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Problem 1 (Prim’s algorithm):

Use Prim’s algorithm to determine a minimum spanning tree; start with vertex v1.
(Note: we break ties, when several vertices could be chosen in an iteration, by choosing
the vertex with the lowest index.)

Problem 2 (Independence Systems and Matroids):
Given an undirected, connected graph G. Let E = E(G),
I = {F ⊆ E ∶ F is subset of an Hamiltonian circuit in G}.

(a) Show that the set system (E,I) is an independence system.

(b) Test whether the set system (E,I) is a matroid.

Let E2 be a finite set, k a positive integer, and I2 = {F ⊆ E2 ∶ ∣F ∣ ≤ k}.

(c) Test whether the set system (E2,I2) is a matroid.
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Problem 3 (Trees): Let (V,T1) and (V,T2) be two trees on the same set of vertices V .
Show: For each edge e ∈ T1 there exists an edge f ∈ T2, such that both (V, (T1/{e})∪{f})
and (V, (T2/{f}) ∪ {e}) are trees.

Problem 4 (Minimum Spanning Trees):
Given an undirected, connected graph G = (V,E). Prove or disprove the following
statement:
If G contains a cycle with a unique lightest edge e (= edge of lowest weight), e is
contained in every MST.

Problem 5 (Bottleneck Spanning Trees):
Give a linear time algorithm that for a given graph G and an integer b computes whether
the value of a bottleneck spanning tree is at most b.

Problem 6 (Fibonacci Heaps):

Fibonacci heaps allow for an efficient implementation of Dijkstra’s shortest paths algorithm.
More detailed information on this data structure can, for example, be found here https:
//www.cs.princeton.edu/~wayne/teaching/fibonacci-heap.pdf, or in Chapter 19
of the book Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.
In the following Fibonacci heap marked vertices are shown in gray.
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Execute the following operations one after another on the given Fibonacci heap:

Insert(42), Delete Min, Decrease Key(91 to 60), Decrease Key(71 to 61)

Depict each resulting Fibonacci heap (possibly with intermediate states).
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Problem 7 (Spanning tree):
The tree graph T (G) of a connected graph G has a vertex for every spanning tree of
G. Two of these tree vertices are adjacent if they have ∣V ∣ − 2 edges in common. Show
that T (G) is connected.

Problem 8 (MSTs):
Let (G,w) be a network and v an arbitrary vertex. Show that each MST must contain
an edge incident to v with the smallest weight of all edges incident to v.

Problem 9 (Independent sets):
An independent set (IS) or stable set is a set of vertices in a graph, no two of which
are adjacent. An independent set that is not the subset of another independent set is
called maximal. A maximal IS is a dominating set, that is, a subset D of V such that
every vertex not in D is adjacent to at least one member of D.
Algorithm 1 computes a maximal independent set.

a) What is its runtime?

b) Show that Algorithm 1 does not compute a maximum independent set.

c) Show: If G can be vertex colored with k colors, there exists a vertex u with degree
at most ⌊(1− 1

k)∣V ∣⌋. (Hint: We do not know k, we only use that k is the optimal
number of colors and that k ≥ 2.)

d) Show: If G can be vertex colored with k colors, the size of the independent set
found by Algorithm 1 is at least ⌈logk(∣V ∣/3)⌉.

Algorithm 1: Greedy IS

Input : Undirected graph G = (V,E) with at least two vertices.
Output: A maximal independent set in G.
U = ∅

1.WHILE the graph is not empty
Choose some vertex u with minimum degree.
Remove u and all its neighbors from G.
U = U ∪ u.

RETURN U .

Problem 10 (Vertex coloring algorithm):
For any color, the vertices with this color form an independent set. Recall that we can
find a maximal independent set in polynomial time
Consider Algorithm 2. Assume G can be colored with k colors.
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a) Show that after at most n
1/2logk(n/16) steps (maybe less!), at most n

logk(n/16) uncolored
vertices remain.

b) Algorithm 2 uses at most 3n
logk(n/16) colors.

c) How far off is Algorithm 2 from the optimum of k?

