Matroid Theory & Greedy Algorithm

Nisha Mishra & Kristofer Krus

February 28, 2020

Outline

Independence Systems

2 Matroids

- Matroids: Definition
- Matroids: Examples
- 3 Bases, circuits and rank
 - Bases and related theorems

5 Duality

- Duality of Independence systems
- Matroid Duality
- 6 The Greedy Algorithm
 - 7 Proof of greedy optimality

- A set of items
- You can choose an arbitrary number of those items (i.e. a subset)
- Some property that holds when no items have been chosen (i.e. the empty subset)
- As more items are chosen, that property can become broken, but can never become unbroken again

3/18

Some examples of Independence systems are-

- A graph G and the family of ...
 - ... all planar subgraphs of G
 - ... all matchings for G
 - ... all cliques on G
- A set of objects S and the family of all subsets of S that fit into some given knapsack

A set system (E, \Im) , where E is a finite set and \Im is a set of subsets of E, is an independence system if (IS.1) $\emptyset \in \Im$ (IS.2) $I \in \Im$, $J \subset I \implies J \in \Im$

The elements of \Im are called **independent**, the elements of $2^E \setminus \Im$ are called **dependent**.

Theorem

Let (E,\Im) be an independence system, then the following statements are equivalent-

- If $X, Y \in \mathfrak{S}$ and |X| > |Y| then there is an $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathfrak{S}$.
- 2 If $X, Y \in \mathfrak{S}$ and |X| = |Y| + 1, then there is an $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathfrak{S}$.
- **③** For each $X \subseteq E$, all bases of X has the same cardinality.

An independence system is a **matroid** if $X, Y \in \Im$ and |X| > |Y|, then there is an $x \in X \setminus Y$ with $Y \cup \{x\} \in \Im$

This property is known as the augmentation or exchange property

Some examples of matroids are-

- A graph G and the family of all subgraphs of G that are forests (a.k.a. a graphic matroid).
- A set of vectors V and the family of subsets of V in which all vectors are linearly independent.
- All matroids are independence system but not all independence systems are matroids. For example matchings in a graph.

A base is a maximal independent set.

Definition

A circuit is a minimal dependent (i.e. not independent) set.

Definition

Let (E, \Im) be an independence system. For $X \subseteq E$, we define the rank of X by $r(X) := max\{|Y| : Y \subseteq X, Y \in \Im\}.$

The rank of a matroid is the maximum size of an independent set in the matroid.

All bases have the same cardinality (proof!).

A circuits don't necessarily have the same cardinality (give example).

Theorem

Let E be a finite set and $\mathcal{B} \subseteq 2^E$. \mathcal{B} is the set of bases of some matroid (E, \Im) if and only if the following holds: $(B1) \ \mathcal{B} \neq \emptyset;$ (B2) For any $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \setminus B_2$, there exists a $y \in B_2 \setminus B_1$ with $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$

10 / 18

Let (E, \Im) be an independence systems. We define the **dual** as (E, \Im^*) , where $\Im^* = \{I \subseteq E: \text{ there is a basis } B \text{ of } (E, \Im), \text{ such that } I \cap B = \emptyset \}$

Dual of an independence system is also an independence system.

Matroid Duality

Proposition

$$(E,\Im^{**}) = (E,\Im).$$

Proof.

 $I \in \mathfrak{T}^{**} \iff$ there is a basis B^* of (E,\mathfrak{T}) such that $F \cap B^* = \emptyset \iff$ there is a basis B of (E,\mathfrak{T}) such that $I \cap (E \setminus B) = \emptyset \iff I \in \mathfrak{T}$

Theorem

Let (E, \Im) be an independence system, (E, \Im^*) its dual, and let r and r^* be the corresponding rank functions.

- **1** (E,\Im) is a matroid iff (E,\Im^*) is a matroid.
- 2 If (E, \Im) is a matroid then, $r^*(I) = |F| + r(E \setminus F) r(E)$ for $F \subseteq E$

Matroid Duality: proof of the first theorem

Definition

Let
$$M(IS) = \begin{cases} \text{true,} & IS \text{ is a matroid} \\ \text{false,} & \text{otherwise} \end{cases}$$

Proof.

