6.2 List Scheduling

6.12 List Scheduling Problem

Input: a list of n processes $P_{1} \ldots P_{n}$ with execution times $p_{j}>0,1 \leq j \leq n, m$ processors M_{1}, \ldots, M_{m}. Output: Assignment of the n processes to the processors: Each process needs an uninterrupted execution time of p_{j} on one of the m processors. Each processor can handle at most one process at a time.

Algorithmus 6.13 List Scheduling
WHILE L¥ \varnothing
$P=\operatorname{first}(L)$
Wait until a processor M becomes free
Assign P to processor M
END WHILE

Theorem 6.14:

The list scheduling algorithm 6.13 is $(2-1 / \mathrm{m})$-competitive.
Proof:
Let s_{j} and e_{j} be the start and end time of process j in the order produced by algorithm 6.13.
Let P_{k} be the process that ends last, i.e., $\mathrm{e}_{\mathrm{k}}=\max \left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$.
\Longrightarrow No processor is free before s_{k} (otherwise P_{k} would have been assigned to that processor before s_{k})

Abbildung 8.1: Die Analyse von Grahams Scheduling Algorithmus.
Let CLs be the time used to process all processes by algorithm 6.13, and Copt the optimal time.
$\Longrightarrow 1$. Copt $\geq \mathrm{p}_{\mathrm{k}}$
2. $C_{O P T} \geq \frac{1}{m} \sum_{j=1}^{n} p_{j}$ (lower bound for best possible situation of all processes running in parallel until the end.

$$
\begin{aligned}
\Longrightarrow C_{L S}=e_{k}=s_{k}+p_{k} & \leq \frac{1}{m} \sum_{j \neq k} p_{j}+p_{k}=\frac{1}{m} \sum j=1^{n} p_{j}+\left(1-\frac{1}{m}\right) p_{k} \\
& \leq C_{O P T}+\left(1-\frac{1}{m}\right) C_{O P T}=\left(2-\frac{1}{m}\right) C_{O P T}
\end{aligned}
$$

Algorithm 6.13 is a greedy algorithm.
Greedy does not always lead to a good result:
Consider the ski rental problem (rental fee $50 €$, price $500 €$).
If we'd know beforehand that we'll ski at most 9 times, we'll rent.
For more ski trips, we would buy skies.
Assume you rent ($\mathrm{m}-1$) times, and buy for the m-th skiing trip.
\Longrightarrow we pay (m-1)*50 +500€
If we know how many skiing trips we make, we pay at most min\{m*50,500\}€ The ratio has the minimum at $\mathrm{m}=10$, with a competitive ratio of 1.9
\Longrightarrow There is no online algorithm with a competitive ratio better than 1.9
The trivial algorithm of renting 9 times and buying for the 10th trip achieves this ratio The greedy strategy would rent skies every time
\Longrightarrow The greedy strategy would lead to an arbitrarily bad competitive ratio.
6.3 Randomized Online Algorithms

We considered deterministic online algorithms so far.
Disadvantage: for, e.g., paging the adversary can determine the page order a priori, such that the online algorithm will occur a page fault at every request.
If the algorithm can hide its inner state from the adversary, it would not be possible to create such worst-case requests.
One option to do so are randomised algorithm (access to a random number source/throwing an imaginary coin). Then the cost of the randomised algorithm depends on the random numbers
\Longrightarrow We consider the expected value of the cost to measure the algorithm
\Longrightarrow A randomised algorithm is called c-competitive if the expected cost is at most c-times higher than the cost
of the adversary
We need to distinguish different adversaries:

- Oblivious adversary: Does not know about the random decisions of the algorithm.
- A randomised online algorithm A is c-competitive against an oblivious adversary G, if $E\left[C_{A}(\sigma)\right] \leq \mathrm{c}$ Copt $(\sigma)+a \quad$ (expected value over all random decisions of A; the oblivious adversary must choose σ in the beginning, hence, no expected value on the right hand side)
- Adaptive adversary: All random decisions that the algorithms performs after requests are told to the adversary.
- The request σ_{t} depends on the answers given by the online algorithm so far
\Rightarrow We need another definition for competitiveness
$\Rightarrow \sigma=\sigma(A, G)$ with A-online algorithm, G-adversary
\Rightarrow Request order σ is a random variable
\Rightarrow A randomised online algorithm is c-competitive against an adaptive online adversary \mathbf{G}, if $E\left[C_{a}(\sigma(A, G))\right] \leq c E\left[C_{A^{\prime}}(\sigma(A, G))\right]+a$. For all adversaries G, where G may only use an online algorithm A^{\prime} to answer $\sigma(A, G)$
\Rightarrow A randomised online algorithm is c-competitive against an adaptive offline adversary \mathbf{G}, if $E\left[C_{A}(\sigma(A, G))\right] \leq \operatorname{c} E[\operatorname{Copt}(\sigma(A, G))]+a$. - here the adversary can wait until all of $\sigma(A, G)$ is created and then answer it with OPT.