Algorithm 2: Greedy Vertex Coloring

Input : Undirected graph G = (V,E).
Output: A feasible vertex coloring of G.
1.WHILE the graph is not empty

Determine a large independent set U using Algorithm 1.
Color all vertices in U with the same color.
Remove U from G.

Problem 11 (Vertex coloring in planar graphs):
Let G = (V,E) be a planar graph. Show: If G has no cycle of odd length, it is 2-
colorable.

Problem 12 (Vertex coloring algorithm for planar graphs):
Consider Algorithm 3. We have to figure out that a vertex u as chosen by the algorithm,
that is, a vertex of degree at most five, always exists.

a) Show: Let G be a connected planar graph, and let n,m and f denote the numbers
of vertices, edges, and faces, respectively, in a plane drawing of G. Then n−m+f =

2.

b) Show: m ≤ 3n − 6

c) Show: a vertex u as chosen by the algorithm always exists, that is, there is a
vertex with degree at most 5.

d) How many colors does Algorithm 3 use at most?

Problem 13 (Independence Systems): Let E = {1, . . . ,10} and
I1 = {{1,2,3,4},{2,3,4,5},{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9},
{7,8,9,10},{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8,},
{7,8,9},{8,9,10},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},
{8,9},{9,10},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},∅}

and
I2 = {{1,2,3},{6,7,9},{1,2},{1,3},{2,3},{6,7},{6,9},{7,9},{1},{2},{3},{6},{7},{9}}
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Algorithm 3: Vertex Coloring for Planar graphs

Input : Undirected planar graph G = (V,E).
Output: A feasible vertex coloring of G.
1. IF two colors are sufficient (problem 8) DO color G using two colors.
2. ELSE

Find an uncolored vertex u with degree at most 5.
Remove u and all its adjacent edges and color the remaining graph
recursively.
Insert u and its adjacent edges back and color u with a color that none of
its neighbors has

a) Is (E,I1) an independence system?

b) Is (E,I2) an independence system?

Problem 14 (Independence Systems II):
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Is (E,I) an independence system?

Problem 15 (Independence Systems III):

Is (E,I) an independence system?

Problem 16 (Matroids): Let E2 = {1, . . . ,7} and
I3 = {{1,2,3},{1,2,5},{1,2,6},{1,2,7},{1,3,4},{1,3,6},{1,3,7},{1,4,5},{1,4,6},
{1,4,7},{1,5,6},{1,5,7},{2,3,4},{2,3,5},{2,3,7},{2,4,5},{2,4,6},{2,4,7},{2,5,6},
{3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,7},{5,6,7},{1,2},{1,3},{1,4},{1,5},{1,6},
{1,7},{2,3},{2,4},{2,5},{2,6},{2,7},{3,4},{3,5},{3,6},{3,7},{4,5},{4,6},{4,7},
{5,6},{5,7},{6,7},{1},{2},{3},{4},{5},{6},{7},∅}

a) Is (E2,I3) an independence system?

b) Is (E2,I3) a matroid?
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Problem 17 (Matroids II):
Is (E,I) a matroid?

Problem 18 (IS and matroids): Consider the following system: We are given a
ground set, consisting of circles with uniform radius in the plane. For an example:

A

FED

B

C

We say that a selection of some of these circles is independent, iff no two of them
intersect. For example, {C,D} is independent, but {E,F} is dependent.

a) Prove that this system is an independence system for any given ground set of
circles.

b) Find a nonempty example of circles for which the system is a matroid (and prove
it).

c) Find an example of circles for which the system fulfills these criteria:

� It is not a matroid (prove it).

� All bases have the same size k, with k ≥ 3.
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Problem 19 (Distributed algorithms):
Assume all vertices have an ID, but they can only apply the operations = and ≠to these
IDs. Is it possible to solve leader election in this model? (Hint: give a reason for your
answer, not just no/yes.)
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