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Independence Systems: Motivation

A set of items

You can choose an arbitrary number of those items (i.e. a subset)

Some property that holds when no items have been chosen (i.e.
the empty subset)

As more items are chosen, that property can become broken, but
can never become unbroken again
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Independence Systems: Examples

Some examples of Independence systems are-

A graph G and the family of . . .

. . . all planar subgraphs of G

. . . all matchings for G

. . . all cliques on G

A set of objects S and the family of all subsets of S that fit into
some given knapsack
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Independence Systems: Definition

Definition

A set system (E,=), where E is a finite set and = is a set of subsets of
E, is an independence system if
(IS.1) ∅ ∈ =
(IS.2) I ∈ =, J ⊂ I =⇒ J ∈ =

The elements of = are called independent, the elements of 2E\= are
called dependent.
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More on Independence systems

Theorem

Let (E,=) be an independence system, then the following statements are
equivalent-

1 If X,Y ∈ = and |X| > |Y | then there is an x ∈ X\Y with
Y ∪ {x} ∈ =.

2 If X,Y ∈ = and |X| = |Y |+ 1, then there is an x ∈ X\Y with
Y ∪ {x} ∈ =.

3 For each X ⊆ E, all bases of X has the same cardinality.
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Matroids

Definition

An independence system is a matroid if X,Y ∈ = and |X| > |Y |, then
there is an x ∈ X\Y with Y ∪ {x} ∈ =

This property is known as the augmentation or exchange property

Nisha Mishra & Kristofer Krus Matroid Theory & Greedy Algorithm February 28, 2020 7 / 18



Matroids: Examples

Some examples of matroids are-

A graph G and the family of all subgraphs of G that are forests
(a.k.a. a graphic matroid).

A set of vectors V and the family of subsets of V in which all
vectors are linearly independent.

All matroids are independence system but not all independence
systems are matroids. For example matchings in a graph.
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Bases, circuits and rank

Definition

A base is a maximal independent set.

Definition

A circuit is a minimal dependent (i.e. not independent) set.

Definition

Let (E,=) be an independence system. For X ⊆ E, we define the rank
of X by r(X) := max{|Y | : Y ⊆ X,Y ∈ =}.

The rank of a matroid is the maximum size of an independent set in
the matroid.
All bases have the same cardinality (proof!).
A circuits don’t necessarily have the same cardinality (give example).
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Bases and related theorem

Theorem

Let E be a finite set and B ⊆ 2E. B is the set of bases of some matroid
(E,=) if and only if the following holds:
(B1) B 6= ∅;
(B2) For any B1, B2 ∈ B, and x ∈ B1\B2, there exists a y ∈ B2\B1

with (B1\{x}) ∪ {y} ∈ B
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Duality of Independence systems

Definition

Let (E,=) be an independence systems. We define the dual as (E,=∗),
where
=∗ = {I ⊆ E: there is a basis B of (E,=), such that I ∩B = ∅ }

Dual of an independence system is also an independence system.
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Matroid Duality

Proposition

(E,=∗∗) = (E,=).

Proof.

I ∈ =∗∗ ⇐⇒ there is a basis B∗ of (E,=) such that F ∩B∗ = ∅ ⇐⇒
there is a basis B of (E,=) such that I ∩ (E\B) = ∅ ⇐⇒ I ∈ =

Theorem

Let (E,=) be an independence system, (E,=∗) its dual, and let r and
r∗ be the corresponding rank functions.

1 (E,=) is a matroid iff (E,=∗) is a matroid.

2 If (E,=) is a matroid then, r∗(I) = |F |+ r(E\F )− r(E) for
F ⊆ E
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Matroid Duality: proof of the first theorem

Definition

Let M(IS) =

{
true, IS is a matroid
false, otherwise

Proof.

Assume that M((E,=)) and ¬M((E,=∗)). Hence, ∃B∗1 , B∗2 bases of
(E,=∗) such that |B∗1 | > |B∗2 |. Since (E,=∗) is a dual of (E,=),
∃B1, B2 bases of (E,=) such that B1 ∩B∗1 = ∅, B2 ∩B∗2 = ∅.
M((E,=)), so |B1| = |B2|, and |B2|+ |B∗2 | < |B1|+ |B∗1 | ≤ |E|, so
∃x ∈ E\(B2 ∪B∗2). Now, (B∗2 ∪ {x}) ∩B2 = (B∗2 ∩B2) ∪ ({x} ∩B2) =
∅ ∪ ∅ = ∅, so (B∗2 ∪ {x}) ∈ =∗, hence B∗2 is not a maximal independent
set in the dual, which contradicts the fact that B∗2 is a base, so
M((E,=))⇒M((E,=∗)). We also know that (E,=∗∗) = (E,=), so
M((E,=∗))⇒M((E,=∗∗))⇔M((E,=)). Together,
M((E,=)) ⇐⇒ M((E,=∗)), Q.E.D.
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Weighted independence systems and matroids

A weighted independence system is an independence system
IS = (E, I) for which each edge e ∈ E is associated with a weight
through a weighting function w : E → R+.

The weight of an subset of E is the total weight of the elements of
the subset:

w(S) =
∑
x∈S

w(x), S ∈ E

A maximum-weight independent set is an independent set I with
maximum total weight:

I ∈ I, w(I) = max
I′∈I

w(I ′)
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The Greedy Algorithm

INPUT: Weighted IS (E, I) with weights w(e) ≥ 0 ∀e ∈ E
OUTPUT: Independent set

1 Sort E in descending weight order, such that
w(e1) ≥ w(e2) ≥ · · · ≥ w(en)

2 B := ∅
3 For i = 1, . . . ,m DO:

IF B ∪ {ei} ∈ I:
B := B ∪ {ei}

4 OUTPUT B
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Greedy optimality

Theorem

6.6 Let (E, =) be a matroid. Then:
(*)For each weight function with w(e) ≥ 0 ∀ e ∈ E, greedy finds a
maximum-weight basis.

Nisha Mishra & Kristofer Krus Matroid Theory & Greedy Algorithm February 28, 2020 16 / 18



Greedy lemmas

Lemma

The independent set I given by greedy will be maximal

Proof.

Let i1, i2, . . . , ik be the indices of the elements in I and assume that I
is not maximal. Then there is an element ei′ with index i′ such that
I ∪{ei′} ∈ I. Denote by Bi the value the set B in greedy will have after
iteration i, and note that Bi ⊆ I. Now, Bi′−1 ∪ {ei′} ⊆ I ∪ {ei′} ∈ I.
However, at iteration i′, ei′ was not chosen by greedy since it is not in
I, so Bi′−1 ∪ {ei′} 6∈ I, which is a contradiction. Hence, our assumption
must be wrong and I must be maximal.
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Proof of Greedy optimality

Given, (E,=) is a weighted matroid with weights w.

Let e1, e2, . . . , ek be the elements chosen by the greedy algorithm and
f1, . . . , fk be the elements of an arbitrary basis, and assume that they
are sorted in descending order, i.e. e1 ≥ e2 ≥ · · · ≥ ek ≥ 0 and
f1 ≥ f2 ≥ · · · ≥ fk ≥ 0
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