
0.Features of the OpenGL Shading Language

by John Kessenich
3Dlabs Inc. Ltd.

03-May-2005

Copyright © 2003-2005 John Kessenich

In this white paper, we present the language features of the OpenGL Shading Language. We start with a simple
example of a working pair of vertex and fragment shaders to show their basic structure and interfaces. Each aspect of
the language will then be discussed in turn.

The OpenGL Shading Language syntax comes from the C family of programming languages. Tokens, identifiers,
semicolons, nesting with curly braces, control-flow, and many keywords look like C. Both comment styles // ... and /*
... */ are accepted. Much is also different though, and all important differences from C will be discussed.

Each shader example is presented as it might appear in a file or onscreen. However, as explained in the OpenGL 2.0
specification, the OpenGL API passes shaders as strings, not files, as OpenGL does not consider shaders file based.

1.1 Example Shader Pair
A program will typically contain two shaders: one vertex shader and one fragment shader. More than one shader of
each type can be present, but there must be exactly one function main between all the fragment shaders and exactly
one function main between all the vertex shaders. Frequently, it’s easiest to just have one shader of each type.

The following is a simple pair of vertex and fragment shaders that can smoothly express a surface’s temperature with
color. The range of temperatures and their colors are parameterized. First, we’ll show the vertex shader. It will be
executed once for each vertex.
// uniform qualified variables are changed at most once per primitive
uniform float CoolestTemp;
uniform float TempRange;

// attribute qualified variables are typically changed per vertex
attribute float VertexTemp;

// varying qualified variables communicate from the vertex shader to
// the fragment shader
varying float Temperature;

void main()
{
 // compute a temperature to be interpolated per fragment,
 // in the range [0.0, 1.0]
 Temperature = (VertexTemp - CoolestTemp) / TempRange;

 /*
 The vertex position written in the application using
 glVertex() can be read from the built-in variable

1-2
 gl_Vertex. Use this value and the current model
 view transformation matrix to tell the rasterizer where
 this vertex is.
 */
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

That’s it for the vertex shader. Primitive assembly will follow the preceding vertex processing, providing the rasterizer
with enough information to create fragments. The rasterizer interpolates the Temperature values written per vertex
to create values per fragment. Each fragment is then delivered to a single execution of the fragment shader, as follows:
// uniform qualified variables are changed at most once per primitive
// by the application, and vec3 declares a vector of three
// floating-point numbers
uniform vec3 CoolestColor;
uniform vec3 HottestColor;

// Temperature contains the now interpolated per-fragment
// value of temperature set by the vertex shader
varying float Temperature;

void main()
{
 // get a color between coolest and hottest colors, using
 // the mix() built-in function
 vec3 color = mix(CoolestColor, HottestColor, Temperature);

 // make a vector of 4 floating-point numbers by appending an
 // alpha of 1.0, and set this fragment’s color
 gl_FragColor = vec4(color, 1.0);
}

Both shaders receive user-defined state from the application through the declared uniform qualified variables. The
vertex shader gets information associated with each vertex through the attribute qualified variable. Information is
passed from the vertex shader to the fragment shader through varying qualified variables, whose declarations must
match between the vertex and fragment shaders. The fixed functionality located between the vertex and fragment
processors will interpolate the per-vertex values written to this varying variable. When the fragment shader reads this
same varying variable, it reads the value interpolated for the location of the fragment being processed.

Shaders interact with the fixed functionality OpenGL pipeline by writing built-in variables. OpenGL prefixes built-in
variables with “gl_”. In the preceding examples, writing to gl_Position tells the OpenGL pipeline where the trans-
formed vertices are located, and writing to gl_FragColor tells the OpenGL pipeline what color to attach to a fragment.

Execution of the preceding shaders occurs multiple times to process a single primitive, once per vertex for the vertex
shader and once per fragment for the fragment shader. Many such executions of the same shader can happen in parallel.
In general, there is no direct tie or ordering between shader executions. Information can be communicated neither from
vertex to vertex, nor from fragment to fragment.

1.2 Data Types
We saw vectors of floating-point numbers in the example in the previous section. Many other built-in data types are
available to ease the expression of graphical operations. Booleans, integers, matrices, vectors of other types, structures,
and arrays are all included. Each is discussed in the following sections. Notably missing are string and character types,
as there is little use for them in processing vertex and fragment data.

1-3
1.2.1 Scalars

The scalar types available are
float declares a single floating-point number
int declares a single integer number
bool declares a single Boolean number

These are used to declare variables, as is familiar from C/C++.
float f;
float g, h = 2.4;
int NumTextures = 4;
bool skipProcessing;

Unlike the original C, you must provide the type name, as there are no default types. As in C++, declarations may
appear when needed, not just after an open curly brace ({).

Literal floating-point numbers are also specified as in C, except there are no suffixes to specify precision, as there is
only one floating-point type.
3.14159
3.
0.2
.609
1.5e10
0.4E-4
etc.

In general, floating-point values and operations act as they do in C.

Integers are not the same as in C. There is no requirement that they appear to be backed in hardware by a fixed-width
integer register. Consequently, wrapping behavior, when arithmetic would overflow or underflow a fixed-width integer
register, is undefined. Bit-wise operations like left-shift (<<) and bit-wise and (&) are also not supported.

What can be said about integers? They are guaranteed to have at least 16 bits of precision; they can be positive, nega-
tive, or zero; and integer arithmetic that stays within this range will give the expected results. Note that the precision
truly is 16 bits plus the sign of the value—that is, a full range of [-65535, 65535] or greater.

