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Linköping University

Spring 2017

Valentin Polishchuk
Christiane Schmidt

Design and Analysis of Algorithms Part 1 -
Mathematical tools and Network problems

homework 2, 30.03.2017

Problem 1 (The Kevin Bacon oracle):
The Kevn Bacon oracle is based on the actor graph G: actors are given as vertices.
Two actor vertices are connected by an edge if they appeared in a movie together. The
vertex of Kevin Bacon has value 0; the Kevin-Bacon number (KBN) of another actor
is the length of a shortest path in G. (Tom Hanks played with Kevin Bacon in Apollo
13, thus, he has Kevin-Bacon number 1.)
The oracle is available here: http://oracleofbacon.org/. The movie data it is based
on is taken from the Internet Movie Database: http://www.imdb.com.
Our questions:

(a) Describe a strategy to definitely find an actor with a KBN as high as possible
in G, even if you’ve never heard of Hollywood. On which graph algorithm is this
strategy based?

(b) Find a vertex with KBN at least 4.

Problem 2 (Trees - moved from Homework set 1):

(a) Prove Theorem 1.61 from the lecture.

(b) Prove Theorem 1.62 from the lecture.

(c) Prove Corollary 1.64 from the lecture.

Problem 3 (Directed cycles and directed cuts - moved from Homework set
1):
Show:
In a digraph G, each edge belongs either to a (directed) cycle or to a directed cut.
Moreover, the following statements are equivalent:

(a) G ist strongly connected.

(b) G contains no directed cut.
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(c) G is connected and each edge of G belongs to a cycle.

(Hint: Take a look at the statements you proved in Problem 2.)

Problem 4 (Eulerian Path):
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Abbildung 1: Euler on his way home!

Find a Eulerian path in the graph from Figure 1 or show that none exists.
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Problem 5 (BFS and DFS):
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Abbildung 2: The graph G.

a) Apply BFS with start vertex v1 to graph G from Figure 2.

b) Apply DFS with start vertex v1 to graph G from Figure 2.

c) Give the adjacency list for G.

(Ad a) and b): If at any time there is more than one vertex to choose from, use the one
with the smallest index. )
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Problem 6 (BFS and DFS in trees):
Construct an algorithm that determines whether an arbitrary given graph G=(V,E) is
a tree based on

(a) DFS

(b) BFS

Problem 7 (Trees and Leaves):

Show that (also during winter) each (undirected) tree has a leaf. (Hint: In an undirected
tree a leaf is defined as a vertex of degree 1.)

(10 points)

Problem 8 (BFS):

Let G = (V,E) be a graph and s ∈ V a vertex; for an arbitrary vertex x ∈ V let d(s, x)
denote the length of a shortest path from s to x. Let e = {u, v} ∈ E be an edge.

a) Prove: d(s, v) ≤ d(s, u) + 1.

b) Prove or disprove: d(s, u) ≤ d(s, v) + 1.

c) Does d(s, v) = d(s, u) + 1 oder d(s, u) = d(s, v) + 1 always hold?

Problem 9 (Forests and Connected Components):
Show: Given a forest with n vertices, m edges and p connected components, then n =

m + p holds.
(8 points)
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Problem 10 (Prim’s algorithm):

Use Prim’s algorithm to determine a minimum spanning tree; start with vertex v1.
(Note: we break ties, when several vertices could be chosen in an iteration, by choosing
the vertex with the lowest index.)

Problem 11 (Independence Systems and Matroids):
Given an undirected, connected graph G. Let E = E(G),
I = {F ⊆ E ∶ F is subset of an Hamiltonian circuit in G}.

(a) Show that the set system (E,I) is an independence system.

(b) Test whether the set system (E,I) is a matroid.

Let E2 be a finite set, k a positive integer, and I2 = {F ⊆ E2 ∶ ∣F ∣ ≤ k}.

(c) Test whether the set system (E2,I2) is a matroid.

Problem 12 (Trees): Let (V,T1) and (V,T2) be two trees on the same set of vertices
V . Show: For each edge e ∈ T1 there exists an edge f ∈ T2, such that both (V, (T1/{e})∪
{f}) and (V, (T2/{f}) ∪ {e}) are trees.

Problem 13 (Minimum Spanning Trees):
Given an undirected, connected graph G = (V,E). Prove or disprove the following
statement:
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If G contains a cycle with a unique lightest edge e (= edge of lowest weight), e is
contained in every MST.

