Convex Sectorization-A Novel Integer Programming Approach

Christiane Schmidt, Tobias Andersson Granberg, Tatiana Polishchuk, Valentin Polishchuk

Introduction: Air transportation, Workload/Taskload, Sectorization
Review Grid-based IP formulation
Integration of Convexity Constraint in the Grid-based IP formulation
Enumeration of Topologies
Experimental Study: Arlanda Airport
Conclusion/Outlook

- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- Convex sectors
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- Convex sectors
= Easy to "grasp" (learn, comprehend) by humans
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- Convex sectors
- Easy to "grasp" (learn, comprehend) by humans
\Rightarrow A (straight-line) flight cannot enter and leave a sector multiple times
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA) particularly affected by congestion
- Improve design of Arrival and Departure procedures \rightarrow higher throughput
- Part of design: Sectorization
- In Air Traffic Management (ATM): humans-in-the-loop!
- Taskload of the ATCOs should be balanced
- Plus: geometric constraints on the sector shape
- Convex sectors
- Easy to "grasp" (learn, comprehend) by humans
\Rightarrow A (straight-line) flight cannot enter and leave a sector multiple times
- We can directly enforce convexity in our approach!

Taskload?

Taskload?

We use heat maps of the density of weighted clicks as an input.

[E. Zohrevandi, V. Polishchuk, J. Lundberg, Å. Svensson, J. Johansson, and B. Josefsson,
Modeling and analysis of controller's taskload in different predictability conditions, 2016]

Taskload?

We use heat maps of the density of weighted clicks as an input. BUT: we do not depend on specific maps.

[E. Zohrevandi, V. Polishchuk, J. Lundberg, Å. Svensson, J. Johansson, and B. Josefsson. Modeling and analysis of controller's taskload in different predictability conditions, 2016]

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \forall \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \forall \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced taskload

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ ($\left.\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced taskload
(b) Connected sectors

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ ($\left.\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced taskload
(b) Connected sectors
(c) Nice shape (smooth boundary and an easily memorable shape)

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ ($\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}$), such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $k=|S|$, fulfilling C.
(a) Balanced taskload
(b) Connected sectors
(c) Nice shape (smooth boundary and an easily memorable shape)
(d) Convex sectors ((straight-line) flight cannot enter and leave a convex sector multiple times)

A sectorization of a simple polygon P is a partition of P into k disjoint subpolygons $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing \forall \mathrm{i} \neq \mathrm{j}\right)$, such that $\cup_{i=1}^{k} S_{i}=P$.

S_{i} : sectors

Sectorization Problem:

Given: The coordinates of the TMA, defining a polygon P, the number of sectors $|S|$, and a set C of constraints on the resulting sectors.
Find: A sectorization of P with $\mathrm{k}=|\mathrm{S}|$, fulfilling C .
(a) Balanced taskload
(b) Connected sectors
(c) Nice shape (smooth boundary and an easily memorable shape)
(d) Convex sectors ((straight-line) flight cannot enter and leave a convex sector multiple times)
(e) Interior conflict points (Points that require increased attention from ATCOs should lie in the sector's interior.)

Review Grid-based IP formulation

Review: Grid-based IP formulation

- Square grid in the TMA

Review: Grid-based IP formulation

- Square grid in the TMA
o $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)
- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)

Main idea: use an artificial sector, So, that encompasses the complete boundary of P, using all counterclockwise (ccw) edges.

- Square grid in the TMA
- $G=(V, E)$:
- Every grid node connected to its 8 neighbors
- $N(i)=$ set of neighbors of i (including i)
- $\ell_{i, j}$ length of an edge (i, j)

Main idea: use an artificial sector, So, that encompasses the complete boundary of P, using all counterclockwise (ccw) edges.
We use sectors in $S^{*}=S \cup S_{0}$ with $S=\left\{S_{1}, \ldots, S_{k}\right\}$.

