
DAA2-2018 !1

6.2 List Scheduling

DAA2-2018 !2

6.12 List Scheduling Problem
Input: a list of n processes P1…Pn with execution times pj > 0, 1 ≤ j ≤ n, m processors M1, …, Mm.
Output: Assignment of the n processes to the processors: Each process needs an uninterrupted
execution time of pj on one of the m processors. Each processor can handle at most one process at a
time.

Algorithmus 6.13 List Scheduling
WHILE L≠∅

P= first(L)
Wait until a processor M becomes free
Assign P to processor M

END WHILE

DAA2-2018 !3

Theorem 6.14:
The list scheduling algorithm 6.13 is (2-1/m)-competitive.

Proof:
Let sj and ej be the start and end time of process j in the order produced by algorithm 6.13.
Let Pk be the process that ends last, i.e., ek = max{e1, …, en}.
⟹No processor is free before sk (otherwise Pk would have been assigned to that processor before
sk)

Let CLS be the time used to process all processes by algorithm 6.13, and COPT the optimal time.
⟹ 1. COPT ≥ pk

 2. (lower bound for best possible situation of all processes running in
parallel until the end.

⟹

COPT � 1
m

�n
j=1 pj

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

CLS = ek = sk + pk � 1
m

�
j �=k pj + pk = 1

m

�
j = 1npj + (1 � 1

m)pk

� COPT + (1 � 1
m)COPT = (2 � 1

m)COPT
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

DAA2-2018 !4

Algorithm 6.13 is a greedy algorithm.
Greedy does not always lead to a good result:
Consider the ski rental problem (rental fee 50€, price 500€).
If we’d know beforehand that we’ll ski at most 9 times, we’ll rent.
For more ski trips, we would buy skies.
Assume you rent (m-1) times, and buy for the m-th skiing trip.
⟹ we pay (m-1)*50 + 500€
If we know how many skiing trips we make, we pay at most min{m*50, 500}€
The ratio has the minimum at m=10, with a competitive ratio of 1.9
⟹ There is no online algorithm with a competitive ratio better than 1.9
The trivial algorithm of renting 9 times and buying for the 10th trip achieves this ratio
The greedy strategy would rent skies every time
⟹ The greedy strategy would lead to an arbitrarily bad competitive ratio.

DAA2-2018 !5

6.3 Randomized Online Algorithms

DAA2-2018 !6

We considered deterministic online algorithms so far.
Disadvantage: for, e.g., paging the adversary can determine the page order a priori, such that the online
algorithm will occur a page fault at every request.
If the algorithm can hide its inner state from the adversary, it would not be possible to create such worst-case
requests.
One option to do so are randomised algorithm (access to a random number source/throwing an imaginary coin).
Then the cost of the randomised algorithm depends on the random numbers
⟹ We consider the expected value of the cost to measure the algorithm
⟹ A randomised algorithm is called c-competitive if the expected cost is at most c-times higher than the cost
of the adversary
We need to distinguish different adversaries:
• Oblivious adversary: Does not know about the random decisions of the algorithm.

• A randomised online algorithm A is c-competitive against an oblivious adversary G, if
E[CA(σ)] ≤ c COPT (σ) + α (expected value over all random decisions of A; the oblivious adversary
must choose σ in the beginning, hence, no expected value on the right hand side)

• Adaptive adversary: All random decisions that the algorithms performs after requests are told to the
adversary.

• The request σt depends on the answers given by the online algorithm so far
➡ We need another definition for competitiveness
➡ σ=σ(A,G) with A-online algorithm, G-adversary
➡ Request order σ is a random variable
➡A randomised online algorithm is c-competitive against an adaptive online adversary G, if

E[Ca(σ(A,G))] ≤ c E[CA’(σ(A,G))] + α. For all adversaries G, where G may only use an online algorithm A’ to
answer σ(A,G)

➡A randomised online algorithm is c-competitive against an adaptive offline adversary G, if
E[CA(σ(A,G))] ≤ c E[COPT(σ(A,G))] + α. - here the adversary can wait until all of σ(A,G) is created and then
answer it with OPT.

DAA2-2018 !7

We consider an oblivious adversary.

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

Algorithm 6.15 follows the general scheme for exchanging pages, the important step is choosing a random
page from the unmarked pages.

Without proof: The optimal offline strategy MIN replaces the page that was not used for the longest time (also
greedy).

DAA2-2018 !8

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

Theorem 6.16 [A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, N. Young: Competitive paging algorithms.
Journal of Algorithms 12, 1991, 685 - 699]:
Algorithm 6.15 is 2Hk-competitive against every oblivious adversary.

Hk: k-th harmonic number, Hk=1+1/2+1/3+…+1/k < 1 + ln(k)

Proof: We denote the cost of algorithm 6.15 on request sequence σ by CM(σ).
We need to show that for all request sequences σ we have: E[CM(σ)] ≤ 2HkCMIN(σ)

To simplify the proof, we assume: Marking and MIN start both with empty cache. (Otherwise we would need to
add k on the right hand side.)

Strategy:
1. Upper bound for cost of algorithm 6.15
2. Lower bound for cost of MIN.

