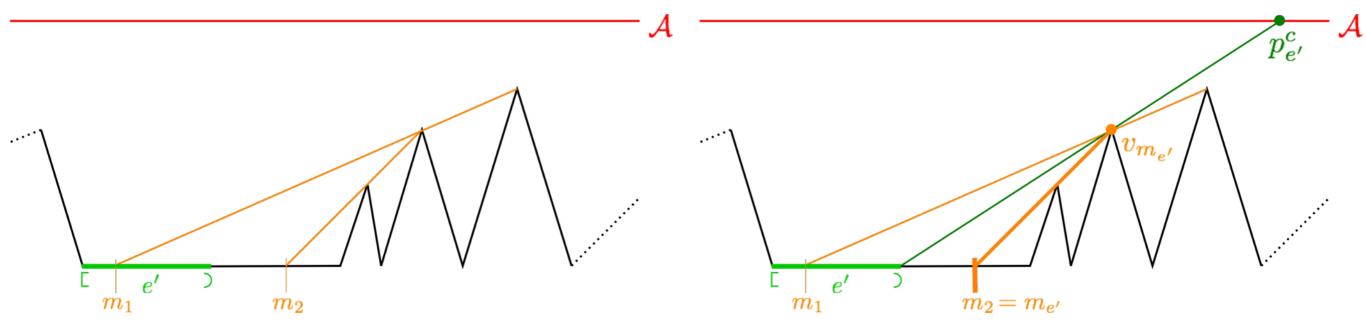
- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: *mark points*
- O(n²) preprocessed intervals
- For each mark point *m* remember the rightmost of the two ray-vertices *v_m*
- When placing guard g splits edge e, and we are left with interval e'ce:
 - Identify mark point, $m_{e'}$, to the right of e'



- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: mark points
- O(n²) preprocessed intervals
- For each mark point *m* remember the rightmost of the two ray-vertices *v_m*
- When placing guard g splits edge e, and we are left with interval e'ce:
 - ▶ Identify mark point, *m_{e'}*, to the right of e'
 - Shoot ray r from right endpoint of e' through vme'



- Sweep rightmost to leftmost vertex
- For each vertex we shoot ray through all vertices to its left
- Where rays hit terrain: mark points
- O(n²) preprocessed intervals
- For each mark point *m* remember the rightmost of the two ray-vertices *v_m*
- When placing guard g splits edge e, and we are left with interval e'ce:
 - ▶ Identify mark point, *m_{e'}*, to the right of e'
 - Shoot ray r from right endpoint of e' through vme'
 - Intersection point of r and A is the new closing point



Lemma 1: The set G output by the algorithm is feasible.

Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

Lemma 1: The set G output by the algorithm is feasible.

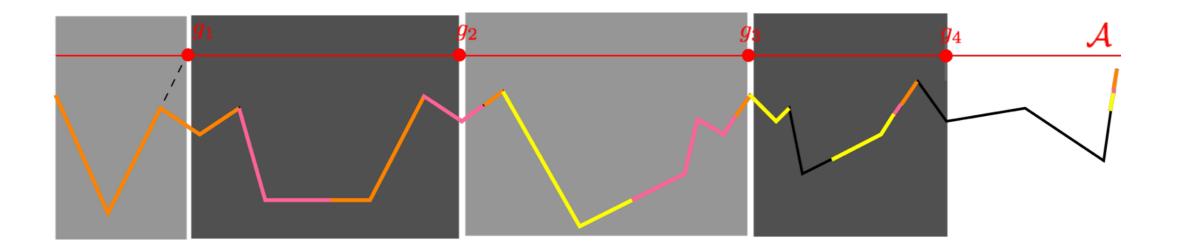
Theorem 2: The set G output by the algorithm is optimal.

Proof idea: If we can find a witness set with |W| = |G|, G is optimal.

Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

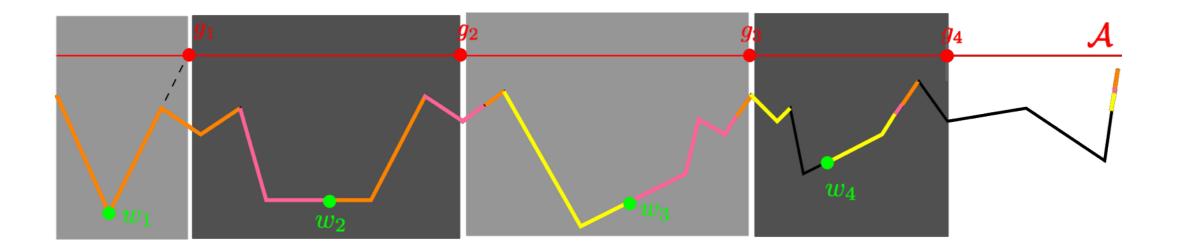
Proof idea: If we can find a witness set with |W|=|G|, G is optimal. Let S_i be the strip of all points with x -coordinates between $x(g_{i-1}) + \varepsilon$ and $x(g_i)$.



Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

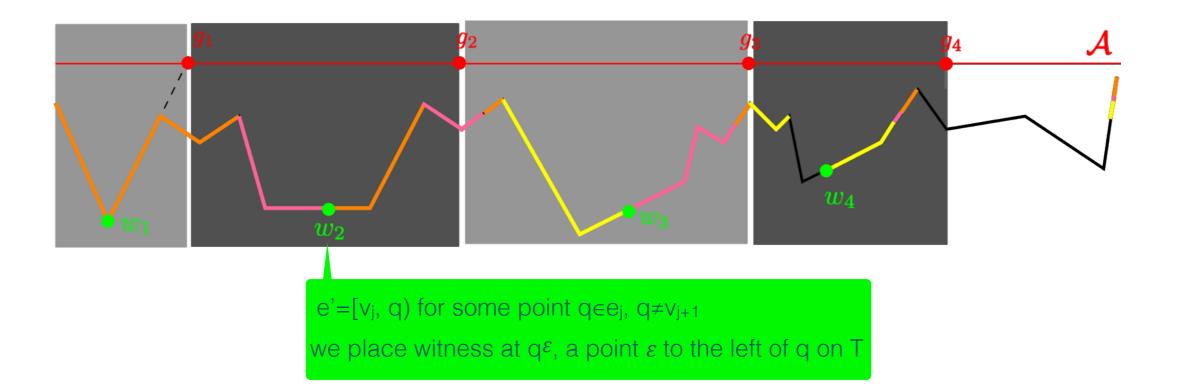
Proof idea: If we can find a witness set with |W|=|G|, G is optimal. Let S_i be the strip of all points with x -coordinates between $x(g_{i-1}) + \varepsilon$ and $x(g_i)$. We place a witness w_i per guard g_i such that $V_T(w_i) \subseteq S_i \forall i$.



Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

Proof idea: If we can find a witness set with |W|=|G|, G is optimal. Let S_i be the strip of all points with x -coordinates between $x(g_{i-1}) + \varepsilon$ and $x(g_i)$. We place a witness w_i per guard g_i such that $V_T(w_i) \subseteq S_i \forall i$.



Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

Proof idea: If we can find a witness set with |W|=|G|, G is optimal. Let S_i be the strip of all points with x -coordinates between $x(g_{i-1}) + \varepsilon$ and $x(g_i)$. We place a witness w_i per guard g_i such that $V_T(w_i) \subseteq S_i \forall i$.



Theorem 3: Uni-monotone polygons are perfect.

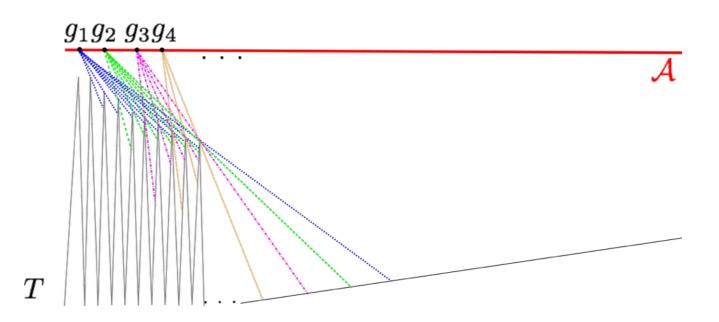
• Preprocessing: mark points O(n²)

- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)

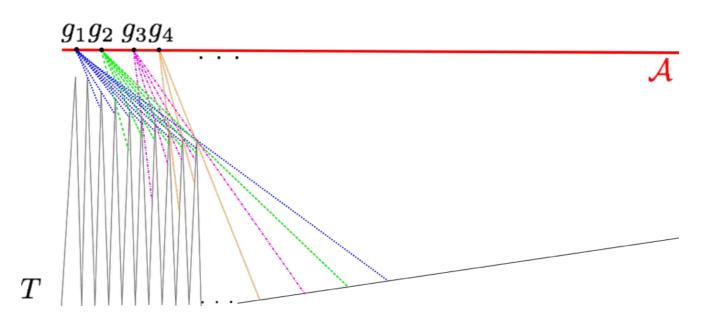
- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
- and for soft opening points (using right vertex of an edge to shoot the ray)

- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard

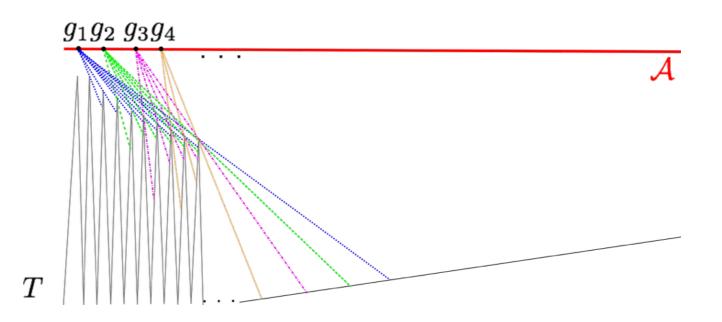
- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard
 - Shoot O(n) rays



- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard
 - Shoot O(n) rays
 - For each of intersection points r_e : shoot ray through $v_{me'}$

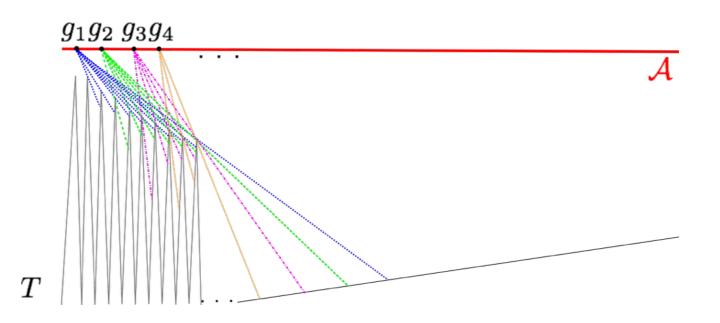


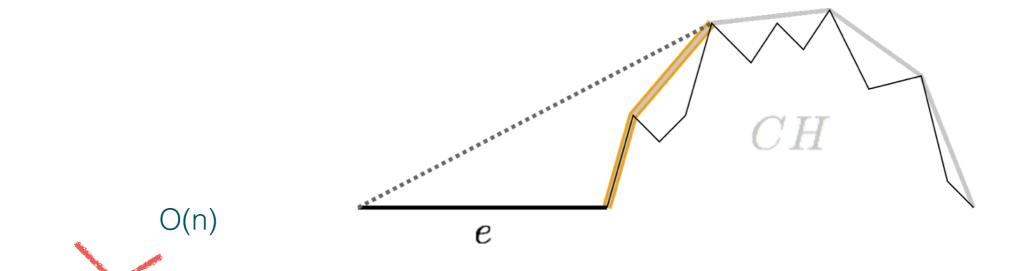
- Preprocessing: mark points O(n²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard
 - Shoot O(n) rays
 - For each of intersection points r_e : shoot ray through $v_{me'}$
- → $O(n^2 \log n)$ not optimized



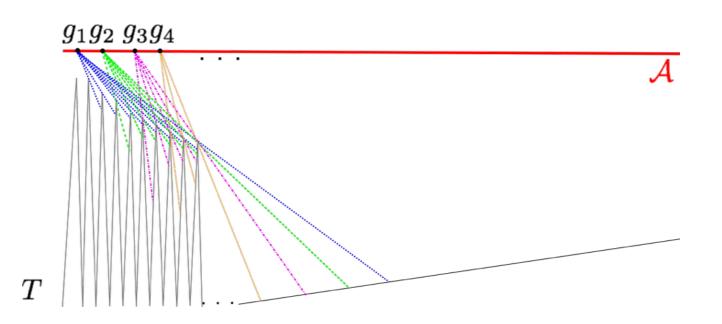
O(n)

- Preprocessing: mark points Q(N²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard
 - Shoot O(n) rays
 - For each of intersection points r_e : shoot ray through $v_{me'}$
- → $O(n^2 \log n)$ not optimized





- Preprocessing: mark points Q(N²)
- Accordingly: mark points from left for opening points (using left vertex of an edge to shoot the ray)
 - and for soft opening points (using right vertex of an edge to shoot the ray)
- Whenever we insert a guard
 - Shoot O(n) rays
 - For each of intersection points r_e : shoot ray through $v_{me'}$
- → $O(n^2 \log n)$ not optimized



Lemma 1: The set G output by the algorithm is feasible.

Theorem 2: The set G output by the algorithm is optimal.

Proof idea: If we can find a witness set with |W|=|G|, G is optimal. Let S_i be the strip of all points with x -coordinates between $x(g_{i-1}) + \varepsilon$ and $x(g_i)$. We place a witness w_i per guard g_i such that $V_T(w_i) \subseteq S_i \forall i$.

Theorem 3: Uni-monotone polygons are perfect.