Valentin Polishchuk
Christiane Schmidt

Design and Analysis of Algorithms Part 1 Mathematical tools and Network problems homework 4, 07.06.2017

Problem 1 (Distributed algorithms):
Assume all vertices have an ID, but they can only apply the operations = and \neq to these IDs. Is it possible to solve leader election in this model? (Hint: give a reason for your answer, not just no/yes.)

Problem 2 (Independence Systems): Let $E=\{1, \ldots, 10\}$ and $\mathcal{I}_{1}=\{\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,6\},\{4,5,6,7\},\{5,6,7,8\},\{6,7,8,9\}$, $\{7,8,9,10\},\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{5,6,7\},\{6,7,8$,$\} ,$ $\{7,8,9\},\{8,9,10\},\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{6,7\},\{7,8\}$, $\{8,9\},\{9,10\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{9\},\{10\}, \varnothing\}$
and
$\mathcal{I}_{2}=\{\{1,2,3\},\{6,7,9\},\{1,2\},\{1,3\},\{2,3\},\{6,7\},\{6,9\},\{7,9\},\{1\},\{2\},\{3\},\{6\},\{7\},\{9\}\}$
a) Is $\left(E, \mathcal{I}_{1}\right)$ an independence system?
b) Is $\left(E, \mathcal{I}_{2}\right)$ an independence system?

Problem 3 (Independence Systems II):


```
Let's refornulate the Problem:
```



```
    \(S_{c}\left\{\lambda_{1},-n\right\}\) such that \(\sum_{j=5} \omega_{j}<k\) and \(\sum_{j \in s} c_{j}\) is maximum.
    We use
        \(E=\left\{\lambda_{1,-1} n\right\}\)
    \(\mathcal{I}=\left\{F \Leftrightarrow E: \sum_{j \in F} \omega_{j} \leqslant R\right\}\)
```

Is (E, \mathcal{I}) an independence system?

Problem 4 (Independence Systems II):

Is (E, \mathcal{I}) an independence system?

Problem 5 (Matroids): Let $E_{2}=\{1, \ldots, 7\}$ and $\mathcal{I}_{3}=\{\{1,2,3\},\{1,2,5\},\{1,2,6\},\{1,2,7\},\{1,3,4\},\{1,3,6\},\{1,3,7\},\{1,4,5\},\{1,4,6\}$, $\{1,4,7\},\{1,5,6\},\{1,5,7\},\{2,3,4\},\{2,3,5\},\{2,3,7\},\{2,4,5\},\{2,4,6\},\{2,4,7\},\{2,5,6\}$,
a) Is $\left(E_{2}, \mathcal{I}_{3}\right)$ an independence system?
b) Is $\left(E_{2}, \mathcal{I}_{3}\right)$ a matroid?

Problem 6 (Matroids II):

Is (E, \mathcal{I}) a matroid?

Problem 7 (IS and matroids): Consider the following system: We are given a ground set, consisting of circles with uniform radius in the plane. For an example:

We say that a selection of some of these circles is independent, iff no two of them intersect. For example, $\{C, D\}$ is independent, but $\{E, F\}$ is dependent.
a) Prove that this system is an independence system for any given ground set of circles.
b) Find a nonempty example of circles for which the system is a matroid (and prove it).
c) Find an example of circles for which the system fulfills these criteria:

- It is not a matroid (prove it).
- All bases have the same size k, with $k \geq 3$.

Problem 8 (Algorithm 8.7, Ford-Fulkerson):

Figure 1: The network (G, u, s, t). The numbers at the edges give the capacities

Use the algorithm by Ford and Fulkerson to determine a maximum $s-t$-flow in the network (G, u, s, t). Give the residual graph in each step.
In addition: give a minimum cut.
Problem 9 (Menger's Theorem (Menger 1927)):
Two paths P and Q are called edge-disjoint if they have no common edge.
Let G be a graph (directed or undirected), let s and t be two vertices and $k \in \mathbb{N}$. Then there are k edge-disjoint s-t-paths if and only if after deleting $k-1$ edges t is still reachable from s.

Problem 10 (Ford-Fulkerson algorithm and irrational capacities):
Show that the algorithm by Ford and Fulkerson might not terminate when it is applied to a network with irrational capacities.