Literal integers can be given as decimal values, octal values, or hexadecimal values, as in C.
42 // a literal decimal integer
052 // a literal octal integer
0x2A // a literal hexadecimal integer

Again, there are no suffixes to specify precision, as there is only one integer type. Integers are useful as sizes of struc-
tures or arrays and as loop counters. Graphical types, such as color or position, are best expressed in floating-point
variables within a shader.

Boolean variables are as bool in C++. They can have only one of two values: true or false. Literal Boolean constants
true and false are provided. Relational operators like less-than (<) and logical operators like logical-and (&&) always
result in Boolean type. Flow-control constructs like if-else will accept only Boolean-typed expressions. In these
regards, the OpenGL Shading Language is more restrictive than C++.

1.2.2 Vectors

Vectors of float, int, or bool are built-in basic types. They can have two, three, or four components and are named as
follows:

vec2 Vector of two floating-point numbers
vec3 Vector of three floating-point numbers

1-4
vec4 Vector of four floating-point numbers

ivec2 Vector of two integers
ivec3 Vector of three integers
ivec4 Vector of four integers

bvec2 Vector of two Booleans
bvec3 Vector of three Booleans
bvec4 Vector of four Booleans

Built-in vectors are quite useful. They conveniently store and manipulate colors, positions, texture coordinates, and so
on. Built-in variables and built-in functions make heavy use of these types. Also, special operations are supported.
Finally, hardware is likely to have vector-processing capabilities that mirror vector expressions in shaders.

Note that the language does not distinguish between a color vector and a position vector or other uses of a floating-
point vector. These are all just floating-point vectors from the language’s perspective.

Special features of vectors include component access that can be done either through field selection (as with structures)
or as array accesses. For example, if position is a vec3, it can be considered as the vector (x, y, z), and position.x will
select the first component of the vector.

In all, the following names are available for selecting components of vectors:
x, y, z, w Treat a vector as a position or direction
r, g, b, a Treat a vector as a color
s, t, p, q Treat a vector as a texture coordinate

There is no explicit way of stating a vector is a color, a position, a coordinate, and so on. Rather, these component
selection names are provided simply for readability in a shader. The only compile-time checking done is that the vector
is large enough to provide a specified component. Also, if multiple components are selected (swizzling, discussed in
Section 1.7.2), all the components are from the same family.

Vectors can also be indexed as a zero-based array to obtain components. For instance, position[2] returns the third
component of position. Variable indices are allowed, making it possible to loop over the components of a vector.
Multiplication takes on special meaning when operating on a vector, as linear algebraic multiplies with matrices are
understood. Swizzling, indexing, and other operations are discussed in detail in section Section 1.7.

1.2.3 Matrices

Built-in types are available for matrices of floating-point numbers. There are 2 × 2, 3 × 3, and 4 × 4 sizes.
mat2 2 × 2 matrix of floating-point numbers
mat3 3 × 3 matrix of floating-point numbers
mat4 4 × 4 matrix of floating-point numbers

These are useful for storing linear transforms or other data. They are treated semantically as matrices, particularly
when a vector and a matrix are multiplied together, in which case the proper linear-algebraic computation is performed.
When relevant, matrices are organized in column-major order, as is the tradition in OpenGL.

You may access a matrix as an array of column vectors—that is, if transform is a mat4, transform[2] is the third
column of transform. The resulting type of transform[2] is vec4. Column 0 is the first column. Because transform[2]
is a vector and you can also treat vectors as arrays, transform[3][1] is the second component of the vector forming the
fourth column of transform. Hence, it ends up looking as if transform is a two-dimensional array. Just remember that
the first index selects the column, not the row, and the second index selects the row.

1-5
1.2.4 Samplers

Texture lookups require some indication as to what texture and/or texture unit will do the lookup. The OpenGL
Shading Language doesn’t really care about the underlying implementation of texture units or other forms of orga-
nizing texture lookup hardware. Hence, it provides a simple opaque handle to encapsulate what to look up. These
handles are called SAMPLERS. The sampler types available are

sampler1D Accesses a one-dimensional texture
sampler2D Accesses a two-dimensional texture
sampler3D Accesses a three-dimensional texture
samplerCube Accesses a cube-mapped texture
sampler1DShadow Accesses a one-dimensional depth texture with comparison
sampler2DShadow Accesses a two-dimensional depth texture with comparison

When the application initializes a sampler, the OpenGL implementation stores into it whatever information is needed
to communicate the texture to be accessed. Shaders cannot themselves initialize samplers. They can only receive them
from the application, through a uniform qualified sampler, or pass them on to user or built-in functions. As a function
parameter, a sampler cannot be modified, so there is no way for a shader to change a sampler’s value.

For example, a sampler could be declared as
uniform sampler2D Grass;

(Uniform qualifiers are discussed in more detail in Section 1.5.)

This variable can then be passed into a corresponding texture lookup function to access a texture:
vec4 color = texture2D(Grass, coord);

where coord is a vec2 holding the two-dimensional position used to index the grass texture, and color is the result of
doing the texture lookup. Together, the compiler and the OpenGL API will validate that Grass really references a two-
dimensional texture and that Grass is only passed into two-dimensional texture lookups.

Shaders may not manipulate sampler values. For example, the expression Grass + 1 is not allowed. If a shader
wants to combine multiple textures procedurally, an array of samplers can be used as shown here:
const int NumTextures = 4;
uniform sampler2D textures[NumTextures];

These can be processed in a loop:
for (int i = 0; i < NumTextures; ++i)
 … = texture2D(textures[i], …);

The idiom Grass + 1 could then become something like textures[GrassIndex + 1], which is a valid way
of manipulating the sampler to be used.

