
Communications and Transport Systems
Department of Science and Technology
Linköping University

Fall 2021

Christiane Schmidt

Design and Analysis of Algorithms Part 1 -
Mathematical Tools and Network Problems

homework 5, 14.01.2022

Problem 1 (Shortest r-Arborescence): Given a digraph D = (V,A), a vertex r,
and a weight function ` ∶ A→ Q+.
We look for a shortest r-arborescnece (that is, an arborescence rooted in r).
The greedy algorithm for this problem is:
Start at r and iteratively extend the r-arborescence of the subset U ⊆ V by the shortest
edge leaving U .
Does this algorithm compute a shortest r-arborescence? Motivate your claim.

Problem 2 (Dijkstra):

Use Dijkstra’s algorithm to determine a shorest path from v1 to v8. (Tie breaking:
choose the vertex with lowest index.)

1

Problem 3 (Moore-Bellman-Ford):

e1

e2

e3

e5

e7

e8

e6

e4

e9
e10

e14

e12 e15
e13

e1616

e11
A

B

C

D

E

G

H

F

I

10

-2

9

2

3

10

4

2

-3

1

1

8

4

-1

-14
20

Use the Moore-Bellman-Ford algorithm to determine a shorest path from A to I.

Problem 4 (Shortest Paths in Graphs with Arbitrary Weights):
The algorithms by Dijkstra and Moore-Bellman-Ford for non-negative or conservative
edge weights, respectively, use Lemma 5.33. Show that for general graphs the minimum
is not defined, that is, show that graphs with arbitrary real edge weights exist, such
that for two vertices s and t no shortest path exists.

Problem 5 (Dijkstra and MSTs):
Given an undirected graph G with edge weights c ∶ E(G)↦R (not pairwise different).
Prove or disprove: The shortest paths tree computed with Dijkstra’s algorithm is also
an MST.

(10 points)

Problem 6 (Shortest Paths Between All Pairs of Vertices):
Input: Digraph G, conservative edge weights c ∶ E(G)→ R.
Output: Shortest paths for all s, t ∈ V (G), d.h.

lst: Length of a shortest s − t−path
pst: Predecessor of t in a shortest s − t−path.

(a) Which runtime to we get by solving the problem by repeatedly applying Moore-
Bellman-Ford?

(b) Consider the algorithm by Floyd and Warshall, algorithm 1. What is its runtime?

2

(c) Show that the algorithm by Floyd and Warshall is correct. Hint: Show the
following statement:
After the outer loop with j = 1, . . . , j0 the variable lik contains the length of a
shortest i−k−path that only considers the intermediary vertices 1, . . . , j0 ; (pik, k)
is the last edge of such a path.

Algorithm 1: Floyd, Warshall (1962)

Input : Digraph G, conservative edge weights c ∶ E(G)→ R
Output: For each pair of vertices i, j ∈ V (G) : lij: Length of a shortest

i − j−path, pij: Predecessor of j in a shortest path.
Consider V (G) = {1, . . . , n}
1.
lij ∶= c((i, j)) for all (i, j) ∈ E(G)
lij ∶=∞ for all (i, j) ∈ V (G)2/E(G), i ≠ j
lii ∶= 0 for all i ∈ V (G)
pij ∶= i for all (i, j) ∈ E(G)
2.
for j = 1 to n do

for i = 1 to n do
if i ≠ j then

for k = 1 to n do
if k ≠ j then

if lik > lij + ljk then
lik ∶= lij + ljk;
pik ∶= pjk

Problem 7 (Shortest paths in graphs with arbitrary weights):
The algorithms by Dijkstra and Moore-Bellman-Ford for non-negative and conservative
edge weights, repsectively, use Lemma 5.33.
Show that the minimum is not defined for general graphs, that is, show that there exist
graphs with arbitrary real edge weights for which there is no shortest path between two
vertices s and t.

Problem 8 (Longest paths and the knapsack problem):
We consider n objects. Each object has a weight aj and a value cj, both are positive
integers. We ask for a subset of these objects, such that the sum of their weights does

3

not exceed a bound b (the size of the knapsack) and the sum of their values is maximum
(that is, we want to pack as valuable stuff as possible).
Reduce this problem to finding a longest path in an appropriate network.
Hint: Consider an acyclic network with a start vertex s, and end vertex t and b + 1
vertices for each object.

Problem 9 (Paths and cuts):
Let G be an undirected graph with weights c ∶ E(G)→ Z+ and two vertices s, t ∈ V (G),
where t is reachable from s. Remember: for a vertex set X ⊆ V (G) we call the edge
set δ(X) = {{x, y} ∈ E(G), x ∈ X,y ∈ V (G) ∖X} a cut in G. If s ∈ X and t /∈ X, δ(X)
separates the vertices s and t.
Show that the minimum length of an s-t-path is equal to the maximum number of cuts
that separate s and t, such that each edge e is contained in at most c(e) such cuts.
(Hint: Why does it suffice to consider a graph with unit weights? Show that the
maximum number of such cuts is as well an upper as a lower bound for the minimum
length. For the proof of the lower bound give a set of cuts by using a BFS tree.)

4