Review: Grid-based IP formulation

$$
\begin{array}{rrr}
y_{i, j, 0}= & 1 & \forall(i, j) \in S_{0} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}= & 0 & \forall(i, j) \in E \\
y_{i, j, s}+y_{j, i, s} \leq & 1 & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq & 1 & \forall(i, j) \in E \\
\sum_{(i, j) \in E} y_{i, j, s} \geq & 3 & \forall s \in \mathcal{S}^{*} \\
y_{i, j, s} \in\{0,1\} & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 & \forall i \in V, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{array}
$$

Review: Grid-based IP formulation

$$
\begin{array}{rlr}
y_{i, j, 0}= & 1 & \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in So } \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}= & 0 & \forall(i, j) \in E \\
y_{i, j, s}+y_{j, i, s} \leq & 1 & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq & 1 & \forall(i, j) \in E \\
\sum_{(i, j) \in E} y_{i, j, s} \geq & 3 & \forall s \in \mathcal{S}^{*} \\
y_{i, j, s} \in\{0,1\} & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 & \forall i \in V, \forall s \in \mathcal{S}^{*} \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{array}
$$

$$
\begin{aligned}
y_{i, j, 0} & = & 1 & \forall(i, j) \in S_{0}
\end{aligned} \begin{array}{rlrl}
& \text { All ccw boundary edges in So } \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s} & = & 0 & \forall(i, j) \in E \\
y_{i, j, s}+y_{j, i, s} & \leq & 1 & \text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. } \\
\sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq & 1 & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} & \\
\sum_{(i, j) \in E} y_{i, j, s} \geq & 3 & \forall(i, j) \in E & \\
y_{i, j, s} \in\{0,1\} & \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{array}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \\
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{aligned}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (} \mathrm{j}, \mathrm{i} \text {) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i). } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
y_{i, j, s}=1: \text { edge }(\mathrm{i}, \mathrm{j}) \text { used for sector s }
$$

$$
\begin{aligned}
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \\
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{aligned}
$$

another
sector

$$
\begin{aligned}
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \\
& \sum_{l \in V:(l, i) \in E} y_{l, i, s}
\end{aligned}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i). } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i). } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices }
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \forall s \in \mathcal{S}^{*} \quad \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices } \\
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { A node has at most one ingoing edge } \\
\text { per sector }
\end{gathered}
$$

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector s } \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \quad \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*}
\end{aligned}
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s}-\sum_{j \in V:(i, j) \in E} y_{i, j, s}=0 \quad \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \text { Indegree=outdegree for all vertices }
$$

$$
\sum_{l \in V:(l, i) \in E} y_{l, i, s} \quad \leq 1 \forall i \in V, \forall s \in \mathcal{S}^{*} \quad \begin{gathered}
\text { A node has at most one ingoing edge } \\
\text { per sector }
\end{gathered}
$$

\Rightarrow Union of the $|S|$ sectors completely covers the TMA.

$$
\begin{aligned}
& y_{i, j, s}=1 \text { : edge (i,j) used for sector } \mathrm{s} \\
& y_{i, j, 0}=1 \quad \forall(i, j) \in S_{0} \quad \text { All ccw boundary edges in } S_{0} \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s}-\sum_{s \in \mathcal{S}^{*}} y_{j, i, s}=\quad 0 \quad \forall(i, j) \in E \quad \begin{array}{l}
\text { If }(\mathrm{i}, \mathrm{j}) \text { used for some sector, (j, i) has to } \\
\text { be used as well. }
\end{array} \\
& y_{i, j, s}+y_{j, i, s} \leq 1 \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \text { Sector cannot contain (i,j) and (j,i) } \\
& \sum_{s \in \mathcal{S}^{*}} y_{i, j, s} \leq 1 \quad \forall(i, j) \in E \quad \text { No edge in two sectors. } \\
& \sum_{(i, j) \in E} y_{i, j, s} \geq 3 \quad \forall s \in \mathcal{S}^{*} \text { Minimum size } \\
& y_{i, j, s} \in\{0,1\} \quad \forall(i, j) \in E, \forall s \in \mathcal{S}^{*} \\
& \text { (i,j) in } S_{I},(j, i) \\
& \text { sector }
\end{aligned}
$$