1.2.5 Structures

The OpenGL Shading Language provides user-defined structures similar to C. For example,
struct light
{
 vec3 position;
 vec3 color;
};

1-6
As in C++, the name of the structure is the name of this new user-defined type. No typedef is needed. In fact, the
typedef keyword is still reserved, as there is not yet a need for it. A variable of type light from the preceding example
is simply declared as
light ceilingLight;

Most other aspects of structures mirror C. They can be embedded and nested. Embedded structure type names have
the same scope as the structure they are declared in. However, embedded structures cannot be anonymous. Structure
members can also be arrays. Finally, each level of structure has its own name space for its member’s names, as is
familiar.

Bit-fields (the capability to declare an integer with a specified number of bits) are not supported.

Currently, structures are the only user-definable type. The keywords union, enum, and class are reserved for possible
future use.

1.2.6 Arrays

Arrays of any type can be created. The declaration
vec4 points[10];

creates an array of ten vec4, indexed starting with zero. There are no pointers; the only way to declare an array is with
square brackets. Declaring an array as a function parameter also requires square brackets and a size, as currently array
arguments are passed as if the whole array is a single object, not as if the argument is a pointer.

Arrays, unless they are function parameters, do not have to be declared with a size. A declaration like
vec4 points[];

is allowed, as long as either of the following two cases is true:

1. Before the array is referenced, it is declared again with a size, with the same type as the first declaration. For
example,

vec4 points[]; // points is an array of unknown size
vec4 points[10]; // points is now an array of size 10

This cannot be followed by another declaration:
vec4 points[]; // points is an array of unknown size
vec4 points[10]; // points is now an array of size 10
vec4 points[20]; // this is illegal
vec4 points[]; // this is also illegal

2. All indices that statically reference the array are compile-time constants. In this case, the compiler will make the
array large enough to hold the largest index it sees used. For example,

vec4 points[]; // points is an array of unknown size
points[2] = vec4(1.0); // points is now an array of size 3
points[7] = vec4(2.0); // points is now an array of size 8

In this case, at runtime the array will only have one size, determined by the largest index the compiler sees. Such auto-
matically sized arrays cannot be passed as function arguments.

This feature is quite useful for handling the built-in array of texture coordinates. Internally, this array is declared as
varying vec4 gl_TexCoord[];

If a program uses only compile-time constant indices of 0 and 1, the array will be implicitly sized as gl_TexCoord[2].
If a shader uses a nonconstant variable to index the array, that shader will have to explicitly declare the array with the
desired size. Of course, keeping the size to a minimum is important, especially for varying variables, as they are likely
a limited hardware resource.

1-7
Multiple shaders sharing the same array must declare it with the same size. The linker will verify this.

1.2.7 Void

The type void is provided for declaring a function that returns no value. For example, the function main returns no
value and must be declared as type void.
void main()
{
 ...
}

Other than for functions that return nothing, the void type is not useful.

1.2.8 Declarations and Scope

Variables are declared quite similarly to C++. They can be declared where needed and have scope as in C++. For
example,
float f;

f = 3.0;

vec4 u, v;

for (int i = 0; i < 10; ++i)
 v = f * u + v;

The scope of a variable declared in a for statement ends at the end of the loop’s substatement. However, variables
may not be declared in an if statement. This simplifies implementation of scoping across the else sub-statement, with
little practical cost.

As in C, variable names are case sensitive, must start with a letter or underscore (_), and contain only letters, numbers,
and underscores (_). User-defined variables cannot start with the string “gl_”, as those names are reserved for future
use by OpenGL. Names containing consecutive underscores (__) are also reserved.

1.2.9 Type Matching and Promotion

The OpenGL Shading Language is strict with type matching. In general, types being assigned must match, argument
types passed into functions must match formal parameter declarations, and types being operated on must match the
requirements of the operator. There are no automatic promotions from one type to another. This may occasionally make
a shader have an extra explicit conversion. However, it also simplifies the language, preventing some forms of obfus-
cated code and some classes of defects. For example, there are no ambiguities in which overloaded function should be
chosen for a given function call.

1.3 Initializers and Constructors
A shader variable may be initialized when it is declared. As is familiar from C, the following example initializes b at
declaration time and leaves a and c undefined:
float a, b = 3.0, c;

Constant qualified variables have to be initialized.
const int Size = 4; // initializer is required

1-8
Attribute, uniform, and varying variables cannot be initialized when declared.
attribute float Temperature; // no initializer allowed,
 // the vertex API sets this

uniform int Size; // no initializer allowed,
 // the uniform setting API sets this

varying float density; // no initializer allowed, the vertex
 // shader must programmatically set this

To initialize aggregate types, at either declaration time or elsewhere, CONSTRUCTORS are used. There is no initializer
using the brace syntax “{…}” from C, only constructors. Syntactically, constructors look like function calls that have
a type name where the function name would go—for example, to initialize a vec4 with the values (1.0, 2.0, 3.0, 4.0) use
vec4 v = vec4(1.0, 2.0, 3.0, 4.0);

Or, because constructor syntax is the same whether it’s in an initializer or not,
vec4 v;
v = vec4(1.0, 2.0, 3.0, 4.0);

There are constructors for all the built-in types (except samplers) as well as for structures. Some examples:
vec4 v = vec4(1.0, 2.0, 3.0, 4.0);
ivec2 c = ivec2(3, 4);
vec3 color = vec3(0.2, 0.5, 0.8);
mat2 m = mat2(1.0, 2.0, 3.0, 4.0);
struct light
{
 vec4 position;
 struct tLightColor
 {
 vec3 color;
 float intensity;
 } lightColor;
} light1 = light(v, tLightColor(color, 0.9));

For matrices, the components are filled in column-major order. The variable m from the previous example is the matrix

So far, we’ve only shown constructors taking one argument for each component being constructed. Built-in construc-
tors for vectors can also take a single argument, which is replicated into each component.
vec3 v = vec3(0.6);

is equivalent to
vec3 v = vec3(0.6, 0.6, 0.6);

This is true only for vectors. Structure constructors must receive one argument per member being constructed. Matrix
constructors also have a single argument form, but in this case it initializes just the diagonal of the matrix. The
remaining components are initialized to 0.0.
mat2 m = mat2(1.0); // makes a 2x2 identity matrix

is equivalent to
mat2 m = mat2(1.0, 0.0, 0.0, 1.0); // makes a 2x2 identity matrix

Constructors can also have vectors and matrices as arguments. However, constructing matrices from other matrices is
reserved for future definition.

