Design and Analysis of Algorithms Part 2 Approximation and online algorithms homework 5, 28.11.2018

Problem 1 (Greedy Set Cover Algorithm):

Apply the Greedy Set Cover Algorithm (Algorithm 2.3 from the lecture) to the following Set Cover instance:
$c\left(S_{i}\right)=\left|S_{i}\right|+1, U=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$, and
$S_{1}=\{1,2,3,4\}$
$S_{2}=\{5,6,7,8\}$
$S_{3}=\{9,10,11,12\}$
$S_{4}=\{13,14,15,16\}$
$S_{5}=\{17,18,19,20\}$
$S_{6}=\{1,2,3,5,6,7,9,10,11\}$
$S_{7}=\{14,15,16,17,18,19\}$
$S_{8}=\{12,13,14,15\}$
$S_{9}=\{4,5,6\}$
$S_{10}=\{7,8,9\}$
$S_{11}=\{18,19,20\}$.
In case the maximum in step 2 is not uniquely defined, choose set S_{i} with minimum index.
What is the value of the computed set cover?
Can you give a better set cover?
Problem 2 (Maximum Coverage Problem (MCP)):
Given: $\mathcal{S}=\left\{S_{j} \mid j \in J\right\},\left(S_{j} \subseteq U=\{1, \ldots, n\}\right)$, positive weights w_{i} of the elements, an integer K.
Task: Find $X \subseteq J$ with $|X|=k$, such that $\sum_{i \in \cup_{j \in X} S_{j}} w_{i}$ is maximal.
Let us denote $w(M)=\sum_{i \in M} w_{i}$.
Greedy algorithm for MCP:
(1) Let $X:=\varnothing$
(2) Choose $j \in J$, such that $w\left(\cup_{i \in X \cup\{j\}} S_{i}\right)-w\left(\cup_{i \in X} S_{i}\right)$ is maximal.
(3) Set $X=X \cup\{j\}$, continue unitl $|X|=K$.

Show: The greedy algorithm for MCP is an $\left(1-\left(1-\frac{1}{k}\right)^{k}\right.$-approximation algorithm. (Because ($1-\left(1-\frac{1}{k}\right)^{k}<1-\frac{1}{e}$, this implies a $1-\frac{1}{e}$-approximaiton.)

v_{3}

Figure 1: Graph H. An MST rooted in v_{1} is shown in bold.

Problem 3 (4/3-approximation for (1,2)-TSP):
Consider a complete undirected graph G in which all edges have length either 1 or 2 (G satisfies the triangle inequality!). Give a $4 / 3$-approximation for this special TSP variant.
Hint: Start with a minimum 2-matching in G. A 2-matching is a subset M_{2} of edges so that every vertex in G is incident to exactly two edges in M_{2}. Note: a 2-matching can be computed in polynomial time.

Problem 4 (Bottleneck TSP):

Take a graph G with edge costs that satisfy the triangle inequality. We want to find a Hamiltonian cycle C for which the maximum cost edge in C is minimized.
(a) Give a 3-approximation algorithm for this problem.

Hints: (i) Consider the MST of G. (ii) Think about "appropriate" shortcuts.
(b) Apply your algorithm to the graph H from Figure 1, using the given MST.