Review: Grid-based IP formulation

(a) Balanced taskload
(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive

Review: Grid-based IP formulation

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative

Review: Grid-based IP formulation

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
$\bullet \mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

Review: Grid-based IP formulation

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
- $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

$$
\begin{aligned}
\sum_{(i, j) \in E} f_{i, j} y_{i, j, s}-a_{s} & =0 \quad \forall s \in \mathcal{S}^{*} \\
\sum_{s \in \mathcal{S}} a_{s} & =a_{0}
\end{aligned}
$$

Review: Grid-based IP formulation

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
$\bullet \mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

$$
\begin{aligned}
\sum_{(i, j) \in E} f_{i, j} y_{i, j, s}-a_{s} & =0 \quad \forall s \in \mathcal{S}^{*} \quad \text { Assigns area of sector s to } a_{s} \\
\sum_{s \in \mathcal{S}} a_{s} & =a_{0}
\end{aligned}
$$

Review: Grid-based IP formulation

(a) Balanced taskload

First step: We need to assign area to sector selected by boundary edges!
Area of polygon P with rational vertices and can be computed efficiently [Fekete et al., 2015]:

- We introduce reference point r.
- We compute the area of the triangle of each directed edge e of P.
- We sum up the triangle area for all edges of P :
- cw triangles contribute positive
- ccw triangles contribute negative
- $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$: signed area of the triangle (i, j) and r

$$
\sum_{(i, j) \in E} f_{i, j} y_{i, j, s}-a_{s}=0 \quad \forall s \in \mathcal{S}^{*} \quad \begin{aligned}
& \text { Assigns area of sector s to } \\
& \sum_{s \in \mathcal{S}} a_{s}=a_{0}
\end{aligned} \quad \begin{aligned}
& \text { Sum of areas }=\text { area of } \mathrm{S}_{0}
\end{aligned}
$$

Review: Grid-based IP formulation

Second step: We need to associate task load with a sector.

Review: Grid-based IP formulation

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

Review: Grid-based IP formulation

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.

Review: Grid-based IP formulation

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.
- Use discretized heat map.

Review: Grid-based IP formulation

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{q}

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{a} - Let the sign of $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$ be $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

Second step: We need to associate task load with a sector. - Overlay heat map with a grid.

- Extract values at the grid points.
- Use discretized heat map.
- Each discrete heat map point q: "heat value" h_{a} - Let the sign of $\mathrm{f}_{\mathrm{i}, \mathrm{j}}$ be $\mathrm{p}_{\mathrm{i}, \mathrm{j}}$

$$
h_{i, j}=p_{i, j} \sum_{q \in \Delta(i, j, r)} h_{q}
$$

$$
\begin{aligned}
\sum_{(i, j) \in E} h_{i, j} y_{i, j, s}-t_{s} & = & 0 & \forall s \in \mathcal{S} \\
t_{s} & \geq & t_{L B} & \forall s \in \mathcal{S} \\
t_{s} & \leq & t_{U B} & \forall s \in \mathcal{S} \\
t_{L B} & = & c_{2} \cdot t_{0} /|\mathcal{S}| & \text { with, e.g., } c_{2}=0.9
\end{aligned}
$$

Review: Grid-based IP formulation

Objective Function

Review: Grid-based IP formulation

Objective Function

- Choice not obvious.

Review: Grid-based IP formulation

Objective Function

- Choice not obvious.
- Used in literature:

Review: Grid-based IP formulation

Objective Function

- Choice not obvious.
- Used in literature:
- Taskload imbalance(constraint a)

Review: Grid-based IP formulation

Objective Function

- Choice not obvious.
- Used in literature:
- Taskload imbalance(constraint a)
- Number of sectors (input)

Review: Grid-based IP formulation

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint a)
- Number of sectors (input)

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint a)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)

Objective Function

- Choice not obvious.
- Used in literature:

$\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}$

- Taskload imbalance(constraint a)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Objective Function

- Choice not obvious.
- Used in literature:

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}
$$

- Taskload imbalance(constraint a)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Given the current complexity map: user must allow larger imbalances between controller's taskload, if having connected sectors is a necessary condition.