1.0 3.0
2.0 4.0

1-9
vec4 v = vec4(1.0);
vec2 u = vec2(v); // the first two components of v initialize u
mat2 m = mat2(v);
vec2 t = vec2(1.0, 2.0, 3.0); // allowed; the 3.0 is ignored

Matrix components will be read out of arguments in column major order and filled in column major order.

Extra components in a constructor argument are silently ignored. Normally, this is useful for shrinking a value, like
eliminating alpha from a color or w from a position. It is an error to have completely unused arguments passed to a
constructor.

1.4 Type Conversions
Explicit type conversions are performed with constructors. For example,
float f = 2.3;
bool b = bool(f);

will set b to true. This is useful for flow-control constructs, like if, which require Boolean values. Boolean constructors
convert non-zero numeric values to true and zero numeric values to false.

The OpenGL Shading Language does not provide C-style typecast syntax, which can be ambiguous as to whether a
value is converted to a different type or simply reinterpreted as a different type. In fact, there is no way of reinterpreting
a value as a different type in the OpenGL Shading Language. There are no pointers, no type unions, no implicit type
changes, and no reinterpret casts. Instead, constructors are used to perform conversions. The arguments to a constructor
are converted to the type they are constructing. Hence, the following are allowed:
float f = float(3); // convert integer 3 to floating-point 3.0
float g = float(b); // convert Boolean b to floating point
vec4 v = vec4(2); // all components of v are set to 2.0

When converting from a Boolean, true is converted to 1 or 1.0, and false is converted to a zero.

1.5 Qualifiers and Interface to a Shader
Qualifiers prefix both variables and formal function parameters. The qualifiers used to modify formal function param-
eters (const, in, out, and inout) are discussed in Section 1.6.2. This section will focus on the other qualifiers, most of
which form the interfaces of the shaders to their outside world. The following is the complete list of qualifiers (used
outside of formal function parameters).

attribute For frequently changing information, from the application to a vertex shader
uniform For infrequently changing information, from the application to either a vertex shader

or a fragment shader
varying For interpolated information passed from a vertex shader to a fragment shader
const To declare nonwritable, compile time constant variables, as in C

Getting information into and out of a shader is quite different from more typical programming environments. Informa-
tion is transferred to and from a shader by reading and writing built-in variables and user-defined attribute, uniform,
and varying variables. The most common built-in variables were shown in the example at the beginning of this paper.
They are gl_Position for output of the homogeneous coordinates of the vertex position and gl_FragColor for output
of the fragment’s color from a fragment shader. The complete set of built-in variables is provided in the OpenGL
Shading Language specification document. Examples of attribute, uniform, and varying qualified variables have
been seen briefly in the opening example for getting other information into and out of shaders. Each is discussed in
this section.

1-10
Variables qualified as attribute, uniform, or varying must be declared at global scope. This is sensible as they are
visible outside of shaders and, for a single program, they all share a single name space.

Qualifiers are always specified before the type of a variable, and because there is no default type, the form of a qualified
variable declaration will always include a type.
attribute float Temperature;
const int NumLights = 3;
uniform vec4 LightPosition[NumLights];
varying float LightIntensity;

1.5.1 Attribute Qualifiers

Attribute qualified variables (or attributes) are provided for an application to pass frequently modified data into a
vertex shader. They can be changed as often as once per vertex, either directly or indirectly by the application. There
are built-in attributes, like gl_Vertex and gl_Normal, for reading traditional OpenGL state, and there are user-defined
attributes, which the coder can name.

Attributes are limited to floating-point scalars, floating-point vectors, and matrices. Attributes declared as integers or
booleans are not allowed, nor are attributes declared as structures or arrays. This is, in part, a result of encouraging
high-performance frequent changing of attributes in hardware implementations of the OpenGL system. Attributes
cannot be modified by a shader.

Attributes cannot be declared in fragment shaders.

1.5.2 Uniform Qualifiers

Uniform qualified variables (or uniforms), like attributes, are set only outside a shader and are intended for data that
changes less frequently. They can be changed at most once per primitive. All data types and arrays of all data types are
supported for uniform qualified variables. All the vertex and fragment shaders forming a single program share a single
global name space for uniforms. Hence, uniforms of the same name in a vertex and fragment program will be the same
uniform variable.

Uniforms cannot be written to in a shader. This is sensible because an array of processors may be sharing the same
resources to hold uniforms and other language semantics break down if uniforms could be modified.

Recall that unless a sampler (e.g., sampler2D) is a function parameter, the uniform qualifier must be used when
declaring it. This is because samplers are opaque, and making them uniforms allows the system to validate that the
application initializes a sampler with a texture and texture unit consistent with its use in the shader.

1.5.3 Varying Qualifiers

Varying qualified variables (or varyings) are the only way a vertex shader can communicate results to a fragment
shader. Such variables form the dynamic interface between vertex and fragment shaders. The intention is that for a
particular attribute of a drawing primitive, each vertex might have a different value and that these values need to be
interpolated across the fragments in the primitive. The vertex shader writes the per-vertex values into a varying vari-
able, and when the fragment shader reads from this variable, it gets back a value interpolated between the vertices. If
some attribute were to be the same across a large primitive, not requiring interpolation, the vertex shader need not
communicate it to the fragment shader at all. Instead, the application could pass this value directly to the fragment
shader through a uniform qualified variable.