DAA2-2018 !9

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
We split σ into phases (again):
• Phase 0 starts with the first page request
• Phase i starts after phase i-1 and ends before the request of the (k-1)st page in phase i
• k pages of phase m are denoted by Pm

DAA2-2018 !10

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
Observation 1: The split of σ into phases depends only on σ and not on the algorithm we consider.
Observation 2: At the end of each phase m, all pages are marked, and there are exactly the k pages requested
in phase m in the cache.
Proof: by induction.
Obviously holds for phase 0, as exactly k pages are loaded into the cache.
Assume that also at the end of phase i-1 all pages are marked, and exactly the pages requested in phase i-1
are in the cache.
⟹ In step 5 of algorithm 6.15 all markings are deleted by requesting page (k-1)
In phase i one after another k pages are marked
⟹ Shortly before the end of the phase all pages are marked again, and exactly those pages requested in
phase i are in the cache.

Observation 3: At most the first page request for a page in a phase results in a page fault.
(After the first request the page does not get deleted in that phase.)

⟹ We can restrict to consider one phase m for algorithm 6.15.

DAA2-2018 !11

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
We consider the k different pages s1…sk requested in phase m.
Observation 3 ⟹ each of these pages results in a page fault at most at the first request in phase m
⟹We only need to consider the page requests that request a page for the first time
Let σt be a page reference in Pm that requests a page from s1…sk for the first time.
We distinguish two categories of requests:
1. σt is an old request, if σt was requested also in Pm-1
2. σt is a fresh request, if it was not requested in Pm-1
Obviously, all fresh requests result in a page fault.
⟹ If σt is a fresh request: E[CM(σt)]=1
(Holds for all marking page exchange algorithms, as the cache is filled with old pages at the end of each
phase.)
⟹ Only interested in the expected cost of an old request

DAA2-2018 !12

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
expected cost of an old request
Let σt be an old reference, and assume before σt there were f fresh and v old requests, St the cache state at time
t
⟹E[CM(σt)] = 0*Pr(σt ∈ St) + 1*Pr(σt∉St)
 = Pr(σt∉St)
 = 1-Pr(σt ∈ St)
⟹We need to determine the probability that σt was in the cache at time t
Page σt was in the cache at the start of phase m, as it is an old request
Pr(σt ∈ St) is the ratio between the number of cache states that contain σt, and the number of all possible cache
states:
Pr(σt ∈ St) = #(St with σt ∈ St)/ #(St)

DAA2-2018 !13

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
We consider the following figure to determine the number of possible cache states:
f+v pages were requested and marked before t in phase m
⟹ k-(f+v) free for storing pages
In those spaces we can have all k pages that were in the
cache at the start of phase m, except for the v already
requested pages.
⟹ There are as many cache states St as there exist
possibilities to distribute the not yet k-v referenced pages
from phase m-1 to the k-(f+v)
⟹

DAA2-2018 !14

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

1. Upper bound for cost of algorithm 6.15:
We consider the following figure to determine the number of possible cache states for which σt is in St:
σt can be considered as an old request, and we obtain

DAA2-2018 !15

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi1. Upper bound for cost of algorithm 6.15:
⟹The expected cost for an old request σt is higher for more fresh references before σt.
Let fi be the number of fresh requests in phase i
⟹Expected cost for the k-fi old requests in phase i:

⟹ total cost for algorithm 6.15 in phase i for fi fresh and k-fi old requests:

⟹ Summing over all phases of σ:

DAA2-2018 !16

Proof:
2. Lower bound for cost of MIN.
Let Δi be the number of pages at the end of phase i-1 that are in the cache of MIN, but not in the cache of alg.
6.15.
We consider MIN at the begin of phase i, i.e., before the first page request:
Assume, the number fi of fresh requests in phase i is larger than Δi.
As the fresh requests were not in the cache of alg. 6.15 at the
begin of phase i, they are not part of the k-Δi pages of MIN.
⟹ Each of the additional fresh requests results in a page fault
⟹ CMIN(Phase i) ≥ fi - Δi

DAA2-2018 !17

Proof:
2. Lower bound for cost of MIN.
Consider MIN at the end of phase i:
In phase i k different pages are requested, all of which are in the
Cache of alg. 6.15 by observation 2.
⟹ Number of different pages in MIN’s cache at some time
during phase i is at least k+Δi+1
⟹ As at most k pages can be the cache at one time:

CMIN(Phase i) ≥ Δi+1

⟹. CMIN(Phase i) ≥ max(fi-Δi, Δi+1) ≥ 1/2 (fi-Δi + Δi+1)
⟹ Summing over all phases (most Δi cancel out, and Δ1=0, Δn+1>0):

⟹

DAA2-2018 !18

Algorithm 6.15 Marking
Input: a page request σi
Output: an evicted page
IF σi ∉ cache C THEN

IF C is not full
THEN load σi to C
ELSE IF all pages are marked

THEN delete all markings
Choose a random unmarked page sj (uniformly distributed)
Delete sj and load σi

Mark σi

Theorem 6.17:
Let A be a randomised paging algorithm. There exists an arbitrary long page sequence σ such that
CA(σ)≥HkCMIN(σ).

That is, apart for the factor of two, algorithm 6.15 is optimal.

DAA2-2018 !19

6.3 Online Search

DAA2-2018 !20