Objective Function

- Choice not obvious.
- Used in literature:

$$
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E} \ell_{i, j} y_{i, j, s}
$$

- Taskload imbalance(constraint a)
- Number of sectors (input)
- If we want to balance the area of the sectors, but are not interested in the sector taskload, this objective function ensures that sectors are connected (constraint d)
- With taskload: only connected sectors if c_{2} allows it:

Given the current complexity map: user must allow larger imbalances between controller's taskload, if having connected sectors is a necessary condition.

- With constraint (e), interior conflict points:

$$
\begin{array}{r}
\min \sum_{s \in \mathcal{S}} \sum_{(i, j) \in E}\left(\gamma \ell_{i, j}+(1-\gamma) w_{i, j}\right) y_{i, j, s}, \quad 0 \leq \gamma<1 \\
w_{i, j}=h_{i}+h_{j} \\
w_{i, j}=\sum_{k \in N(i)} h_{k}+\sum_{l \in N(j)} h_{l}
\end{array}
$$

Integration of Convexity Constraint in the Grid-based IP formulation

Convexity Constraints

(d) Convex sectors

- Convex sector:

Convexity Constraints

(d) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles

Convexity Constraints

(d) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles

Convexity Constraints

(d) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true

Convexity Constraints

(d) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true
- BUT: we have only eight edge directions

Convexity Constraints

(d) Convex sectors

- Convex sector:
- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true
- BUT: we have only eight edge directions

Three outgoing edge
directions yield a non-convex
polygon

Convexity Constraints

(d) Convex sectors

- Convex sector:

- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true
- BUT: we have only eight edge directions

Three outgoing edge directions yield a non-convex polygon

Convexity Constraints

(d) Convex sectors

- Convex sector:

- only one connected chain of edges with cw triangles
- one connected chain of edges with ccw triangles
- Only-if-part of that statement is not true
- BUT: we have only eight edge directions

Three outgoing edge directions yield a non-convex polygon

Our reference points

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $p_{i, j, m}$: sign of the triangle (i, j) and r_{m}

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. - $p_{i, j, m}$: sign of the triangle (i,j) and r_{m}

$q_{j, m}^{s}$	$=$	$\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	2	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	$z_{i, j, m}^{s}$	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$0 \leq$	$q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. - $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i,j) and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.

$$
\begin{aligned}
& q_{j, m}^{s}=\quad \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \begin{array}{lr}
q a b s_{j, m}^{s} \geq & q_{j, m}^{s} \\
q a b s_{j, m}^{s} \geq & -q_{j, m}^{s}
\end{array} \\
& \sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}= \\
& 2 \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}= \\
& \forall s \in \mathcal{S}, \forall m \in \mathcal{M}
\end{aligned}
$$

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons. - $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i, j) and r_{m}

$q_{j, m}^{s}=$	$\frac{1}{2}$	$\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$		$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$-q_{j, m}^{s}$		$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	2		$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$0 \leq$	$z_{i, j, m}^{s}$		$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \leq$	$q a b s_{j, m}^{s}$		$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$		$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \geq$	$q a b s_{j, m}^{s}$		$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2		$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i, j) and r_{m}