1-11
The exception to using varying variables only for interpolated values is for any value the application will change often,
either per triangle or per some small set of triangles or vertices. These values may be faster to pass as attribute vari-
ables and forwarded on as varying variables because changing uniform values frequently may impact performance.

The automatic interpolation of varying qualified variables is done in a perspective correct manner. This is necessary
no matter what type of data is being interpolated. Otherwise, such values would not change smoothly across edges
introduced for surface subdivision. The non-perspective correct interpolated result would be continuous, but its deriv-
ative would not be, and this can be quite visible.

A varying qualified variable is written in a vertex shader and read in a fragment shader. It is illegal for a fragment
shader to write to a varying variable. However, the vertex shader may read a varying variable, getting back what it has
just written. Reading a varying qualified variable before writing it returns an undefined value.

1.5.4 Constant Qualifiers

Variables qualified as const (except for formal function parameters) are compile-time constants and are not visible
outside the shader that declares them. There is support for both scalar and nonscalar constants. Structure fields may
not be qualified with const, but structure variables can be declared as const and initialized with a structure constructor.
Initializers for const declarations must be formed from literal values, other const qualified variables (not including
function call parameters), or expressions of these.

Some examples:
const int numIterations = 10;
const float pi = 3.14159;
const vec2 v = vec2(1.0, 2.0);
const vec3 u = vec3(v, pi);
const struct light
{
 vec3 position;
 vec3 color;
} fixedLight = light(vec3(1.0, 0.5, 0.5), vec3(0.8, 0.8, 0.5));

All the preceding variables are compile-time constants. The compiler may propagate and fold constants at compile
time, using the precision of the processor executing the compiler, and need not allocate any runtime resources to const
qualified variables.

1.5.5 Absent Qualifier

If no qualifier is specified when declaring a variable (not a function parameter), the variable can be both read and
written by the shader. Nonqualified variables declared at global scope can be shared between shaders of the same type
that are linked in the same program. Vertex shaders and fragment shaders each have their own separate global name
space for nonqualified globals. However, nonqualified user-defined variables are not visible outside of a program. That
privilege is reserved for variables qualified as attribute or uniform and for built-in variables representing OpenGL
state.

Unqualified variables have a lifetime limited to a single run of a shader. There is also no concept corresponding to a
static variable in a C function that would allow a variable to be set to a value and have its shader retain that value from
one execution to the next. This is made difficult by the parallel processing nature of the execution environment, where
multiple instantiations run in parallel, sharing much of the same memory. In general, writable variables must have
unique instances per processor executing a shader and therefore cannot be shared.

Because unqualified global variables have a different name space for vertex shaders than for fragment shaders, it is not
possible to share information through such variables between vertex and fragment shaders. Read-only variables can

1-12
be shared if declared as uniform, and variables written by a vertex shader can be read by the fragment shader only
through the varying mechanism.

1.6 Flow Control
Flow control is very much like C++. The entry point into a shader is the function main. A program containing both
vertex and fragment shaders will have two functions named main, one for entering a vertex shader to process each
vertex, and one to enter a fragment shader to process each fragment. Before main is entered, any initializers for global
variable declarations will be executed.

Looping can be done with for, while, and do-while, just as in C++. Variables can be declared in for and while state-
ments, and their scope lasts until the end of their substatements. The keywords break and continue also exist and
behave as in C.

Selection can be done with if and if-else, just as in C++, with the exception that a variable cannot be declared in the if
statement. Selection using the selection operator (?:) is also available, with the extra constraint that the second and
third operands must have exactly the same type.

The type of the expression provided to an if statement or a while statement, or to terminate a for statement, must be a
scalar Boolean. As in C, the right-hand operand to logical-and (&&) is not evaluated (or at least appears not to be eval-
uated) if the left-hand operand evaluates to false, and the right-hand operand to logical-or (||) is not evaluated if the
left-hand operand evaluates to true. Similarly, only one of the second or third operands in the selection operator (:?)
will be evaluated. A logical exclusive or (^^) is also provided, for which both sides are always evaluated.

A special branch, discard, can prevent a fragment from updating the frame buffer. When a fragment shader executes
the discard keyword, the fragment being processed is marked to be discarded. An implementation might or might not
continue executing the shader, but it is guaranteed that there will be no effect on the frame buffer.

A goto keyword or equivalent is not available, nor are labels. Switching with switch is also not provided.

1.6.1 Functions

Function calls operate much as in C++. Function names can be overloaded by parameter type but not solely by return
type. Either a function definition (body) or declaration must be in scope before calling a function. Parameter types are
always checked. This means an empty parameter list () in a function declaration is not ambiguous, as in C, but rather
explicitly means the function accepts no arguments. Also, parameters have to have exact matches as no automatic
promotions are done, so selection of overloaded functions is quite straightforward.

Exiting from a function with return operates the same as in C++. Functions returning nonvoid types must return
values, whose type must exactly match the return type of the function.

Functions may not be called recursively, either directly or indirectly.

1.6.2 Calling Conventions

The OpenGL Shading Language uses call by value-return as its calling convention. The call by value part is familiar
from C: Parameters qualified as input parameters will be copied into the function and not passed as a reference.
Because there are no pointers, a function need not worry about its parameters being aliases of some other memory. The
return part of call by value-return means parameters qualified as output parameters will be returned to the caller by
being copied back out from the called function to the caller when the function returns.