Assume that $M((E,\Im))$ and $\neg M((E,\Im^*))$. Hence, $\exists B_1^*, B_2^*$ bases of (E, \mathfrak{T}^*) such that $|B_1^*| > |B_2^*|$. Since (E, \mathfrak{T}^*) is a dual of (E, \mathfrak{T}) , $\exists B_1, B_2 \text{ bases of } (E, \Im) \text{ such that } B_1 \cap B_1^* = \emptyset, B_2 \cap B_2^* = \emptyset.$ $M((E,\Im))$, so $|B_1| = |B_2|$, and $|B_2| + |B_2^*| < |B_1| + |B_1^*| \le |E|$, so $\exists x \in E \setminus (B_2 \cup B_2^*)$. Now, $(B_2^* \cup \{x\}) \cap B_2 = (B_2^* \cap B_2) \cup (\{x\} \cap B_2) =$ $\emptyset \cup \emptyset = \emptyset$, so $(B_2^* \cup \{x\}) \in \mathfrak{S}^*$, hence B_2^* is not a maximal independent set in the dual, which contradicts the fact that B_2^* is a base, so $M((E,\Im)) \Rightarrow M((E,\Im^*))$. We also know that $(E,\Im^{**}) = (E,\Im)$, so $M((E, \mathfrak{F}^*)) \Rightarrow M((E, \mathfrak{F}^{**})) \Leftrightarrow M((E, \mathfrak{F})).$ Together, $M((E,\Im)) \iff M((E,\Im^*)), Q.E.D.$

Weighted independence systems and matroids

- A weighted independence system is an independence system
 IS = (E, I) for which each edge e ∈ E is associated with a weight through a weighting function w : E → ℝ⁺.
- The weight of an subset of E is the total weight of the elements of the subset:

$$w(S) = \sum_{x \in S} w(x), \ S \in E$$

• A maximum-weight independent set is an independent set *I* with maximum total weight:

$$I \in \mathcal{I}, \ w(I) = \max_{I' \in \mathcal{I}} w(I')$$

INPUT: Weighted IS (E, \mathcal{I}) with weights $w(e) \ge 0 \ \forall e \in E$ OUTPUT: Independent set

• Sort E in descending weight order, such that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_n)$

2 B := Ø
3 For i = 1, ..., m DO: IF B + {e } \in T

$$B \cup \{e_i\} \in \mathcal{I}:$$
$$B := B \cup \{e_i\}$$

Theorem

6.6 Let (E, \Im) be a matroid. Then: (*)For each weight function with $w(e) \ge 0 \forall e \in E$, greedy finds a maximum-weight basis.

Lemma

The independent set I given by greedy will be maximal

Proof.

Let i_1, i_2, \ldots, i_k be the indices of the elements in I and assume that Iis not maximal. Then there is an element $e_{i'}$ with index i' such that $I \cup \{e_{i'}\} \in \mathcal{I}$. Denote by B_i the value the set B in greedy will have after iteration i, and note that $B_i \subseteq I$. Now, $B_{i'-1} \cup \{e_{i'}\} \subseteq I \cup \{e_{i'}\} \in \mathcal{I}$. However, at iteration i', $e_{i'}$ was not chosen by greedy since it is not in I, so $B_{i'-1} \cup \{e_{i'}\} \notin \mathcal{I}$, which is a contradiction. Hence, our assumption must be wrong and I must be maximal.

17/18

Given, (E, \Im) is a weighted matroid with weights w.

Let e_1, e_2, \ldots, e_k be the elements chosen by the greedy algorithm and f_1, \ldots, f_k be the elements of an arbitrary basis, and assume that they are sorted in descending order, i.e. $e_1 \ge e_2 \ge \cdots \ge e_k \ge 0$ and $f_1 \ge f_2 \ge \cdots \ge f_k \ge 0$