At ja chain with $\operatorname{ccw}(c w)$ triangles switches to a chain of $\mathrm{cw}(\mathrm{ccw})$ triangles $\mathrm{q}^{\mathrm{s} j, \mathrm{~m}}=-1 \quad\left(\mathrm{q}^{\mathrm{s}, \mathrm{m}} \mathrm{m}=1\right)$

$$
\begin{aligned}
& q_{j, m}^{s}= \\
& q a b s_{j, m}^{s} \geq \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \\
& q a b s_{j, m}^{s} \geq q_{j, m}^{s} \\
& \sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=-q_{j, m}^{s} \\
& 0 \leq \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& z_{i, j, m}^{s} \leq 2 \\
& z_{i, j, m}^{s} \leq \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s} \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M} \\
& \sum_{i, j, m}^{s} \forall s \in \mathcal{S}, \forall m \in \mathcal{M} \\
& \sum_{j \in V} z_{i, j, m}^{s}= \forall a b s_{j, m}^{s}
\end{aligned}
$$

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle ($\left.\mathrm{i}, \mathrm{j}\right)$ and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.
Interior vertex of chain of cw /ccw triangles has $\mathrm{q}^{\mathrm{s}, \mathrm{m}}=0$
At j a chain with ccw (cw) triangles switches to a chain of cw (ccw) triangles $\mathrm{q}^{\mathrm{s} j, \mathrm{~m}=-1 \quad\left(\mathrm{q}^{\mathrm{s}} \mathrm{j}, \mathrm{m}=1\right) ~}$ For a convex sector: sum of the $\left|\mathrm{q}^{\mathrm{s}}{ }_{j, m}\right|=2$ for all reference points

$q_{j, m}^{s}$	$=$	$\frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right)$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	2	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	$z_{i, j, m}^{s}$	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$0 \leq$	$q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \leq$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$		
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	

Convexity Constraints

- One reference point in each of the four colored cones: $r_{1}, \ldots, r_{4}\left(r=r_{m}\right.$, for some $m \in M=\{1,2,3,4\}$
- At least one of the r_{m} will result in a cw/ccw switch for non-convex polygons.
- $\mathrm{p}_{\mathrm{i}, \mathrm{j}, \mathrm{m}}$: sign of the triangle (i,j) and r_{m}

Assigns, for each sector, a value of $-1,0,1$ to each vertex.
Interior vertex of chain of cw /ccw triangles has $\mathrm{q}^{\mathrm{s}, \mathrm{m}}=0$
At j a chain with ccw (cw) triangles switches to a chain of cw (ccw) triangles $\mathrm{q}^{\mathrm{s} j, \mathrm{~m}=-1 \quad\left(\mathrm{q}^{\mathrm{s}} \mathrm{j}, \mathrm{m}=1\right) ~}$ For a convex sector: sum of the $\left|\mathrm{q}^{\mathrm{s}}{ }_{j, m}\right|=2$ for all reference points

$$
q_{j, m}^{s}=\quad \frac{1}{2}\left(\sum_{i:(i, j) \in E} p_{i, j, m} y_{i, j, s}-\sum_{l:(j, l) \in E} p_{j, l, m} y_{j, l, s}\right) \forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}
$$

$q a b s_{j, m}^{s} \geq$	$q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$q a b s_{j, m}^{s} \geq$	$-q_{j, m}^{s}$	$\forall s \in \mathcal{S}, \forall j \in V, \forall m \in \mathcal{M}$
$\sum_{i \in V} \sum_{j \in V} y_{i, j, s} \cdot q a b s_{j, m}^{s}=$	2	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$0 \leq$	$z_{i, j, m}^{s}$	$q a b s_{j, m}^{s}$
$z_{i, j, m}^{s} \leq$	$y_{i, j, s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
$z_{i, j, m}^{s} \leq$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$z_{i, j, m}^{s} \geq y_{i, j, s}-1+q a b s_{j, m}^{s}$	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	
$\sum_{i \in V} \sum_{j \in V} z_{i, j, m}^{s}=$	2	$\forall i, j \in V \forall s \in \mathcal{S}, \forall m \in \mathcal{M}$
	$\forall s \in \mathcal{S}, \forall m \in \mathcal{M}$	

Enumeration of Topologies

Enumeration of Topologies

Enumeration of Topologies

- Only few sectors needed in TMA.

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $\mathrm{C}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ (no interior conflict points).

