A Novel MIP-based Airspace Sectorization for TMAs
 Tobias Andersson Granberg, Tatiana Polishchuk, Christiane Schmidt

- Significant growth in air transportation
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures $\boldsymbol{\rightarrow}$ higher throughput
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Plu s: geometric constraints on the sector shape

Workload?

- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Plu s: geometric constraints on the sector shape

```
Workload?
Various tasks contribute to airspace's complexity and drive ATCO's mental workload
```

- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)

Workload of the ATCOs should be balanced

- Plu s: geometric constraints on the sector shape

Workload?

Various tasks contribute to airspace's complexity and drive ATCO's mental workload

- Taskload: objective demands of the ATCO's monitoring task
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Plu s: geometric constraints on the sector shape

Workload?

Various tasks contribute to airspace's complexity and drive ATCO's mental workload

- Taskload: objective demands of the ATCO's monitoring task
- We use heat maps of the density of weighted clicks as an input [Zohrevandi et al., 2016].
- Significant growth in air transportation
- Terminal Maneuvering Area (TMA) is particularly affected by congestion
- Improve design of arrival and departure procedures \rightarrow higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
- Planes constantly monitored/guided by air traffic controllers (ATCOs)
- ATCOs assigned to sectors of the airspace (TMA)
- Workload of the ATCOs should be balanced
- Plu s: geometric constraints on the sector shape

Workload?

Various tasks contribute to airspace's complexity and drive ATCO's mental workload

- Taskload: objective demands of the ATCO's monitoring task
- We use heat maps of the density of weighted clicks as an input [Zohrevandi et al., 2016].
- BUT: we do not depend on specific maps.

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \forall \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \forall \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

Si_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors |S|, and a set C of constraints on the resulting sectors.

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ ($\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}$), such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced size

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced size
(b) Bounded taskload

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced size
(b) Bounded taskload
(c) Balanced taskload

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:
Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced size
(b) Bounded taskload
(c) Balanced taskload
(d) Connected sectors

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:
Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced size
(b) Bounded taskload
(c) Balanced taskload
(d) Connected sectors
(e) Nice shape (smooth boundary and an easily memorable shape)

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

$S_{i}:$ sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced size
(b) Bounded taskload
(c) Balanced taskload
(d) Connected sectors
(e) Nice shape (smooth boundary and an easily memorable shape)
(f) Convex sectors ((straight-line) flight cannot enter and leave a convex sector multiple times)

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

Si: sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced size
(b) Bounded taskload
(c) Balanced taskload
(d) Connected sectors
(e) Nice shape (smooth boundary and an easily memorable shape)
(f) Convex sectors ((straight-line) flight cannot enter and leave a convex sector multiple times)
(g) Interior conflict points (Points that require increased attention from ATCOs should lie in the sector's interior.)

Grid-based IP formulation

Grid-based IP formulation

Grid-based IP formulation

- Square grid in the TMA

Grid-based IP formulation

- Square grid in the TMA
o $G=(V, E)$:
- Every grid node connected to its 8 neighbors

Grid-based IP formulation

- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)
- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)

Main idea: use an artificial sector, So, that encompasses the complete boundary of P, using all counterclockwise (ccw) edges.

- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)

Main idea: use an artificial sector, So, that encompasses the complete boundary of P, using all counterclockwise (ccw) edges.
We use sectors in $S^{*}=S \cup S_{0}$ with $S=\left\{S_{1}, \ldots, S_{k}\right\}$.

Grid-based IP formulation

$$
\begin{array}{rrr}
y_{i, j, 0}= & 1 & \forall(i, j) \in S_{0} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}= & 0 & \forall(i, j) \in E \\
y_{i, j, s}+y_{j, i, s} \leq & 1 & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq & 1 & \forall(i, j) \in E \\
\sum_{(i, j) \in E} y_{i, j, s} \geq & 3 & \forall s \in \mathcal{S}^{*} \\
y_{i, j, s} \in\{0,1\} & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 & \forall i \in V, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{array}
$$

Grid-based IP formulation

$$
\begin{array}{rlr}
y_{i, j, 0}= & 1 & \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}= & 0 & \forall(i, j) \in E \\
y_{i, j, s}+y_{j, i, s} \leq & 1 & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq & 1 & \forall(i, j) \in E \\
\sum_{(i, j) \in E} y_{i, j, s} \geq & 3 \\
y_{i, j, s} \in\{0,1\} & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 & \forall i \in V, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{array}
$$