We consider an oblivious adversary.

Algorithm 6.15 Marking

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full
THEN load σ_{i} to C ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed)
Delete sj and load σ_{i}
Mark σ_{i}
Algorithm 6.15 follows the general scheme for exchanging pages, the important step is choosing a random page from the unmarked pages.

Without proof: The optimal offline strategy MIN replaces the page that was not used for the longest time (also greedy).

Algorithm 6.15 Marking

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full

THEN load σ_{i} to C

ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed)
Delete sj and load σ_{i}
Mark σ_{i}

Theorem 6.16 [A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, N. Young: Competitive paging algorithms. Journal of Algorithms 12, 1991, 685-699]:
Algorithm 6.15 is $2 \mathrm{H}_{k}$-competitive against every oblivious adversary.
H_{k} : k-th harmonic number, $H_{k}=1+1 / 2+1 / 3+\ldots+1 / k<1+\ln (k)$
Proof: We denote the cost of algorithm 6.15 on request sequence σ by $\mathrm{C}_{\mathrm{m}}(\sigma)$. We need to show that for all request sequences σ we have: $\mathrm{E}\left[\mathrm{C}_{\mathrm{M}}(\sigma)\right] \leq 2 \mathrm{H}_{k} \mathrm{C}_{\operatorname{Min}}(\sigma)$

To simplify the proof, we assume: Marking and MIN start both with empty cache. (Otherwise we would need to add k on the right hand side.)

Strategy:

1. Upper bound for cost of algorithm 6.15
2. Lower bound for cost of MIN.

Algorithm 6.15 Marking

Input: a page request σ_{i}
Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full
THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed)
Delete sj and load oi
Mark σ_{i}

1. Upper bound for cost of algorithm 6.15:

We split o into phases (again):

- Phase 0 starts with the first page request
- Phase i starts after phase $i-1$ and ends before the request of the $(\mathrm{k}-1)$ st page in phase i
- k pages of phase m are denoted by Pm_{m}

Abbildung 8.7: Die Einteilung von σ in Phasen.

Algorithm 6.15 Marking

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full
THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load σ_{i}

[^0]1. Upper bound for cost of algorithm 6.15:

Observation 1: The split of σ into phases depends only on σ and not on the algorithm we consider.
Observation 2: At the end of each phase m, all pages are marked, and there are exactly the k pages requested in phase m in the cache.
Proof: by induction.
Obviously holds for phase 0, as exactly k pages are loaded into the cache.
Assume that also at the end of phase i-1 all pages are marked, and exactly the pages requested in phase i-1 are in the cache.
\Longrightarrow In step 5 of algorithm 6.15 all markings are deleted by requesting page (k-1)
In phase i one after another k pages are marked
\Longrightarrow Shortly before the end of the phase all pages are marked again, and exactly those pages requested in phase i are in the cache.

Observation 3: At most the first page request for a page in a phase results in a page fault. (After the first request the page does not get deleted in that phase.)
\Longrightarrow We can restrict to consider one phase m for algorithm 6.15.

Algorithm 6.15 Marking

Abbildung 8.8: Phasen $m-1$ und m von Marking.

