Design and Analysis of Algorithms Part 1 Mathematical Tools and Network Problems homework 6, 31.01.2022

Problem 1 (Algorithm 8.7, Ford-Fulkerson):

Figure 1: The network (G, u, s, t). The numbers at the edges give the capacities

Use the algorithm by Ford and Fulkerson to determine a maximum s - t-flow in the network (G, u, s, t). Give the residual graph in each step.
In addition: give a minimum cut.
Problem 2 (Menger's Theorem (Menger 1927)):
Two paths P and Q are called edge-disjoint if they have no common edge.
Let G be a graph (directed or undirected), let s and t be two vertices and $k \in \mathbb{N}$. Then there are k edge-disjoint s-t-paths if and only if after deleting $k-1$ edges t is still reachable from s.

Problem 3 (Ford-Fulkerson algorithm and irrational capacities):
Show that the algorithm by Ford and Fulkerson might not terminate when it is applied to a network with irrational capacities.

Figure 2: A network with irrational capacities

Consider the network in Figure 2 with capacities $u\left(e_{1}\right)=1, u\left(e_{2}\right)=\sigma, u\left(e_{3}\right)=1$ und $u\left(e_{4}\right)=u\left(e_{5}\right)=\ldots=u\left(e_{9}\right)=4$, with $\sigma=\frac{\sqrt{5}-1}{2}$. First show $\sigma^{n}=\sigma^{n+1}+\sigma^{n+2}$.
(Hint: Consider the paths $P_{1}=\left\{e_{4}, e_{2}, \overleftarrow{e_{3}}, e_{1}, e_{9}\right\}, P_{2}=\left\{e_{5}, e_{3}, \overleftarrow{e_{2}}, e_{7}\right\}, P_{3}=\left\{e_{6}, \overleftarrow{e_{1}}, e_{3}, e_{8}\right\}$ und $P_{4}=\left\{e_{5}, e_{3}, e_{8}\right\}$. Show by induction that we can change the residual capacities of e_{1}, e_{2} and e_{3} from σ^{n}, σ^{n+1} and 0 to $\sigma^{n+2}, \sigma^{n+3}$ and 0 , respectively. Induction base: augment along P_{4}. Induction step: augment, consecutively, along P_{1}, P_{2}, P_{1} and P_{3}.)

Problem 4 (Integer Flow): Show Corrolary 8.12 from the seminar: Let $N=$ (G, u, s, t) be a network. If the capacities $u(e)$ are all integers, then there exists a maximum flow in N, such that all $f(e)$ are integeres (in particular, the optimum flow is integer).

Problem 5 (PUSH-RELABEL algorithm):

This exercise will not be part of the examination, but we can discuss at the examination date.
For each proof you can use all theorems, lemmata etc. with a smaller number.
(a) Show Proposition 8.20: During the execution of the Push-Relabel algorithm f is always an s-t-preflow and ψ is always a distance labeling with respect to f. (Hint: Show that the procedures PUSH and PRELABEL preserve these properties.)
(b) Show Lemma 8.21: If f is an s - t-preflow and ψ is a distance labeling with respect to f, then
(1) s is reachable from any active vertex v in G_{f}.
(2) t is not reachable from s in G_{f}.
(Hint: For (1) consider the set of vertices that are reachable from an active vertex v. For (2) use contradiciton.)
(c) Show Theorem 8.22: When the algorithm 8.19 terminates, f is a maximum s - t flow.
(d) Show Lemma 8.24: The number of saturating pushes is at most $m n$.

Problem 6 (MIN CUT problem): The MIN CUT problem is defined as follows: INPUT: Network (G, u, s, t). OUTPUT: An s-t-cut of minimum capacity.

Show how you can compute a MIN CUT in time $O\left(n^{3}\right)$.

Matching will be covered in the last lecture on February 21, 2022!
Problem 7 (Maximum matching in bipartite graphs):

Figure 3: A graph.

Use the flow formulation from the lecture to determine a maximal matching in the
graph G from Figure 3. Use your preferred flow algorithm.
Problem 8 (Matching and Vertex Cover):
In bipartite graphs we have $\nu(G)=\tau(G)$ (see seminar notes). In general: $\nu(G) \leq \tau(G)$.
(a) Give a graph with $\nu(G)<\tau(G)$, more precisely $\tau(G)=2 \cdot \nu(G)$.
(b) Give a graph class with $\nu(G)<\tau(G)$, more precisely $\tau(G)=2 \cdot \nu(G)$.

Problem 9 ((Inclusion-wise) maximal matchings):

A matching M_{0} in a graph G is called (inclusion-wise) maximal, if there is no matching M in G with $M_{0} \subset M$. Let G be a graph and M_{1}, M_{2} two (inclusion-wise) maximal matchings in G. Show that $\left|M_{1}\right| \leq 2\left|M_{2}\right|$ gilt.
(Hint: Why do the vertices of the matching edges from M_{1} and M_{2} each constitute a vertex cover? Moreover, we showed that every matching is smaller every vertex cover.)

Problem 10 (Perfect matching in bipartite graphs):
A perfect matching $M \subseteq E$ is a set of pairwise nonadjacent edges, where there is exactly one edge incident to each vertex. Show that in a bipartite graph $G=(V, E)$ with $V=V_{1}+V_{2}$ in which each vertex has exactly degree $k \geq 1$, there is a perfect matching. Use the theorem by Hall.

Problem 11 (Blossom Algorithm I.):

Figure 4: Graph G.
(a) Is the graph G from Figure 4 bipartite? Justify your claim.
(b) Given the graph G from Figure 4 and the matching $M=\left\{e_{5}, e_{6}\right\}$.

With the help of the blossom algorithm from the lecture decide whether G has a perfect matching or not. Startwith the matching M. After each

- Augmentation give the new matching
- Tree-extension operation give the new tree
- Shrinking give the new tree and the graph G^{\prime}

Always choose the unmatched vertex with smallest index as starting vertex for your tree. If there is more than one edge to choose from in step 3 of the blossom algorithm, choose the edge with smallest edge index.

Problem 12 (Blossom Algorithm II.):

Figure 5: Graph H.

Use the blossom algorithm from the lecture to decide whether the graph H from Figure 5 has a perfect matching or not.
Always choose the unmatched vertex with smallest index as starting vertex for your tree. If there is more than one edge to choose from in step 3 of the blossom algorithm, choose the edge with smallest edge index. Consider the constructed tree when the algorithm stops. Delete the black vertices from G and justify that a perfect matching exists.

Problem 13 (Perfect Matching):

Use the theorem from Tutte to show whether the graph H^{\prime} from Figure 6 has a perfect matching.

Figure 6: Graph H^{\prime}.