1-13
To indicate which parameters are copied when, prefix them with the qualifier keywords in, out, or inout. For some-
thing that is just copied into the function but not returned, use in. The in qualifier is also implied when no qualifiers
are specified. To say a parameter is not to be copied in but is to be set and copied back on return, use the qualifier out.
To say a parameter is copied both in and out, use the qualifier inout.

in Copy in but don’t copy back out; still writable within the function
out Only copy out; readable, but undefined at entry to function
inout Copy in and copy out

The const qualifier can also be applied to function parameters. Here, it does not mean the variable is a compile-time
constant, but rather that the function is not allowed to write it. Note that an ordinary, nonqualified input-only parameter
can be written to, it just won’t be copied back to the caller. Hence, there is a distinction between a parameter qualified
as const in and one qualified only as in (or with no qualifier). Of course, out and inout parameters cannot be declared
as const.

Some examples:
void ComputeCoord(in vec3 normal, // Parameter ’normal’ is copied in,
 // can be written to, but will not be
 // copied back out.
 vec3 tangent, // Same behavior as if "in" was used.
 inout vec3 coord)// Copied in and copied back out.

Or,
vec3 ComputeCoord(const vec3 normal,// normal cannot be written to
 vec3 tangent,
 in vec3 coord) //the function will return the result

The following are not legal:
void ComputeCoord(const out vec3 normal, //not legal; can’t write normal
 const inout vec3 tang, //not legal; can’t write tang
 in out vec3 coord) //not legal; use inout

Structures and arrays may also be passed as arguments to a function. Keep in mind though that these data types are
passed by value and there are no pointers, so it is possible to cause some large copies to occur at function call time.
Array parameters must be declared with their size, and only arrays of matching type and size can be passed to an array
parameter. The return type of a function is not allowed to be an array.

Functions can either return a value or return nothing. If a function returns nothing, it must be declared as type void. If
a function returns a value, the type can be any type except an array. However, structures can be returned, and structures
can contain arrays.

1.6.3 Built-in Functions

There is a large set of built-in functions available. These are documented in full in the OpenGL Shading Language
specification.

A shader can override these functions, providing its own definition. To override a function, provide a prototype or defi-
nition that is in scope at the time of call time. The compiler or linker then looks for a user-defined version of the func-
tion to resolve that call. For example, one of the built-in sine functions is declared as
float sin(float x);

If a shader wants to experiment with performance/accuracy trade-offs in a sine function or specialize it for a particular
domain, it can override them and do so.
float sin(float x)
{
 return <.. some function of x..>

1-14
}

void main()
{
 // call the sin function above, not the built-in sin function
 float s = sin(x);
}

This is similar to the standard language linking techniques of using libraries of functions and to having more locally
scoped function definitions satisfy references before the library is checked. If the definition is in a different shader, just
make sure a prototype is visible before calling the function. Otherwise, the built-in version will be used.

1.7 Operations
Table 3.1 includes the operators, in order of precedence, available in the OpenGL Shading Language. The precedence
and associativity is consistent with C.

1.7.1 Indexing

Vectors, matrices, and arrays can be indexed using the index operator ([]). All indexing is zero based; the first element
is at index 0. Indexing an array operates just as in C.

Table 1.1 Operators, in order of precedence

Operator Description

[] Index

. Member selection and swizzle

++ -- Postfix increment/decrement

++ -- Prefix increment/decrement

- ! Unary negation and logical not

* / Multiply and divide

+ - Add and subtract

< > <= >= Relational

== != Equality

&& Logical and

^^ Logical exclusive or

|| Logical inclusive or

?: Selection

= += -= *= /= Assignment

, Sequence

1-15
Indexing a vector returns scalar components. This allows giving components numerical names of 0, 1, …, and also
provides variable selection of vector components, should that be needed. For example,
vec4 v = vec4(1.0, 2.0, 3.0, 4.0);
float f = v[2]; // f takes the value 3.0

Here, v[2] will be the floating-point scalar 3.0, which is then assigned into f.

Indexing a matrix returns columns of the matrix as vectors. For example,
mat4 m = mat4(3.0); // initializes the diagonal to all 3.0
vec4 v;
v = m[1]; // places the vector (0.0, 3.0, 0.0, 0.0) into v

Here, the second column of m, m[1] is treated as a vector that is copied into v.

Behavior is undefined if an array, vector, or matrix is accessed with an index that’s less than zero or greater than or
equal to the size of the object.

1.7.2 Swizzling

The normal structure-member selector (.) is also used to SWIZZLE components of a vector—that is, components can be
selected and/or rearranged by listing their names after the swizzle operator (.). Examples:
vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from
 // the same set.

The component names can be out of order to rearrange the components or they can be replicated to duplicate the
components:
vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

At most, four component names can be listed in a swizzle; otherwise, they would result in a nonexistent type. The rules
for swizzling are slightly different for R-VALUES (expressions that are read from) and L-VALUES (expressions that say
where to write to). R-values can have any combination and repetition of components. L-values must not have any repe-
tition. For example:
vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice

For R-values, this syntax can be used on any expression whose resultant type is a vector. For example, getting a two-
component vector from a texture lookup can be done as
vec2 v = texture1D(sampler, coord).xy;

where the built-in function texture1D returns a vec4.

1.7.3 Component-wise Operation

With a few important exceptions, when an operator is applied to a vector, it behaves as if it were applied to each compo-
nent of the vector, independently.

1-16
For example,
vec3 v, u;
float f;
v = u + f;

will be equivalent to
v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And
vec3 v, u, w;
w = v + u;

will be equivalent to
w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

If a binary operation operates on a vector and a scalar, the scalar is applied to each component of the vector. If two
vectors are operated on, their sizes must match.

Exceptions are multiplication of a vector times a matrix and a matrix times a matrix, which perform standard linear-alge-
braic multiplies, not component-wise multiplies.