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full
THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load σ_{i}
Mark σ_{i}

1. Upper bound for cost of algorithm 6.15:

We consider the k different pages $\mathrm{s}_{1} \ldots \mathrm{sk}_{\mathrm{k}}$ requested in phase m .
Observation $3 \Longrightarrow$ each of these pages results in a page fault at most at the first request in phase m
\Longrightarrow We only need to consider the page requests that request a page for the first time
Let σ_{t} be a page reference in P_{m} that requests a page from $s_{1} \ldots s_{k}$ for the first time.
We distinguish two categories of requests:

1. σ_{t} is an old request, if σ_{t} was requested also in $\mathrm{P}_{\mathrm{m}-1}$
2. σ_{t} is a fresh request, if it was not requested in $\mathrm{P}_{\mathrm{m}-1}$

Obviously, all fresh requests result in a page fault.
\Longrightarrow If σ_{t} is a fresh request: $\mathrm{E}\left[\mathrm{C}_{\mathrm{m}}\left(\sigma_{\mathrm{t}}\right)\right]=1$
(Holds for all marking page exchange algorithms, as the cache is filled with old pages at the end of each phase.)
\Longrightarrow Only interested in the expected cost of an old request

Algorithm 6.15 Marking

Abbildung 8.8: Phasen $m-1$ und m von Marking.

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load oi
Mark σ_{i}

1. Upper bound for cost of algorithm 6.15: expected cost of an old request
Let σ_{t} be an old reference, and assume before σ_{t} there were f fresh and v old requests, S_{t} the cache state at time t
$\Longrightarrow E\left[C_{M}\left(\sigma_{t}\right)\right]=0 * \operatorname{Pr}\left(\sigma_{t} \in S_{t}\right)+1^{*} \operatorname{Pr}\left(\sigma_{t} \notin S_{t}\right)$

$$
=\operatorname{Pr}\left(\sigma_{t} \notin S_{t}\right)
$$

$$
=1-\operatorname{Pr}\left(\sigma_{t} \in S_{t}\right)
$$

\Longrightarrow We need to determine the probability that σ_{t} was in the cache at time t
Page σ_{t} was in the cache at the start of phase m, as it is an old request
$\operatorname{Pr}\left(\sigma_{t} \in S_{t}\right)$ is the ratio between the number of cache states that contain σ_{t}, and the number of all possible cache states:
$\operatorname{Pr}\left(\sigma_{t} \in S_{t}\right)=\#\left(S_{t}\right.$ with $\left.\sigma_{t} \in S_{t}\right) / \#\left(S_{t}\right)$

Algorithm 6.15 Marking

Abbildung 8.8: Phasen $m-1$ und m von Marking.

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN

IF C is not full

THEN load σ_{i} to C

ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load σ_{i}
Mark σ_{i}

1. Upper bound for cost of algorithm 6.15:

We consider the following figure to determine the number of possible cache states:
$f+v$ pages were requested and marked before t in phase m
$\Longrightarrow \mathrm{k}-(\mathrm{f}+\mathrm{v})$ free for storing pages
In those spaces we can have all k pages that were in the cache at the start of phase m, except for the v already requested pages.
\Longrightarrow There are as many cache states S_{t} as there exist possibilities to distribute the not yet $k-v$ referenced pages from phase $\mathrm{m}-1$ to the $k-(f+v)$

Abbildung 8.9: Die Belegung des Speichers zum Zeitpunkt t.

$$
\#\left(S_{t}\right)=\binom{k-v}{k-f-v}
$$

Algorithm 6.15 Marking

Abbildung 8.8: Phasen $m-1$ und m von Marking.

Input: a page request σ_{i}
Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full
THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load σ_{i}
Mark σ_{i}

1. Upper bound for cost of algorithm 6.15:

We consider the following figure to determine the number of possible cache states for which σ_{t} is in S_{t} : σ_{t} can be considered as an old request, and we obtain

$$
\begin{aligned}
& \#\left(S_{t} \operatorname{mit} \sigma_{t} \in S_{t}\right)=\binom{k-v-1}{k-f-v-1} \\
E\left[C_{M}\left(\sigma_{t}\right)\right] & =1-\frac{\#\left(S_{t} \operatorname{mit} \sigma_{t} \in S_{t}\right)}{\#\left(S_{t}\right)} \\
& =1-\frac{\binom{k-v-1}{k-f-v-1}}{\binom{k-v}{k-f-v}} \\
& =1-\frac{(k-v-1)!}{(k-f-v-1)!f!} \cdot \frac{(k-f-v)!f!}{(k-v)!} \\
& =1-\frac{k-f-v}{k-v} \\
& =\frac{f}{k-v} .
\end{aligned}
$$

Algorithm 6.15 Marking

Abbildung 8.8: Phasen $m-1$ und m von Marking.