Grid-based IP formulation

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector } \mathrm{s} \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i} \text {) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i} \text {) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \quad \text { Sector cannot contain (i,j) and (j,i). } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\begin{aligned}
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \\
& \sum_{l \in V:(l, i) \in E} y_{l, i, s} \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i} \text {) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector } \mathrm{s} \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices }
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge }(\mathrm{i}, \mathrm{j}) \text { used for sector } \mathrm{s} \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i} \text { i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i). } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

$$
\begin{array}{rl}
y_{i, j, s} & =1 \text { : edge (i,j) used for sector s } \\
y_{i, j, 0} & =\begin{array}{ll}
1 & \forall(i, j) \in S_{0}
\end{array} \quad \text { All ccw boundary edges in So } \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s} & 0 \\
\forall(i, j) \in E & \text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i}) \text { has to } \\
\text { be used as well. }
\end{array}
$$

$$
\begin{aligned}
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices } \\
& \sum_{l \in V:(l, i) \in E} y_{l, i, s} \\
& \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { A node has at most one ingoing edge } \\
& \text { per sector }
\end{aligned}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices }
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \begin{gathered}
\text { A node has at most one ingoing edge } \\
\text { per sector }
\end{gathered}
$$

\Rightarrow Union of the $|S|$ sectors completely covers the TMA.

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

Grid-based IP formulation

(a) Balanced size

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
$\bullet \mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
$\bullet \mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

$$
\begin{array}{rlrl}
\sum_{(i, j) \in E} f_{i, j} y_{i, j, s}-a_{s} & = & 0 & \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}} a_{s} & & & \\
a_{s} & \geq & a_{L B} & \\
a_{L B} & =c_{1} \cdot a_{0} /|\mathcal{S}|, \text { with, e.g., } c_{1}=0.9
\end{array}
$$

Grid-based IP formulation

(a) Balanced size

We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
$\bullet \mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

$$
\begin{aligned}
\sum_{(i, j) \in E} f_{i, j} y_{i, j, s}-a_{s} & = & 0 & \forall s \in \mathcal{S}^{*}
\end{aligned} \begin{aligned}
& \text { Assigns area of sector } s \text { to } a_{s} \\
& \sum_{s \in \mathcal{S}} a_{s}
\end{aligned}=\begin{array}{lrl}
& & \\
a_{s} & \geq & a_{L B} \\
a_{L B} & =c_{1} \cdot a_{0} /|\mathcal{S}|, \text { with , e.g., } c_{1}=0.9 &
\end{array}
$$

(b) Bounded taskload/ (c)Balanced taskload
(b) Bounded taskload/ (c)Balanced taskload We need to associate task load with a sector.
(b) Bounded taskload/ (c)Balanced taskload We need to associate task load with a sector. - Overlay heat map with a grid.

(b) Bounded taskload/ (c)Balanced taskload We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.

(b) Bounded taskload/ (c)Balanced taskload

 We need to associate task load with a sector.- Overlay heat map with a grid.
- Extract values at the grid points.
- Use discretized heat map.

(b) Bounded taskload/ (c)Balanced taskload

We need to associate task load with a sector.

- Overlay heat map with a grid.
- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{q}

(b) Bounded taskload/ (c)Balanced taskload

We need to associate task load with a sector.

- Overlay heat map with a grid.
- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{q}
- Let the sign of $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$ be $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

(b) Bounded taskload/ (c)Balanced taskload

We need to associate task load with a sector.

- Overlay heat map with a grid.
- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{q} - Let the sign of $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$ be $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

$$
h_{i, j}=p_{i, j} \sum_{q \in \Delta(i, j, r)} h_{q}
$$

$$
\sum_{(i, j) \in E} h_{i, j} y_{i, j, s}-t_{s}=
$$

$$
\forall s \in \mathcal{S}
$$

$$
\begin{array}{rrr}
t_{s} & \geq & t_{L B} \\
t_{s} & \leq & t_{U B} \\
t_{L B} & = & c_{2} \cdot t_{0} /|\mathcal{S}| \\
& \text { with, e.g., } c_{2}=0.9
\end{array}
$$

(b) Bounded taskload/ (c)Balanced taskload

We need to associate task load with a sector.

- Overlay heat map with a grid.
- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{q}
- Let the sign of $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$ be $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

$$
h_{i, j}=p_{i, j} \sum_{q \in \Delta(i, j, r)} h_{q}
$$

$$
\begin{array}{rlr}
\sum_{(i, j) \in E} h_{i, j} y_{i, j, s}-t_{s} & & 0 \\
t_{s} & \geq & \\
t_{s} & \leq & t_{L B} \\
t_{L B} & = & c_{2} \cdot t_{0} /|\mathcal{S}| \\
\text { with, e.g., } c_{2}=0.9
\end{array}
$$

Grid-based IP formulation

(f) Convex sectors

Grid-based IP formulation

(f) Convex sectors

- Convex sector:

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles - Only-if-part of that statement is not true

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true

- BUT: we have only eight edge directions

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true

- BUT: we have only eight edge directions

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true

- BUT: we have only eight edge directions

Grid-based IP formulation

(f) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true

- BUT: we have only eight edge directions

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$

$q_{j, m}^{s}$	$=$	$\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	2	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	$z_{i, j, m}^{s}$	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$0 \leq$	$q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. polyons.

