

TGAI - Chapter 3

Air Traffic and Air Transportation Flygtrafik och flygtransporter

Planning for Remote Towers

Joint work with Billy Josefsson (LFV) and Tatiana and Valentin Polishchuk

- Provides ATS remotely to small airports
- Replaces local tower with cameras and sensors
- Increases efficiency: HR and ATS costs are split between several airports

- In Sweden: LFV + SAAB
- Within SESAR Joint Undertaking
- RTC in Sundsvall:
 - Operates 2 airports remotely
 - + 5 airports in development

How to distribute the total workload from several airports over several controller working positions?

Problem description

Given:

 (1) Example schedules IFR traffic schedules for 1 day (movements = arrival + departure flights) for five Swedish airports
(2) Specifications of additional special traffic at these airports (military, school, hospital etc.)
(3) Airport opening hours

Goal:

Propose optimal assignment of the airports to RTC modules

Notation	Parameter	Notation	Variable
A	set of airports	$op_{j,k}$	= 1 if airport j is open during period $k_{i} = 0$ otherwise
R	set of RTMs	M_k	number of modules in use during period k
P	set of time periods	$RTM_{i,k}$	= 1 if RTM <i>i</i> is used during period $k_i = 0$ otherwise
p	number of time periods	$period_{i,j,k}$	= 1 if airport j is assigned to RTM i during period $k_{i} = 0$ otherwise
mMov	max number of movements per RTM per period	$mov_{i,j,k}$	number of movements handled by RTM i at airport j during period k
mA	max number of airports per RTM	$switch_{i,j,k}$	= 0 if $period_{i,j,k} = period_{i,j,k+1}$, = 1 otherwise
$Amov_{j,k}$	number of movements at airport j during period k	$d_{l,m,k}$	difference between the workloads in modules l and m in period k

Constraints (MIP)

- 1. Number of airports assigned to one module \leq mA
- 2. Total number of movements within a module ≤maxMov
- 3. One airport assigned to only one module
- 4. All scheduled traffic from 5 airports is handled
- 5. All opening hours at 5 airports are covered

$\sum_{j \in A} period_{i,j,k}$	\leq	$RTM_{i,k} \cdot mA$	$orall i \in R, orall k \in P$
$\sum_{j\in A}mov_{i,j,k}$	\leq	mMov	$orall i \in R, orall k \in P$
$\sum_{i \in R} period_{i,j,k}$	\leq	1	$\forall j \in A, \forall k \in P$
$mov_{i,j,k}$	\leq	$period_{i,j,k} \cdot mMov$	$\forall i \in R, \forall j \in A, \forall k \in P$
$\sum mov_{i,j,k}$	=	$Amov_{j,k}$	$\forall j \in A, \forall k \in P$
$i \in R$ $\sum_{i \in R} period_{i,j,k}$	2	$op_{j,k}$	$orall j \in A, orall k \in P$

Notation	Parameter	Notation	Variable
A	set of airports	$op_{j,k}$	= 1 if airport j is open during period $k_{i} = 0$ otherwise
R	set of RTMs	M_k	number of modules in use during period k
P	set of time periods	$RTM_{i,k}$	= 1 if RTM <i>i</i> is used during period $k_i = 0$ otherwise
p	number of time periods	$period_{i,j,k}$	= 1 if airport j is assigned to RTM i during period $k_{i} = 0$ otherwise
mMov	max number of movements per RTM per period	$mov_{i,j,k}$	number of movements handled by RTM i at airport j during period k
mA	max number of airports per RTM	$switch_{i,j,k}$	= 0 if $period_{i,j,k} = period_{i,j,k+1}$, = 1 otherwise
$Amov_{j,k}$	number of movements at airport j during period k	$d_{l,m,k}$	difference between the workloads in modules l and m in period k

Objectives

- 1. Minimize the number of remote tower modules in use
- 2. Balance workload between the modules

As much as possible!

3. Minimize assignment switches

Experimental evaluation

(1) Data analysis of:

- Example schedules and extra traffic specifications
- For two example weeks in 2016 for five Swedish airports
- → Extract 1-day data samples (the days with highest traffic)
- (2) Solved MIP using AMPL CPLEX 12.6 solver
 - \rightarrow Solutions with different objectives
- (3) Post-processing: avoid potential conflicts in schedules within one module
- (4) Include special airport traffic
- (5) Residual system capacity estimation

Initial assumptions (conservative)

(1) Max # airdromes/module = 2(relaxed for the estimation of upper bound)

(2) Max movs per module / hour= 10

(if >10 movements are initially scheduled at some airport, reduce to 10 w.l.o.g. (\rightarrow will be scheduled in separate module)

Minimize number of modules in use

Schema 1: Lower bound (>2 airports allowed per module)

Minimize number of modules in use Schema 2: ≤2 airports per module

Balancing the load

Schema 3: Better balanced

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

period

O.

0

1

2 3

456

Minimize number of switches

Schema 4: Fewer assignment switches

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	1	1	0	0	0	0	0	1
AP2	1	2	1	1	2	1	3	9	10	6	4	3	3	5	2	0	5	6	5	7	2	6	4	1
AP3	0	0	0	1	1	0	(2	1	6	3	1	5	2	0	3	6	3	4	4	4	2	2	1
AP4	0	0	0	0	0	0	3	2	4	3	2	1	2	2	1	0	3	1	3	1	0	3	1	0
AP5	0	0	0	0	0	0	3	2	0	4	1	0	3	0	0	1	3	1	2	2	1	2	1	0

Observations

We observed clear trade-offs between the 3 objectives:

- Minimize the number of modules in use
- Improve balancing
- Minimize switches

What can we do?