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $\mathrm{C}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ (no interior conflict points).
* No limited (grid) edge directions
- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $\mathrm{C}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ (no interior conflict points).
* No limited (grid) edge directions
* \#Topologies increases rapidly with $|S|$

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $\mathrm{C}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ (no interior conflict points).
* No limited (grid) edge directions
* \#Topologies increases rapidly with $|S|$
* Solutions may be worse than the IP solutions w.r.t. constrained (e) (interior conflict points)

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $C_{0}=\{a, b, c, d\}$ (no interior conflict points).
* No limited (grid) edge directions
* \#Topologies increases rapidly with |S|
* Solutions may be worse than the IP solutions w.r.t. constrained (e) (interior conflict points)
* $|S|=2$: best chord that connects any two points on TMA boundary

Enumeration of Topologies

- Only few sectors needed in TMA.
- Only limited number of topologies for a given number of convex sectors.
- Adding convexity constraints to IP computationally expensive
\Rightarrow We compare IP results for Stockholm TMA to those obtained by computing workload balanced convex sectorizations by enumeration.
\Rightarrow For each topology we compute the best balanced solution that fulfils constraints $\mathrm{C}_{0}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ (no interior conflict points).
* No limited (grid) edge directions
* \#Topologies increases rapidly with |S|
* Solutions may be worse than the IP solutions w.r.t. constrained (e) (interior conflict points)
* $|S|=2$: best chord that connects any two points on TMA boundary
* $|S|=3$: location of four points

Experimental Study: Arlanda Airport

Experimental Study: Arlanda Airport

- Model was solved using AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux.

Experimental Study: Arlanda Airport

- Model was solved using AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux.
- Each instance was run until a solution with less than 1\% gap had not been found.
- Model was solved using AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux.
- Each instance was run until a solution with less than 1\% gap had not been found.
- The computation times varied from a few seconds up to several days.
- Model was solved using AMPL and CPLEX 12.6 on a single server with 24GB RAM and four kernels running on Linux.
- Each instance was run until a solution with less than 1\% gap had not been found.
- The computation times varied from a few seconds up to several days.
- More sectors, and the convexity constraints made the problem harder to solve.

Experimental Study: Arlanda Airport

(g)

(f)

All with $\mathrm{c}_{2}=0.6$ and $\mathrm{w}_{\mathrm{i}, \mathrm{j}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{j}}$. (a)-(f): $\gamma=0: 2,(\mathrm{~g}): \gamma=0: 8$.
(h)

Experimental Study: Arlanda Airport

(c)

(g)

(f)

All with $\mathrm{c}_{2}=0.6$ and $\mathrm{w}_{\mathrm{i}, \mathrm{j}}=\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}}$. (a)-(f): $\gamma=0: 2,(\mathrm{~g}): \gamma=0: 8$.
(h)
(a) Balanced task load

(a)

(c)
(e)

Topologies

(b)

All perfect taskload balance.
(a) Balanced task load
(b) Connected sectors
(c) Nice shape
(d) Convex sectors
(f)

$$
\mathrm{c}_{2}=0.95
$$

Conclusion/Outlook

Conclusion

Outlook

Conclusion

- Review of sectorization method that balances sector task load

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach
- Fine-grained view on the TMA

Outlook

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach
- Fine-grained view on the TMA

Outlook

- Allow usage of a few reflex vertices

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach
- Fine-grained view on the TMA

Outlook

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach
- Fine-grained view on the TMA

Outlook

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector
- Combine with MIP for SIDs and STARs to an integrated design

THANK YOU.

Conclusion

- Review of sectorization method that balances sector task load
- Extension by convex sectors
- Results for Stockholm TMA
- Comparison to convex sectorizations obtained by enumerating all possible topologies for the given \#sectors
- Highly flexible approach
- Fine-grained view on the TMA

Outlook

- Allow usage of a few reflex vertices
\Rightarrow limit the total deviation from a maximum interior degree of 180 of reflex vertices per sector
- Combine with MIP for SIDs and STARs to an integrated design