Problem 14 (Bottleneck Spanning Trees):
Give a linear time algorithm that for a given graph G and an integer b computes whether
the value of a bottleneck spanning tree is at most b.

Problem 15 (Kruskal):

Determine an MST using Kruskal’s algorithm. Give the edges in the order in which they
are included to the tree, and draw the resulting solution to the problem. Tie breaking:
if in any step several edges could be chosen, choose the one with the smallest edge index.

We assume that we write edges as e = (vi, vj) with i < j.

IMPORTANT: To obtain a runtime of O(m logn), the data structure presented in
the seminar can be used. Give the state of the data structure after each edge insertion.

(Note: if there is more than one possibility to add an edge, choose the edge that runs
from the vertex with lower index to the vertex with higher index.)

Problem 16 (Shortest r-Arborescence): Given a digraph D = (V,A), a vertex r,
and a weight function ` ∶ A→ Q+.
We look for a shortest r-arborescnece (that is, an arborescence rooted in r).
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The greedy algorithm for this problem is:
Start at r and iteratively extend the r-arborescence of the subset U ⊆ V by the shortest
edge leaving U .
Does this algorithm compute a shortest r-arborescence? Motivate your claim.

Problem 17 (Fibonacci Heaps):

Fibonacci heaps allow for an efficient implementation of Dijkstra’s shortest paths al-
gorithm. More detailed information on this data structure can, for example, be found
here https://www.cs.princeton.edu/~wayne/teaching/fibonacci-heap.pdf, or in
Chapter 19 of the book Introduction to Algorithms by Cormen, Leiserson, Rivest, and
Stein.
In the following Fibonacci heap marked vertices are shown in gray.
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Execute the following operations one after another on the given Fibonacci heap:

Insert(42), Delete Min, Decrease Key(91 to 60), Decrease Key(71 to 61)

Depict each resulting Fibonacci heap (possibly with intermediate states).
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Problem 18 (Dijkstra):

Use Dijkstra’s algorithm to determine a shorest path from v1 to v8. (Tie breaking:
choose the vertex with lowest index.)

Problem 19 ( Moore-Bellman-Ford):
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Use the Moore-Bellman-Ford algorithm to determine a shorest path from A to I.

Problem 20 (Shortest Paths in Graphs with Arbitrary Weights):
The algorithms by Dijkstra and Moore-Bellman-Ford for non-negative or conservative
edge weights, respectively, use Lemma 5.33. Show that for general graphs the minimum
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is not defined, that is, show that graphs with arbitrary real edge weights exist, such
that for two vertices s and t no shortest path exists.

Problem 21 (Dijkstra and MSTs):
Given an undirected graph G with edge weights c ∶ E(G)↦R (not pairwise different).
Prove or disprove: The shortest paths tree computed with Dijkstra’s algorithm is also
an MST.

(10 points)

Problem 22 (Shortest Paths Between All Pairs of Vertices):
Input: Digraph G, conservative edge weights c ∶ E(G)→ R.
Output: Shortest paths for all s, t ∈ V (G), d.h.

lst: Length of a shortest s − t−path
pst: Predecessor of t in a shortest s − t−path.

(a) Which runtime to we get by solving the problem by repeatedly applying Moore-
Bellman-Ford?

(b) Consider the algorithm by Floyd and Warshall, algorithm 1. What is its runtime?

(c) Show that the algorithm by Floyd and Warshall is correct. Hint: Show the follo-
wing statement:
After the outer loop with j = 1, . . . , j0 the variable lik contains the length of a
shortest i−k−path that only considers the intermediary vertices 1, . . . , j0 ; (pik, k)
is the last edge of such a path.
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Algorithm 1: Floyd, Warshall (1962)

Input : Digraph G, conservative edge weights c ∶ E(G)→ R
Output: For each pair of vertices i, j ∈ V (G) : lij: Length of a shortest

i − j−path, pij: Predecessor of j in a shortest path.
Consider V (G) = {1, . . . , n}
1.
lij ∶= c((i, j)) for all (i, j) ∈ E(G)
lij ∶=∞ for all (i, j) ∈ V (G)2/E(G), i ≠ j
lii ∶= 0 for all i ∈ V (G)
pij ∶= i for all (i, j) ∈ E(G)
2.
for j = 1 to n do

for i = 1 to n do
if i ≠ j then

for k = 1 to n do
if k ≠ j then

if lik > lij + ljk then
lik ∶= lij + ljk;
pik ∶= pjk
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