Design and Analysis of Algorithms Part 1 Mathematical tools and Network problems homework 1, 09.03.2017

Problem 1 (Graphs):

(a) Show $\sum_{i=1}^{n} \delta\left(v_{i}\right)=2 m$ for all graphs G with n vertices and m edges.
(b) Let H be a complete graph with n vertices. Show that the number of edges in H equals $\frac{n}{2}(n-1)$.

Problem 2 (Connected graphs):

(a) Let G be a graph with n vertices and assume that each vertex of G has degree at least $(n-1) / 2$. Show that G must be connected.
(b) Show: A graph G is connected if and only if there exists an edge $e=\{v, w\}$ with $v \in V_{1}$ and $w \in V_{2}$ whenever $V(G)=V_{1} \cup V_{2}$ (i.e., $V_{1} \cap V_{2}=\varnothing$).
(c) Show: If G is not connected, the complementary graph \bar{G} is connected.
(d) Show: A connected graph with n vertices has at least $n-1$ edges.

Problem 3 (Cuts):

Show: for a digraph G and any two sets $X, Y \subseteq V(G)$:
(a) $\left|\delta^{+}(X)\right|+\left|\delta^{+}(Y)\right|=\left|\delta^{+}(X \cap Y)\right|+\left|\delta^{+}(X \cup Y)\right|+\left|E^{+}(X, Y)\right|+\left|E^{+}(Y, X)\right|$.
(b) $\left|\delta^{-}(X)\right|+\left|\delta^{-}(Y)\right|=\left|\delta^{-}(X \cap Y)\right|+\left|\delta^{-}(X \cup Y)\right|+\left|E^{+}(X, Y)\right|+\left|E^{+}(Y, X)\right|$.

For an undirected graph G and any two sets $X, Y \subseteq V(G)$:
(c) $|\delta(X)|+|\delta(Y)|=|\delta(X \cap Y)|+|\delta(X \cup Y)|+2|E(X, Y)|$.
(d) $|\Gamma(X)|+|\Gamma(Y)| \geq|\Gamma(X \cap Y)|+|\Gamma(X \cup Y)|$.

Problem 4 (Trees - moved to Homework set 2):

Problem 5 (Directed cycles and directed cuts - moved to Homework set 2):

Problem 6 (O-Notation):

(a) For the following functions find the constants c (or c_{1} and c_{2}) and n_{0} and show with help of these constants that the given function is in the given class.

$$
\begin{array}{lr}
f_{1}(n)= & \frac{n^{14}}{4^{n}} \in O(1) \\
f_{2}(n)= & 2 n^{2}+3 n+1 \in O\left(n^{3}\right) \\
f_{3}(n) & =
\end{array} \sum_{i=1}^{n} i \in \Theta\left(n^{2}\right)
$$

(b) Show: Let $f, g: \mathbb{N} \mapsto \mathbb{R}$ be two functions; then the following statements hold:
(i) $f \in \Theta(g) \Leftrightarrow g \in \Theta(f)$
(ii) $f \in \Theta(g) \Leftrightarrow f \in O(g)$ und $f \in \Omega(g)$
(iii) $f \in O(g) \Leftrightarrow g \in \Omega(f)$

Problem 7 (Best-case running time for quicksort):
Proof Lemma 3.12 from the lecture, that is, the best-case running time for quicksort

Problem 8 (Heap Sort):

Prepare a 10 minute presentation of heapsort: the algorithm, its correctness and runnning time.

Problem 9 (Merge sort):

Sort the sequence (33,14, $7,9,2,11,45,21$) using merge sort. Give the intermediate steps in appropriate form.

Problem 10 (Mastertheorem):

a) Determine the asymptotic growth of the following recursion using the master theorem
$U(n)=4 \cdot U\left(\frac{n}{3}\right)+17 \cdot n^{2}+20 \cdot U\left(\frac{n}{6}\right)$.
Determine the value of all parameters used in the master theorem.
b) Determine the asymptotic growth of the following recursion using the master theorem
$V(n)=14 \cdot V\left(\frac{n}{36}\right)+23 n+12 \cdot V\left(\frac{n}{24}\right)+V\left(\frac{n}{10}\right)$.
Determine the value of all parameters used in the master theorem.
c) Determine the asymptotic growth of the following recursion using the master theorem
$T(n)=49 \cdot T\left(\frac{n}{7}\right)+42 n$.
Determine the value of all parameters used in the master theorem.

Problem 11 (Quicksort):

Sort the numbers in the following array using the algorithm quicksort presented in the lecture.

$$
A[1]=14 \quad A[2]=3 \quad A[3]=7 \quad A[4]=1 \quad A[5]=2
$$

The reference element should be chosen as in the lecture (that is, $A[r]$). Give the array after each swap operation. Give the intermediate steps from Quicksort- and Partition calls.

Problem 12 (Data structures for graphs - added problem):
Take a look at slide 100 of the reordered lecture, that is DAA-1-new.pdf. Write the adjacency matrix, the incidence matrix, the adjacency list, and the edge list for the graph G in Figure 1.

Figure 1: A graph G.

