Design and Analysis of Algorithms Part 1 Mathematical tools and Network problems homework 2, 14.11.2019

Problem 1 (Trees):
(a) Prove Theorem 1.61 from the lecture.
(b) Prove Theorem 1.62 from the lecture.
(c) Prove Corollary 1.64 from the lecture.

Problem 2 (Directed cycles and directed cuts):
Show:
In a digraph G, each edge belongs either to a (directed) cycle or to a directed cut. Moreover, the following statements are equivalent:
(a) G ist strongly connected.
(b) G contains no directed cut.
(c) G is connected and each edge of G belongs to a cycle.
(Hint: Take a look at the statements you proved in Problem 2.)

Problem 3 (Best-case running time for quicksort):
Proof Lemma 3.12 from the lecture, that is, the best-case running time for quicksort
Problem 4 (Heap Sort):
Prepare a 10 minute presentation of heapsort: the algorithm, its correctness and runnning time.

Problem 5 (Merge sort):
Sort the sequence (33, 14, 7, 9, 2, 11, 45, 21) using merge sort. Give the intermediate steps in appropriate form.

Problem 6 (Mastertheorem):

a) Determine the asymptotic growth of the following recursion using the master theorem
$U(n)=4 \cdot U\left(\frac{n}{3}\right)+17 \cdot n^{2}+20 \cdot U\left(\frac{n}{6}\right)$.
Determine the value of all parameters used in the master theorem.
b) Determine the asymptotic growth of the following recursion using the master theorem
$V(n)=14 \cdot V\left(\frac{n}{36}\right)+23 n+12 \cdot V\left(\frac{n}{24}\right)+V\left(\frac{n}{10}\right)$.
Determine the value of all parameters used in the master theorem.
c) Determine the asymptotic growth of the following recursion using the master theorem
$T(n)=49 \cdot T\left(\frac{n}{7}\right)+42 n$.
Determine the value of all parameters used in the master theorem.

Problem 7 (Quicksort):

Sort the numbers in the following array using the algorithm quicksort presented in the lecture.

$$
A[1]=14 \quad A[2]=3 \quad A[3]=7 \quad A[4]=1 \quad A[5]=2
$$

The reference element should be chosen as in the lecture (that is, $A[r]$). Give the array after each swap operation. Give the intermediate steps from Quicksort- and Partition calls.

Problem 8 (The Kevin Bacon oracle):

The Kevn Bacon oracle is based on the actor graph G : actors are given as vertices. Two actor vertices are connected by an edge if they appeared in a movie together. The vertex of Kevin Bacon has value 0; the Kevin-Bacon number (KBN) of another actor is the length of a shortest path in G. (Tom Hanks played with Kevin Bacon in Apollo 13, thus, he has Kevin-Bacon number 1.)
The oracle is available here: http://oracleofbacon.org/. The movie data it is based on is taken from the Internet Movie Database: http://www.imdb.com.
Our questions:
(a) Describe a strategy to definitely find an actor with a KBN as high as possible in G, even if you've never heard of Hollywood. On which graph algorithm is this strategy based?
(b) Find a vertex with KBN at least 4.

Problem 9 (Eulerian Path):

Abbildung 1: Euler on his way home!

Find a Eulerian path in the graph from Figure 1 or show that none exists.

Problem 10 (BFS and DFS):

Abbildung 2: The graph G.
a) Apply BFS with start vertex v_{1} to graph G from Figure 2.
b) Apply DFS with start vertex v_{1} to graph G from Figure 2.
c) Give the adjacency list for G.
(Ad a) and b): If at any time there is more than one vertex to choose from, use the one with the smallest index.)

Problem 11 (BFS and DFS in trees):

Construct an algorithm that determines whether an arbitrary given graph $G=(V, E)$ is a tree based on
(a) DFS
(b) BFS

Problem 12 (Trees and Leaves):

Show that (also during winter) each (undirected) tree has a leaf. (Hint: In an undirected tree a leaf is defined as a vertex of degree 1.)

Problem 13 (BFS):

Let $G=(V, E)$ be a graph and $s \in V$ a vertex; for an arbitrary vertex $x \in V$ let $d(s, x)$ denote the length of a shortest path from s to x. Let $e=\{u, v\} \in E$ be an edge.
a) Prove: $d(s, v) \leq d(s, u)+1$.
b) Prove or disprove: $d(s, u) \leq d(s, v)+1$.
c) Does $d(s, v)=d(s, u)+1$ oder $d(s, u)=d(s, v)+1$ always hold?

Problem 14 (Forests and Connected Components):

Show: Given a forest with n vertices, m edges and p connected components, then $n=$ $m+p$ holds.

Problem 15 (Kruskal):

Determine an MST using Kruskal's algorithm. Give the edges in the order in which they are included to the tree, and draw the resulting solution to the problem. Tie breaking: if in any step several edges could be chosen, choose the one with the smallest edge index.

We assume that we write edges as $e=\left(v_{i}, v_{j}\right)$ with $i<j$.
IMPORTANT: To obtain a runtime of $O(m \log n)$, the data structure presented in the seminar can be used. Give the state of the data structure after each edge insertion.
(Note: if there is more than one possibility to add an edge, choose the edge that runs from the vertex with lower index to the vertex with higher index.)