Increment and decrement operators (++ and --) and unary negation (-) behave as in C. When applied to a vector or
matrix, they increment or decrement each component. They operate on integer and floating-point-based types.

Arithmetic operators of addition (+), subtraction (-), multiplication (*), and division (/) behave as in C, or compo-
nent-wise, with the previously described exception of using linear-algebraic multiplication on vectors and matrices:
vec4 v, u;
mat4 m;
v * u; // This is a component-wise multiply
v * m; // This is a linear-algebraic row-vector times matrix multiply
m * v; // This is a linear-algebraic matrix times column-vector multiply
m * m; // This is a linear-algebraic matrix times matrix multiply

All other operations are performed component by component.

Logical not (!), logical and (&&), logical or (||), and logical inclusive or (^^) operate only on expressions that are typed
as scalar Booleans, and they result in a Boolean. These cannot operate on vectors. There is a built-in function, not, to
compute the component-wise logical not of a vector of Booleans.

Relational operations (<, >, <=, and >=) operate only on floating-point and integer scalars and result in a scalar
Boolean. There are built-in functions, for instance lessThanEqual, to compute a Boolean vector result of component-
wise comparisons of two vectors.

The equality operators (== and !=) operate on all types except arrays. They compare every component or structure
member across the operands. This results in a scalar Boolean, indicating whether the two operands were equal. For two
operands to be equal, their types must match, and each of their components or members must be equal. To get a compo-
nent-wise vector result, call the built-in functions equal and notEqual.

Scalar Booleans are produced by the operators equal (==), not equal (!=), relational (<, >, <=, and >=), and logical not
(!) because flow-control constructs (if, for, etc.) require a scalar Boolean. If built-in functions like equal are called to
compute a vector of Booleans, such a vector can be turned into a scalar Boolean using the built-in functions any or all.
For example, to do something if any component of a vector is less than the corresponding component of another vector,
say
vec4 u, v;

1-17
...
if (any(lessThan(u, v)))
 ...

Assignment (=) requires exact type match between the left- and right-hand side. Any type, except for arrays, can be
assigned. Other assignment operators (+=, -=, *=, and /=) are similar to C but must make semantic sense when
expanded out
a *= b ⇒ a = a * b

where the expression a * b must be semantically valid, and the type of the expression a * b must be the same as the
type of a. The other assignment operators behave similarly.

The ternary selection operator (?:) operates on three expressions (exp1 ? exp2 : exp3). This operator evaluates the
first expression, which must result in a scalar Boolean. If the result is true, it selects to evaluate the second expression;
otherwise, it selects to evaluate the third expression. Only one of the second and third expressions will appear to be
evaluated. The second and third expressions must be the same type, but they can be of any type other than an array.
The resulting type is the same as the type of the second and third expressions.

The sequence operator (,) operates on expressions by returning the type and value of the right-most expression in a
comma-separated list of expressions. All expressions are evaluated, in order, from left to right.

1.8 Preprocessor
The preprocessor is much like that in C. Support for
 #define
 #undef
 #if
 #ifdef
 #ifndef
 #else
 #elif
 #endif

as well as the defined operator are exactly as in standard C. This includes macros with arguments and macro expan-
sion. Built-in macros are
 __LINE__
 __FILE__
 __VERSION__

__LINE__ substitutes a decimal integer constant that is one more than the number of preceding new-lines in the
current source string.

__FILE__ substitutes a decimal integer constant that says which source string number is currently being processed.

__VERSION__ substitutes a decimal integer reflecting the version number of the OpenGL Shading Language. The
version of the shading language described in this document will have __VERSION__ substitute the decimal integer
110.

Macro names containing two consecutive underscores (__) are reserved for future use as predefined macro names, as
are all macro names prefixed with “GL_”

There is also the usual support for
 #error message
 #line
 #pragma

1-18
#error puts message into the shader’s information log. The compiler then proceeds as if a semantic error has been
encountered.

#line must have, after macro substitution, one of the following two forms:
 #line line
 #line line source-string-number

where line and source-string-number are constant integer expressions. After processing this directive (including its
new-line), the implementation will behave as if it is compiling at line number line+1 and source string number source-
string-number. Subsequent source strings will be numbered sequentially until another #line directive overrides that
numbering.

#pragma is implementation dependent. Tokens following #pragma are not subject to preprocessor macro expansion.
If an implementation does not recognize the tokens specified by the pragma, the pragma will be ignored. However, the
following pragmas are defined as part of the language.

 #pragma STDGL

The STDGL pragma is used to reserve pragmas for use by future revisions of the OpenGL Shading Language. No
implementation may use a pragma whose first token is STDGL.

Use the optimize pragma
 #pragma optimize(on)
 #pragma optimize(off)

to turn optimizations on or off as an aid in developing and debugging shaders. It can occur only outside function defi-
nitions. By default, optimization is turned on for all shaders.

The debug pragma
 #pragma debug(on)
 #pragma debug(off)

enables compiling and annotating a shader with debug information so it can be used with a debugger. The debug
pragma can occur only outside function definitions. By default, debug is set to off.

Shaders should declare the version of the language to which they are written using

 #version number

If the targeted version of the language is the version that was approved in conjunction with OpenGL 2.0, then a value
of 110 should be used for number. Any value less than 110 will cause an error to be generated. Any value greater than
the latest version of the language supported by the compiler will also cause an error to be generated. Version 110 of
the language does not require shaders to include this directive, and shaders without this directive are assumed to target
version 110 of the OpenGL Shading Language. This directive, when present, must occur in a shader before anything
else except comments and white space.