Figure 2: A network with irrational capacities

Consider the network in Figure 2 with capacities $u\left(e_{1}\right)=1, u\left(e_{2}\right)=\sigma, u\left(e_{3}\right)=1$ und $u\left(e_{4}\right)=u\left(e_{5}\right)=\ldots=u\left(e_{9}\right)=4$, with $\sigma=\frac{\sqrt{5}-1}{2}$. First show $\sigma^{n}=\sigma^{n+1}+\sigma^{n+2}$.
(Hint: Consider the paths $P_{1}=\left\{e_{4}, e_{2}, \overleftarrow{e_{3}}, e_{1}, e_{9}\right\}, P_{2}=\left\{e_{5}, e_{3}, \overleftarrow{e_{2}}, e_{7}\right\}, P_{3}=\left\{e_{6}, \overleftarrow{e_{1}}, e_{3}, e_{8}\right\}$ und $P_{4}=\left\{e_{5}, e_{3}, e_{8}\right\}$. Show by induction that we can change the residual capacities of e_{1}, e_{2} and e_{3} from σ^{n}, σ^{n+1} and 0 to $\sigma^{n+2}, \sigma^{n+3}$ and 0 , respectively. Induction base: augment along P_{4}. Induction step: augment, consecutively, along P_{1}, P_{2}, P_{1} and P_{3}.)

Problem 11 (Integer Flow): Show Corrolary 8.12 from the seminar: Let $N=$ (G, u, s, t) be a network. If the capacities $u(e)$ are all integers, then there exists a maximum flow in N, such that all $f(e)$ are integeres (in particular, the optimum flow is integer).

Problem 12 (PUSH-RELABEL algorithm): For each proof you can use all theorems, lemmata etc. with a smaller number.
(a) Show Proposition 8.20: During the execution of the Push-Relabel algorithm f is always an s-t-preflow and ψ is always a distance labeling with respect to f. (Hint: Show that the procedures PUSH and PRELABEL preserve these properties.)
(b) Show Lemma 8.21: If f is an s-t-preflow and ψ is a distance labeling with respect to f, then
(1) s is reachable from any active vertex v in G_{f}.
(2) t is not reachable from s in G_{f}.
(Hint: For (1) consider the set of vertices that are reachable from an active vertex v. For (2) use contradiciton.)
(c) Show Theorem 8.22: When the algorithm 8.19 terminates, f is a maximum s-tflow.
(d) Show Lemma 8.24: The number of saturating pushes is at most $m n$.

Problem 13 (MIN CUT problem): The MIN CUT problem is defined as follows: INPUT: Network (G, u, s, t).
OUTPUT: An s-t-cut of minimum capacity.
Show how you can compute a MIN CUT in time $O\left(n^{3}\right)$.
Problem 14 (Maximum matching in bipartite graphs):

Figure 3: A graph.

Use the flow formulation from the lecture to determine a maximal matching in the graph G from Figure 3. Use your preferred flow algorithm.

Problem 15 (Matching and Vertex Cover):

In bipartite graphs we have $\nu(G)=\tau(G)$ (see seminar notes). In general: $\nu(G) \leq \tau(G)$.
(a) Give a graph with $\nu(G)<\tau(G)$, more precisely $\tau(G)=2 \cdot \nu(G)$.
(b) Give a graph class with $\nu(G)<\tau(G)$, more precisely $\tau(G)=2 \cdot \nu(G)$.

Problem 16 ((Inclusion-wise) maximal matchings):

A matching M_{0} in a graph G is called (nclusion-wise) maximal, if there is no matching M in G with $M_{0} \subset M$. Let G be a graph and M_{1}, M_{2} two (inclusion-wise) maximal matchings in G. Show that $\left|M_{1}\right| \leq 2\left|M_{2}\right|$ gilt.
(Hint: Why do the vertices of the matching edges from M_{1} and M_{2} each constitute a vertex cover? Moreover, we showed that every matching is smaller every vertex cover.)

Problem 17 (Perfect matching in bipartite graphs):

A perfect matching $M \subseteq E$ is a set of pairwise nonadjacent edges, where there is exactly one edge incident to each vertex. Show that in a bipartite graph $G=(V, E)$ with $V=V_{1}+V_{2}$ in which each vertex has exactly degree $k \geq 1$, there is a perfect matching. Use the theorem by Hall.