- Prioritize according to current needs (e.g., balancing may have lower priority in the beginning)
- Combine solutions (e.g., first find the minimum number of modules, then apply the other 2 objectives)

Post-processing: avoid potential conflicts

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP2 self									8:10	9:20				13:30				17:20				21:15		
AP2_AP5										9:20														
AP2_AP3																	16:20							
AP2_AP4																						21:15		
																					1			

Post-processing: avoid potential conflicts

										- C.	1.5		1												G
	0	1	2	3	4	5	6	7			٦	10	11	12	13	14	15	16	~7	18	19	20	21	22	23
AP2 self									8:1	9:	20				13:30				17:20				21:15		
AP2_AP5											20														
AP2_AP3																		16: <mark></mark> 0							
AP2_AP4																							21:15		
	0	1	2	3	4	5	6	7	3	4	IS	5	gr	160) S	sep	bar	ate	ľ	100	ae	21	OK	
AP1	0	0	0	0	0	0	1	D	D	1		(0	2	2	0	0	(0	D	0	0	0	1	0
AP2	0	6	2	0	4	2	1)	3	1			2	2	10	0	4	2	8	5	2	ŀ	10	ŀ	0
AP3	0	3	0	2	2	0	3				,	3	1	6	1	0	3	5	3	4	5	4	2	1	1
AP4	0	0	0	0	0	0	1	2	4		2	1	1	3	3	2	0	4	1	4	2	1	2	0	0
AP5	0	0	0	0	0	0	3	1	2	74	1	1	0	4	0	0	2	4	3	2	2	1	2	1	0
											7												-		
	0	1	2	3	4	5	6	7	8	9)	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	()	0	0	2	2	0	0	0	0	0	0	0	0	1	0
AP2	0	6	2	0	4	2	1	0	8	4		2	2	2	10	0	4	2	8	6	2	4	10	4	0
AP3	0	3	0	2	2	0	3	5	1	7	7	3	1	6	1	0	3	5	3	4	5	4	2	1	1
AP4	0	0	0	0	0	0	1	2	4	2	2	1	1	3	3	2	0	4	1	4	2	1	2	0	0
AP5	0	0	0	0	0	0	3	1	2	4	1	1	0	4	0	0	2	4	3	2	2	1	2	1	0

Changes: re-assign AP2 to a separate module during periods 8, 9, and 17

16

Analysis of non-scheduled (VFR) traffic / day

		norm	worst case
kiruna	FM	3	10
	НКР	5	17
	Skol	1	3
	Special	2	5
	Övrigt	1	5
sturup	FM	1	3
	HKP	1	4
	Skol	5	20
	Special	14	60
	Övrigt	2	10
umeå	FM		
	HKP	4	12
	Skol	2	8
	Special	4	10
	Övrigt	4	4
visby	FM	6	125
	HKP	7	21
	Skol	4	10
	Special	2	10
	Övrigt		
Östersun	FM	8	20
	НКР	8	20
	Skol	3	8

3 types of model runs (modes)

- 1. Only regular scheduled traffic (no extra traffic)
- 2. Add moderate amount of extra traffic (normal)
- 3. Worst-case scenario with MAXIMUM load

All schemas so far

Mode 2: Extra traffic in normal operation (schema 5)

Mode 2: Extra traffic in normal operation (schema 5)

25

- Amount of traffic increases significantly
- 3 modules still suffice

Experimental Study Mode 3: Worst case: MAX load operation (schema 6)

Problem: max extra traffic may not fit into the schedule

Possible solutions:

- (1) Extend open hours in some special situations (e.g. max military traffic at AP4)
- (2) Relax our conservative assumptions: Max mov/hour/module > 11? > 12?

Mode 3: Worst case: MAX load operation (schema 6)

Scheduled

MAX extra traffic

- → 4 modules needed:
- Workload significantly higher
- Modules at full capacity most of the time

LINKÖPING UNIVERSITY

Residual capacity of RTC with 3 modules

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	sum
AP1						10	9						8	8									9	10	54
AP2	10	4	8	10	6	8	9		2	6	8	8	8	0		6	8	2	4	8	6	0	6	10	137
AP3	10	7		8	8		7	5	9	3	7	9	4	9		7	5	7	6	5	6	8	9	9	148
AP4							9	8	6	8	9	9	7	7	8		6	9	6	8	9	8			117
AP5							7	9	8	6	9		6			8	6	7	8	8	9	8	9		108

Residual = maximum # of movementss(10) – scheduled # of movements

Airport	Residual	MODE 2 (normal)	MODE 3 (worst-case)
AP1	54	12	40
AP2	137	23	97
AP3	148	24	34
AP4	117	19	166
AP5	108	23	60

Problem at AP4: max extra traffic exceeds the residual capacity

Conclusions

- ✓ Optimization framework for future staff planning at RTC is created
- Example solutions (schemas) proposed
- Provided new evidence of RTC efficiency
- ✓ Subject to reality checks and discussions

Future work Thank you.

- ✓ Deeper EUROCONTROL data analysis for the year 2016
- ✓ Refine the model to reflect seasonal changes
- ✓ Shift focus towards actual ATCO shifts
- Include ground traffic into consideration
- Re-consider the workload definition: another bound than 10 movements per hour