By default, compilers must issue compile time syntactic, grammatical, and semantic errors for shaders that do not
conform to the OpenGL Shading Language specification. Any extended behavior must first be enabled through a
preprocessor directive. The behavior of the compiler with respect to extensions is declared using the #extension
directive:
 #extension extension_name : behavior
 #extension all : behavior

extension_name is the name of an extension. The token all means that the specified behavior should apply to all
extensions supported by the compiler. The possible values for behavior and their corresponding effects are shown in
Table 1.2.

1-19
The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does not define poli-
cies such as the extension combinations that are appropriate. Those must be defined elsewhere. The order of directives
is relevant in setting the behavior for each extension. Directives that occur later override those that occur earlier. The
all token sets the behavior for all extensions, overriding all previously issued #extension directives, but only for
behaviors warn and disable.

The initial state of the compiler is as if the directive
 #extension all : behavior

was issued, telling the compiler that all error and warning reporting must be done according to the non-extended
version of the OpenGL Shading Language that is being targeted (i.e., all extensions will be ignored).
Table 1.2 Permitted values for the behavior expression in the #extension directive

Each extension to the language can define its allowed granularity of scope. If nothing is specified, the granularity is a
shader (i.e., a single compilation unit), and the extension directives must occur before any non-preprocessor tokens. If
necessary, the linker can enforce granularities larger than a single compilation unit, in which case each involved shader
will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

The number sign (#) on a line by itself is ignored. Any directive not described in this section will cause the compiler
to generate an error message. The shader will subsequently be treated as ill-formed.

1.9 Preprocessor Expressions
Preprocessor expressions can contain the following operators as shown in Table 1.3.

Value of behavior Effect

require Behave as specified by the extension extension_
name. The compiler will report an error on the
#extension directive if the specified extension is
not supported, or if the token all is used instead of an
extension name.

enable Behave as specified by the extension extension_
name. The compiler will provide a warning on the
#extension directive if the specified extension is
not supported, and it will report an error if the token
all is used instead of an extension name.

warn Behave as specified by the extension extension_
name, except to cause the compiler to issue warnings
on any detectable use of the specified extension that is
not supported by other enabled or required extensions.
If all is specified, then the compiler will warn on all
detectable uses of any extension used.

disable Behave (including errors and warnings) as if the
extension specified by extension_name is not
part of the language definition. If all is specified,
then behavior must revert back to that of the non-
extended version of the language that is being targeted.
The compiler will provide a warning if the specified
extension is not supported.

1-20
They have precedence, associativity, and behavior matching the standard C preprocessor.

Preprocessor expressions may be executed on the processor running the compiler and not on the graphics processor
that will execute the shader. Precision is allowed to be this host processor’s precision and hence will likely be different
from the precision available when executing expressions in the core language.

As with the core language, string types and operations are not provided. None of the hash-based operators (#, ##, etc.)
is provided, nor is a preprocessor sizeof operator.

1.10 Error Handling
Compilers accept some ill-formed programs because it is impossible to detect all ill-formed programs. For example,
completely accurate detection of usage of an uninitialized variable is not possible. Such ill-formed shaders may
execute differently on different platforms. Therefore, the OpenGL Shading Language specification states that porta-
bility is ensured only for well-formed programs.

OpenGL Shading Language compilers are encouraged to detect ill-formed programs and issue diagnostic messages,
but are not required to do so for all cases. Compilers are required to return messages regarding shaders that are lexi-
cally, grammatically, or semantically incorrect. Shaders that generate such error messages cannot be executed. The
OpenGL entry points for obtaining any diagnostic messages are discussed in the OpenGL 2.0 specification.

1.11 Summary
The OpenGL Shading Language is a high-level procedural language designed specifically for the OpenGL environ-
ment. This language allows applications to specify the behavior of programmable, highly parallel graphics hardware.
It contains constructs that allow succinct expression of graphics shading algorithms in a way that is natural for
programmers experienced in C and C++.

The OpenGL Shading Language includes support for scalar, vector, and matrix types; structures and arrays; sampler
types that are used to access textures; data type qualifiers that are used to define shader input and output; constructors
for initialization and type conversion; and operators and flow control statements like those in C/C++.

Table 1.3 Preprocessor operators

Operator Description

+ - ~ ! defined unary

* / % multiplicative

+ - additive

<< >> bit-wise shift

< > <= >= relational

== != equality

& ^ | bit-wise

&& || logical

	Features of the OpenGL Shading Language
	1.1 Example Shader Pair
	1.2 Data Types
	1.2.1 Scalars
	1.2.2 Vectors
	1.2.3 Matrices
	1.2.4 Samplers
	1.2.5 Structures
	1.2.6 Arrays
	1. Before the array is referenced, it is declared again with a size, with the same type as the fi...
	2. All indices that statically reference the array are compile-time constants. In this case, the ...

	1.2.7 Void
	1.2.8 Declarations and Scope
	1.2.9 Type Matching and Promotion

	1.3 Initializers and Constructors
	1.4 Type Conversions
	1.5 Qualifiers and Interface to a Shader
	1.5.1 Attribute Qualifiers
	1.5.2 Uniform Qualifiers
	1.5.3 Varying Qualifiers
	1.5.4 Constant Qualifiers
	1.5.5 Absent Qualifier

	1.6 Flow Control
	1.6.1 Functions
	1.6.2 Calling Conventions
	1.6.3 Built-in Functions

	1.7 Operations
	Table 1.1 Operators, in order of precedence
	Operator
	Description
	1.7.1 Indexing
	1.7.2 Swizzling
	1.7.3 Component-wise Operation

	1.8 Preprocessor
	Table 1.2 Permitted values for the behavior expression in the #extension directive
	Value of behavior
	Effect

	1.9 Preprocessor Expressions
	Table 1.3 Preprocessor operators
	Operator
	Description

	1.10 Error Handling
	1.11 Summary

