
Communications and Transport Systems
Department of Science and Technology
Linköping University

Spring 2017

Valentin Polishchuk
Christiane Schmidt

Design and Analysis of Algorithms Part 1 -
Mathematical tools and Network problems

homework 2, 30.03.2017

Problem 1 (The Kevin Bacon oracle):
The Kevn Bacon oracle is based on the actor graph G: actors are given as vertices.
Two actor vertices are connected by an edge if they appeared in a movie together. The
vertex of Kevin Bacon has value 0; the Kevin-Bacon number (KBN) of another actor
is the length of a shortest path in G. (Tom Hanks played with Kevin Bacon in Apollo
13, thus, he has Kevin-Bacon number 1.)
The oracle is available here: http://oracleofbacon.org/. The movie data it is based
on is taken from the Internet Movie Database: http://www.imdb.com.
Our questions:

(a) Describe a strategy to definitely find an actor with a KBN as high as possible
in G, even if you’ve never heard of Hollywood. On which graph algorithm is this
strategy based?

(b) Find a vertex with KBN at least 4.

Problem 2 (Trees - moved from Homework set 1):

(a) Prove Theorem 1.61 from the lecture.

(b) Prove Theorem 1.62 from the lecture.

(c) Prove Corollary 1.64 from the lecture.

Problem 3 (Directed cycles and directed cuts - moved from Homework set
1):
Show:
In a digraph G, each edge belongs either to a (directed) cycle or to a directed cut.
Moreover, the following statements are equivalent:

(a) G ist strongly connected.

(b) G contains no directed cut.

1



(c) G is connected and each edge of G belongs to a cycle.

(Hint: Take a look at the statements you proved in Problem 2.)

Problem 4 (Eulerian Path):

v1

v2 v3v4

v5

v6

v7
v8

v9

v10

v11

v12

v13

v14 v15

v16

v17 v18 v19 v20 v21 v22

v23 v24 v25 v26
v27 v28

v29 v30 v31 v32 v33 v34

v35
v36

v37

v38

v39

v40
v41

v42

Abbildung 1: Euler on his way home!

Find a Eulerian path in the graph from Figure 1 or show that none exists.

2



Problem 5 (BFS and DFS):

v1

v2

v4

v5

v3

v6
v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

Abbildung 2: The graph G.

a) Apply BFS with start vertex v1 to graph G from Figure 2.

b) Apply DFS with start vertex v1 to graph G from Figure 2.

c) Give the adjacency list for G.

(Ad a) and b): If at any time there is more than one vertex to choose from, use the one
with the smallest index. )

3



Problem 6 (BFS and DFS in trees):
Construct an algorithm that determines whether an arbitrary given graph G=(V,E) is
a tree based on

(a) DFS

(b) BFS

Problem 7 (Trees and Leaves):

Show that (also during winter) each (undirected) tree has a leaf. (Hint: In an undirected
tree a leaf is defined as a vertex of degree 1.)

(10 points)

Problem 8 (BFS):

Let G = (V,E) be a graph and s ∈ V a vertex; for an arbitrary vertex x ∈ V let d(s, x)
denote the length of a shortest path from s to x. Let e = {u, v} ∈ E be an edge.

a) Prove: d(s, v) ≤ d(s, u) + 1.

b) Prove or disprove: d(s, u) ≤ d(s, v) + 1.

c) Does d(s, v) = d(s, u) + 1 oder d(s, u) = d(s, v) + 1 always hold?

Problem 9 (Forests and Connected Components):
Show: Given a forest with n vertices, m edges and p connected components, then n =

m + p holds.
(8 points)

4



Problem 10 (Prim’s algorithm):

Use Prim’s algorithm to determine a minimum spanning tree; start with vertex v1.
(Note: we break ties, when several vertices could be chosen in an iteration, by choosing
the vertex with the lowest index.)

Problem 11 (Independence Systems and Matroids):
Given an undirected, connected graph G. Let E = E(G),
I = {F ⊆ E ∶ F is subset of an Hamiltonian circuit in G}.

(a) Show that the set system (E,I) is an independence system.

(b) Test whether the set system (E,I) is a matroid.

Let E2 be a finite set, k a positive integer, and I2 = {F ⊆ E2 ∶ ∣F ∣ ≤ k}.

(c) Test whether the set system (E2,I2) is a matroid.

Problem 12 (Trees): Let (V,T1) and (V,T2) be two trees on the same set of vertices
V . Show: For each edge e ∈ T1 there exists an edge f ∈ T2, such that both (V, (T1/{e})∪
{f}) and (V, (T2/{f}) ∪ {e}) are trees.

Problem 13 (Minimum Spanning Trees):
Given an undirected, connected graph G = (V,E). Prove or disprove the following
statement:

5



If G contains a cycle with a unique lightest edge e (= edge of lowest weight), e is
contained in every MST.

