Design and Analysis of Algorithms Part 2 Approximation and Online Algorithms Homework 5, 03.03.23

Problem 1 (First-Fit-Decreasing for Bin Packing):

Show that the First-Fit-Decreasing Algorithm for Bin Packing presented in class has an approximation factor of $3 / 2$.

Problem 2 (Bin Packing II):

Consider another algorithm for MIN BIN PACKING: the next fit algorithm. At each step there is exactly one open bin B_{j}. The next item is packed into B_{j} if it fits, otherwise, a new bin B_{j+1} gets opened, B_{j} gets closed and will never be opened again.
(a) Show that the next fit algorithm has an approximation factor of 2 .
(b) Show that the bound from (a) cannot be improved.

Problem 3 (Greedy Set Cover Algorithm):
Apply the Greedy Set Cover Algorithm (Algorithm 5.5 from the lecture) to the following Set Cover instance:
$c\left(S_{i}\right)=\left|S_{i}\right|+1, U=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20\}$, and
$S_{1}=\{1,2,3,4\}$
$S_{2}=\{5,6,7,8\}$
$S_{3}=\{9,10,11,12\}$
$S_{4}=\{13,14,15,16\}$
$S_{5}=\{17,18,19,20\}$
$S_{6}=\{1,2,3,5,6,7,9,10,11\}$
$S_{7}=\{14,15,16,17,18,19\}$
$S_{8}=\{12,13,14,15\}$
$S_{9}=\{4,5,6\}$
$S_{10}=\{7,8,9\}$
$S_{11}=\{18,19,20\}$.
In case the maximum in step 2 is not uniquely defined, choose set S_{i} with minimum index.
What is the value of the computed set cover?
Can you give a better set cover?

Figure 1: Graph H. An MST rooted in v_{1} is shown in bold.

Problem 4 (4/3-approximation for (1,2)-TSP):
Consider a complete undirected graph G in which all edges have length either 1 or 2 (G satisfies the triangle inequality!). Give a $4 / 3$-approximation for this special TSP variant.
Hint: Start with a minimum 2-matching in G. A 2-matching is a subset M_{2} of edges so that every vertex in G is incident to exactly two edges in M_{2}. Note: a 2-matching can be computed in polynomial time.

Problem 5 (Bottleneck TSP):

Take a graph G with edge costs that satisfy the triangle inequality. We want to find a Hamiltonian cycle C for which the maximum cost edge in C is minimized.
(a) Give a 3-approximation algorithm for this problem.

Hints: (i) Consider the MST of G. (ii) Think about "appropriate" shortcuts.
(b) Apply your algorithm to the graph H from Figure 1, using the given MST.