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. - $p_{i, j, m}$: sign of the triangle (i, j) and r_{m}

$q_{j, m}^{s}$	$=$	$\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	2	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	$z_{i, j, m}^{s}$	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$0 \leq$	$q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. - $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i,j) and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.

$$
\begin{aligned}
& q_{j, m}^{s}=\quad \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \begin{array}{lr}
q a b s_{j, m}^{s} \geq & q_{j, m}^{s} \\
q a b s_{j, m}^{s} \geq & -q_{j, m}^{s}
\end{array} \\
& \sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}= \\
& 2 \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}= \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M}
\end{aligned}
$$

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i, j) and r_{m}

Assigns, for
Assigns, for each sector, a value of $-1,0,1$ to each vertex.
Interior vertex of chain of $\mathrm{cw} / \mathrm{ccw}$ triangles has $\mathrm{q}_{\mathrm{j}, \mathrm{m}}=0$

$$
\begin{array}{rlrl}
q_{j, m}^{s} & =\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) & \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
q a b s_{j, m}^{s} \geq & q_{j, m}^{s} & -q_{j, m}^{s} & \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
q a b s_{j, m}^{s} \geq & 2 & \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s} & & \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
0 & \leq & z_{i, j, m}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \leq & q a b s_{j, m}^{s} & y_{i, j, s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \leq & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
\sum \sum z_{i, j, m}^{s} & 2 & \forall s \in \mathcal{S}, \forall m \in \mathcal{M}
\end{array}
$$

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i,j) and r_{m}

$$
\begin{aligned}
& q_{j, m}^{s}=\quad \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \begin{array}{cr}
q a b s_{j, m}^{s} \geq & q_{j, m}^{s} \\
q a b s_{j, m}^{s} \geq & -q_{j, m}^{s}
\end{array} \\
& \sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}= \\
& z_{i, j, m}^{s} \\
& z_{i, j, m}^{s} \leq \quad q a b s_{j, m}^{s} \\
& z_{i, j, m}^{s} \leq \quad y_{i, j, s} \\
& z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s} \\
& \sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}= \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M}
\end{aligned}
$$

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle ($\left.\mathrm{i}, \mathrm{j}\right)$ and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.
Interior vertex of chain of cw /ccw triangles has $\mathrm{q}^{\mathrm{s}, \mathrm{m}}=0$
At j a chain with ccw (cw) triangles switches to a chain of cw (ccw) triangles $\mathrm{q}^{\mathrm{s} j, \mathrm{~m}=-1 \quad\left(\mathrm{q}^{\mathrm{s}} \mathrm{j}, \mathrm{m}=1\right) ~}$ For a convex sector: sum of the $\left|\mathrm{q}^{\mathrm{s}}{ }_{j, m}\right|=2$ for all reference points

$q_{j, m}^{s}$	$=$	$\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
	$z_{i, j, m}^{s}$	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \leq$	$q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
		$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$

Grid-based IP formulation

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i,j) and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.
Interior vertex of chain of cw /ccw triangles has $\mathrm{q}^{\mathrm{s}, \mathrm{m}}=0$
At j a chain with ccw (cw) triangles switches to a chain of cw (ccw) triangles $q^{\mathrm{s} j, m=-1 \quad\left(q^{s} \mathrm{j}, \mathrm{m}=1\right) ~}$ For a convex sector: sum of the $\left|\mathrm{q}^{\mathrm{s}}{ }_{j, m}\right|=2$ for all reference points

$$
\begin{aligned}
& q_{j, m}^{s}=\quad \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \begin{array}{lrl}
q a b s_{j, m}^{s} \geq & q_{j, m}^{s} & \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
q a b s_{j, m}^{s} \geq & -q_{j, m}^{s} & \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}
\end{array} \\
& \sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=\quad 2 \quad \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \begin{array}{rrl}
0 \leq & z_{i, j, m}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \leq & q a b s_{j, m}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \leq & y_{i, j, s}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s} & \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}= & 2 & \forall s \in \mathcal{S}, \forall m \in \mathcal{M}
\end{array} \\
& \text { Multiplication of two variables } \rightarrow \text { define } \mathrm{zs}_{\mathrm{i}, \mathrm{j}, \mathrm{~m}}=\mathrm{y}_{\mathrm{i}, \mathrm{j}, \mathrm{~s}}{ }^{*} \mathrm{qabs} \mathrm{~s}_{\mathrm{j}, \mathrm{~m}} \text {. }
\end{aligned}
$$

Grid-based IP formulation

Grid-based IP formulation

Objective Function

Grid-based IP formulation

Objective Function

- Choice not obvious.