Problem 14 (Bottleneck Spanning Trees):
Give a linear time algorithm that for a given graph G and an integer b computes whether
the value of a bottleneck spanning tree is at most b.

Problem 15 (Kruskal):

Determine an MST using Kruskal’s algorithm. Give the edges in the order in which they
are included to the tree, and draw the resulting solution to the problem. Tie breaking:
if in any step several edges could be chosen, choose the one with the smallest edge index.

We assume that we write edges as e = (vi, vj) with i < j.

IMPORTANT: To obtain a runtime of O(m logn), the data structure presented in
the seminar can be used. Give the state of the data structure after each edge insertion.

(Note: if there is more than one possibility to add an edge, choose the edge that runs
from the vertex with lower index to the vertex with higher index.)

Problem 16 (Shortest r-Arborescence): Given a digraph D = (V,A), a vertex r,
and a weight function ` ∶ A→ Q+.
We look for a shortest r-arborescnece (that is, an arborescence rooted in r).

6



The greedy algorithm for this problem is:
Start at r and iteratively extend the r-arborescence of the subset U ⊆ V by the shortest
edge leaving U .
Does this algorithm compute a shortest r-arborescence? Motivate your claim.

Problem 17 (Fibonacci Heaps):

Fibonacci heaps allow for an efficient implementation of Dijkstra’s shortest paths al-
gorithm. More detailed information on this data structure can, for example, be found
here https://www.cs.princeton.edu/~wayne/teaching/fibonacci-heap.pdf, or in
Chapter 19 of the book Introduction to Algorithms by Cormen, Leiserson, Rivest, and
Stein.
In the following Fibonacci heap marked vertices are shown in gray.

45

79

52

13 33 49

99 75

82

61 91

71

5

Min

36

Execute the following operations one after another on the given Fibonacci heap:

Insert(42), Delete Min, Decrease Key(91 to 60), Decrease Key(71 to 61)

Depict each resulting Fibonacci heap (possibly with intermediate states).

7



Problem 18 (Dijkstra):

Use Dijkstra’s algorithm to determine a shorest path from v1 to v8. (Tie breaking:
choose the vertex with lowest index.)

Problem 19 ( Moore-Bellman-Ford):

e1

e2

e3

e5

e7

e8

e6

e4

e9
e10

e14

e12 e15
e13

e1616

e11
A

B

C

D

E

G

H

F

I

10

-2

9

2

3

10

4

2

-3

1

1

8

4

-1

-14
20

Use the Moore-Bellman-Ford algorithm to determine a shorest path from A to I.

Problem 20 (Shortest Paths in Graphs with Arbitrary Weights):
The algorithms by Dijkstra and Moore-Bellman-Ford for non-negative or conservative
edge weights, respectively, use Lemma 5.33. Show that for general graphs the minimum

8



is not defined, that is, show that graphs with arbitrary real edge weights exist, such
that for two vertices s and t no shortest path exists.

Problem 21 (Dijkstra and MSTs):
Given an undirected graph G with edge weights c ∶ E(G)↦R (not pairwise different).
Prove or disprove: The shortest paths tree computed with Dijkstra’s algorithm is also
an MST.

(10 points)

Problem 22 (Shortest Paths Between All Pairs of Vertices):
Input: Digraph G, conservative edge weights c ∶ E(G)→ R.
Output: Shortest paths for all s, t ∈ V (G), d.h.

lst: Length of a shortest s − t−path
pst: Predecessor of t in a shortest s − t−path.

(a) Which runtime to we get by solving the problem by repeatedly applying Moore-
Bellman-Ford?

(b) Consider the algorithm by Floyd and Warshall, algorithm 1. What is its runtime?

(c) Show that the algorithm by Floyd and Warshall is correct. Hint: Show the follo-
wing statement:
After the outer loop with j = 1, . . . , j0 the variable lik contains the length of a
shortest i−k−path that only considers the intermediary vertices 1, . . . , j0 ; (pik, k)
is the last edge of such a path.

9



Algorithm 1: Floyd, Warshall (1962)

Input : Digraph G, conservative edge weights c ∶ E(G)→ R
Output: For each pair of vertices i, j ∈ V (G) : lij: Length of a shortest

i − j−path, pij: Predecessor of j in a shortest path.
Consider V (G) = {1, . . . , n}
1.
lij ∶= c((i, j)) for all (i, j) ∈ E(G)
lij ∶=∞ for all (i, j) ∈ V (G)2/E(G), i ≠ j
lii ∶= 0 for all i ∈ V (G)
pij ∶= i for all (i, j) ∈ E(G)
2.
for j = 1 to n do

for i = 1 to n do
if i ≠ j then

for k = 1 to n do
if k ≠ j then

if lik > lij + ljk then
lik ∶= lij + ljk;
pik ∶= pjk

10


