Design and Analysis of Algorithms Part 1 Mathematical Tools and Network Problems homework 3, 1.12.2021

Problem 1 (BFS and DFS):

Abbildung 1: The graph G.
a) Apply BFS with start vertex v_{1} to graph G from Figure 1.
b) Apply DFS with start vertex v_{1} to graph G from Figure 1.
c) Give the adjacency list for G.
(Ad a) and b): If at any time there is more than one vertex to choose from, use the one with the smallest index.)

Problem 2 (BFS and DFS in trees):

Construct an algorithm that determines whether an arbitrary given graph $G=(V, E)$ is a tree based on
(a) DFS
(b) BFS

Problem 3 (Trees and Leaves):

Show that (also during winter) each (undirected) tree has a leaf. (Hint: In an undirected tree a leaf is defined as a vertex of degree 1.)

Problem 4 (BFS):

Let $G=(V, E)$ be a graph and $s \in V$ a vertex; for an arbitrary vertex $x \in V$ let $d(s, x)$ denote the length of a shortest path from s to x. Let $e=\{u, v\} \in E$ be an edge.
a) Prove: $d(s, v) \leq d(s, u)+1$.
b) Prove or disprove: $d(s, u) \leq d(s, v)+1$.
c) Does $d(s, v)=d(s, u)+1$ oder $d(s, u)=d(s, v)+1$ always hold?