Grid-based IP formulation

Objective Function

- Choice not obvious.
- Used in literature:
- Taskload imbalance(constraint c)
- Number of sectors (input)

Grid-based IP formulation

■ LINKÖPING

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint c)
- Number of sectors (input)

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint c)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint c)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Objective Function

- Choice not obvious.
- Used in literature:

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}
$$

- Taskload imbalance(constraint c)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Given the current complexity map: user must allow larger imbalances between controller's taskload, if having connected sectors is a necessary condition.

Objective Function

- Choice not obvious.
- Used in literature:

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}
$$

- Taskload imbalance(constraint c)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Given the current complexity map: user must allow larger imbalances between controller's taskload, if having connected sectors is a necessary condition.

- With constraint (g), interior conflict points:

$$
\begin{array}{r}
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E}\left(\gamma \ell_{i, j}+(1-\gamma) w_{i, j}\right) y_{i, j, s}, \quad 0 \leq \gamma<1 \\
w_{i, j}=h_{i}+h_{j} \\
w_{i, j}=\sum_{k \in N(i)} h_{k}+\sum_{l \in N(j)} h_{l}
\end{array}
$$

Experimental Study: Arlanda Airport

Experimental Study: Arlanda Airport

(c)Balanced task load, (d) Connected sectors, (e) Nice shape (we use preprocessing)

AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux. Each instance was run until a solution with less than 1% gap had not been found, or for a maximum of one CPU-hour. No instance finished with an optimality gap of more than 6%.

Experimental Study: Arlanda Airport

(c)Balanced task load, (d) Connected sectors, (e) Nice shape (we use preprocessing)

AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux. Each instance was run until a solution with less than 1% gap had not been found, or for a maximum of one CPU-hour. No instance finished with an optimality gap of more than 6%.

Experimental Study: Arlanda Airport

(c)Balanced task load, (d) Connected sectors, (e) Nice shape (we use preprocessing)

(c)Balanced task load, (d) Connected sectors, (e) Nice shape, (g) Interior Conflict Points

AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux. Each instance was run until a solution with less than 1\% gap had not been found, or for a maximum of one CPU-hour. No instance finished with an optimality gap of more than 6%.

(c) Balanced task load
(d) Connected sectors
(e) Nice shape
(g) Interior conflict points

(g)

(f)

All with $\mathrm{c}_{2}=0.6$ and $\mathrm{w}_{\mathrm{i}, \mathrm{j}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}}$.
(a)-(f): $\gamma=0: 2,(\mathrm{~g}): \gamma=0: 8$.
(h)

Experimental Study: Arlanda Airport

(c) Balanced task load
(d) Connected sectors
(e) Nice shape
(g) Interior conflict points

(g)

(f)

All with $\mathrm{c}_{2}=0.6$ and $\mathrm{w}_{\mathrm{i}, \mathrm{j}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}}$.
(a)-(f): $\gamma=0: 2,(\mathrm{~g}): \gamma=0: 8$.
(h)

Experimental Study: Arlanda Airport

Influence of choosing $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$:

Experimental Study: Arlanda Airport

Influence of choosing $\mathbf{w}_{\mathrm{i}, \mathrm{j}}$:
ISI=2 \rightarrow One cut through rectangle

Experimental Study: Arlanda Airport

Influence of choosing $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$:
ISI=2 \rightarrow One cut through rectangle
(c)Balanced task load, (d) Connected sectors, (e) Nice shape, (g) Interior Conflict Points

Experimental Study: Arlanda Airport

Influence of choosing $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$:
ISI=2 \rightarrow One cut through rectangle
(c)Balanced task load, (d) Connected sectors, (e) Nice shape, (g) Interior Conflict Points

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E}\left(\gamma \ell_{i, j}+(1-\gamma) w_{i, j}\right) y_{i, j, s}, \quad 0 \leq \gamma<1
$$

Influence of choosing $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$:
ISI=2 \rightarrow One cut through rectangle
(c)Balanced task load, (d) Connected sectors, (e) Nice shape, (g) Interior Conflict Points

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E}\left(\gamma \ell_{i, j}+(1-\gamma) w_{i, j}\right) y_{i, j, s}, \quad 0 \leq \gamma<1
$$

$$
\gamma=1 \quad \gamma=0.5 \text { and } w_{i, j}=h_{i}+h_{j} \quad \begin{gathered}
\gamma=0.5 \text { and } \\
w_{i, j}=\sum_{k \in N(i)} h_{k}+\sum_{l \in N(j)} h_{l}
\end{gathered}
$$

Conclusion/Outlook

Conclusion/Outlook

- Allow usage of a few reflex vertices

Conclusion/Outlook

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector

Conclusion/Outlook

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector
- Combine with MIP for SIDs and STARs to an integrated design

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector
- Combine with MIP for SIDs and STARs to an integrated design

(g)