Input: a page request σ_{i} Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN

IF C is not full

THEN load σ_{i} to C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed) Delete sj and load oi

Mark бi

1. Upper bound for cost of algorithm 6.15:
\Longrightarrow The expected cost for an old request σ_{t} is higher for more fresh references before σ_{t}.
Let f_{i} be the number of fresh requests in phase i
\Longrightarrow Expected cost for the $\mathrm{k}-\mathrm{f}_{\mathrm{i}}$ old requests in phase i :

$$
V_{i}=\frac{f_{i}}{k}+\frac{f_{i}}{k-1}+\cdots+\frac{f_{i}}{k-\left(k-f_{i}-1\right)} .
$$

\Longrightarrow total cost for algorithm 6.15 in phase i for f_{i} fresh and k - f_{i} old requests:

$$
f_{i}+V_{i}=f_{i}\left(1+\frac{1}{f_{i}+1}+\cdots+\frac{1}{k}\right) \leq f_{i} H_{k}
$$

\Longrightarrow Summing over all phases of $\sigma: \quad E\left[C_{M}(\sigma)\right] \leq H_{k} \sum_{i=1}^{n} f_{i}$.

Proof:

2. Lower bound for cost of MIN.

Let Δ_{i} be the number of pages at the end of phase $\mathrm{i}-1$ that are in the cache of MIN , but not in the cache of alg. 6.15 .

We consider MIN at the begin of phase i, i.e., before the first page request: Assume, the number f_{i} of fresh requests in phase i is larger than Δ_{i}. As the fresh requests were not in the cache of alg. 6.15 at the begin of phase i, they are not part of the $k-\Delta_{i}$ pages of MIN. \Longrightarrow Each of the additional fresh requests results in a page fault $\Longrightarrow C_{\text {MIN }}$ (Phase i) $\geq f_{i}-\Delta_{i}$

Abbildung 8.11: Die Situation von MIN zu Beginn der Phase i.

Proof:

2. Lower bound for cost of MIN.

Consider MIN at the end of phase i:

In phase i k different pages are requested, all of which are in the Cache of alg. 6.15 by observation 2.
\Longrightarrow Number of different pages in MIN's cache at some time during phase i is at least $k+\Delta_{i+1}$
\Longrightarrow As at most k pages can be the cache at one time:
$\mathrm{C}_{\mathrm{min}}\left(\right.$ Phase i) $\geq \Delta_{i+1}$

Abbildung 8.12: Die Situation von MIN am Ende der Phase i.
\Longrightarrow. Cmin $\left._{\text {mase }} \mathrm{i}\right) \geq \max \left(\mathrm{f}_{\mathrm{i}}-\Delta_{i}, \Delta_{i+1}\right) \geq 1 / 2\left(\mathrm{f}_{\mathrm{i}}-\Delta_{i}+\Delta_{i+1}\right)$
\Longrightarrow Summing over all phases (most Δ_{i} cancel out, and $\Delta_{1}=0, \Delta_{n+1}>0$):

$$
\begin{aligned}
& C_{M I N}(\sigma) \geq \frac{1}{2}\left(f_{1}-\Delta_{1}+\Delta_{2}+f_{2}-\Delta_{2}+\Delta_{3}+\cdots+\Delta_{n+1}\right) \\
& \geq \frac{1}{2}\left(\sum_{i=1}^{n} f_{i}-\Delta_{1}+\Delta_{n+1}\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n} f_{i} \\
& \Longrightarrow E\left[C_{M}(\sigma)\right] \leq H_{k} \sum_{i=1}^{n} f_{i}=2 H_{k}\left(\frac{1}{2} \sum_{i=1}^{n} f_{i}\right) \leq 2 H_{k} C_{M I N}(\sigma)
\end{aligned}
$$

Algorithm 6.15 Marking

Input: a page request σ_{i}
Output: an evicted page
IF $\sigma_{i} \notin$ cache C THEN
IF C is not full

THEN load σ_{i} to C

ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s_{j} (uniformly distributed)
Delete sj and load oi
Mark oi

Theorem 6.17:

Let A be a randomised paging algorithm. There exists an arbitrary long page sequence σ such that $\mathrm{C}_{\mathrm{A}}(\sigma) \geq \mathrm{H}_{\mathrm{k}} \mathrm{C}_{\mathrm{MIN}}(\sigma)$.

That is, apart for the factor of two, algorithm 6.15 is optimal.
6.3 Online Search

[^0]: Mark σ_{i}

