Communications and Transport Systems Department of Science and Technology Linköping University

Fall 2017

Dr. Christiane Schmidt Leonid Sedov

TNSL20 - basic logistic algorithms Homework Set 4, 2017

Solutions are due October 10, 2017.

Question 1 (IMPLEMENTATION): Implement the algorithm that tests if a given set of vertices I is an independent set for a given graph G = (V, E) using the adjacency matrix of the graph. Pseudocode of the algorithm is as follows:

Algorithm 1: Test for independence
Input : Adjacency matrix A, set of vertices I
Output: Boolean value t (true if I is an independent set and false
otherwise)
1 Function is_independent_set (A, I)
2 t := true;
3 if $\underline{\text{length}(I) > 1}$ then
4 for $v_{index} = 1$ TO $length(I) - 1$ do
$5 v := I[v_{index}];$
6 for $w_{index} = v_{index} + 1$ TO $length(I)$ do
$7 w := I[w_{index}];$
$\mathbf{s} \qquad \qquad \mathbf{if} \ \underline{\mathrm{A}}[v][w] == 1 \ \mathbf{then}$
9 $t := false;$
10 end
11 end
12 end
13 end
14 return \underline{t} ;
15 end

Test your code on the adjacency matrix obtained from the Homework 2 Question 3 (b).

Question 2 (IMPLEMENTATION): Combine code from Homework 2 Question 3 and Homework 4 Question 1 in order to get a code that works with E and n as an input.

Algorithm 2: Test for independence	
Input : Edges E , number of vertices n	, set of vertices I
Output: Boolean value t (true if I is an	n independent set and false
otherwise)	
1 Function is_independent_set_without_adjacency_matrix (E, n, I)	
2 A := adjacency_matrix (E, n) ;	// algorithm from HW2 Q3
3 $t := is_independent_set (A, I);$	// algorithm from HW4 Q1
4 return \underline{t} ;	
5 end	