Jimmy Johansson

Advanced Computer Graphics Programming (TNCG14)

Course home page: http://staffwww.itn.liu.se/~jimjo/courses/TNCG14-2009/ E-mail: jimmy.johansson@itn.liu.se

People

- Jimmy Johansson (JJ)
 - PhD in Information Visualization
 - Research/teaching: Information visualization, data mining, OpenGL, Shader programming, ...
- Matt Cooper (MC)
 - PhD in computational chemistry
 - Research/teaching: VR-technology, parallel programming, data mining, computer graphics, ...
- Karljohan Palmerius (KP)
 - PhD in Scientific visualization
 - Research/teaching: Haptics, realtime rendering, VRtechnology, ...

Aim of the course

- "...is to develop an understanding of and ability to work with the conditions associated with high performance and real-time computer graphics"
- "..and the wide array of methods used to reach their goals"

Aim of the course

- demonstrate an understanding of the goals and requirements of high performance and real time rendering
- demonstrate the ability to decompose graphics algorithms into suitable parallel and serial components for implementation on parallel computer systems and graphics hardware
- Develop high performance graphics applications using:
 - advanced algorithms for high performance graphics
 - parallel and multi-threaded computing systems
 - programmable graphics processing units

- Lectures, labs and project work
- Strongly oriented towards self-study
- Significant amount of distributed litterature
- Course Literature:
 - Real-Time Rendering
 - The OpenGL Programming Guide The Redbook
 - OpenGL Shading Language The Orange book

- 6 Lectures
 - 1. Introduction/OpenGL (JJ)
 - 2. OpenGL and GPU programming (JJ)
 - 3. GPU programming (JJ)
 - 4. Parallel Architectures for CG (MC)
 - 5. Parallel Programming for CG (MC)
 - 6. Geometric and illumination "tricks" (KJ)

- 3 Labs
 - OpenGL
 - Shader programming using GLSL
 - Parallel Programming
- Available on the course webpage
- Individual or in pairs
- SP5117 (linux lab) is available
- Sign up on lists outside the lab
- Lab assistant is Ruman Zakaria

- Project work
 - Individually or in pairs
 - Suggested topics on the course homepage
 - Many ideas from the course book
 - Send email with suggestion/s to Jimmy no later than Thursday, April 2
 - Course grade will be based on the project work
 - Implementation
 - Public presentation by the group
 - May 28, 13-17 or May 29, 08-12
 - Written report. June 5

Why this course?

- Increase in CPU speed is not as large anymore
- Size of data still rapidly increasing
 - Increasing complexity in calculations
- Multi-core
- Powerful graphics processors

Real-time rendering

- Computer graphics with a time constraint
 - "Realtime" is relative
 - Computer games, interactive visualization
 - Limited resources, time limits and other demands
- Concepts:
 - do as much as you can!
 - don't do more than you can!

Issue 1

• Do as much as you can!

Do as much as you can

- Acceleration
 - Software acceleration
 - Code optimization
 - Parallelization
 - Hardware acceleration
 - Dedicated hardware
 - Hardware optimized graphics

Software acceleration

- Code optimization
 - Keep the cost low
 - Low-level optimization
 - LUT or replace intensive functions
 - Pow, arctan, sincos
- Parallelization
 - Independent operations in parallel

Software acceleration

- Parallel computing
 - run using multiple CPUs
 - problem is broken into discrete parts that can be solved concurrently

Hardware acceleration

- Hardware optimized algorithms
 - simple operations in parallel pipelines
- Specialized hardware
 - GPU, PPU
 - Hardware interface
 - API: OpenGL, Direct3D, PhysX, ...

Graphics Hardware

Shader Programming

- Replacing Fixed Functionality
 - Vertex shaders
 - Geometry shaders
 - Fragment shaders
- Examples include
 - Realistic materials
 - Stone, wood
 - Realistic lighting effects
 - Soft shadowing, area lights
 - Image processing (GPGPU)
 - Convolution, complex blending

Issue 2

• Don't do more than you can!

Don't do more than you can

- Frame-rate maintenance
 - Remove unnecessary work
 - Flexibility
 - Adjust rendering to fit conditions
 - Graphics hardware, memory, CPU
 - Degrading
 - Use graceful degradation

Culling

- Remove objects that will not affect the scene
 - Behind the viewer (near/far plane)
 - Outside view frustum
 - Behind another object

Culling

- Bounding volumes
 - Cull groups with bounding spaces outside the view
 - Bounding
 - Sphere
 - axis-aligned bounding box (AABB)
 - oriented bounding box (OBB)
 - should be easy to work with
 - should have small void space

Bounding volumes

Scene Partitioning

- Example: rooms
 - Limited content
 - Occluding walls
 - Static relation to other rooms
- Intelligent door placement
 - Automatic closing

- Graceful degradation
 - In the event of a reduction of available resources (time, CPU, memory,...) good choices are made to make the best possible use of what is available without failing to complete the originally planned task

Graceful degradation

Graceful degradation

Graceful degradation

Cheating

- Don't use more effort than necessary
 - Psychophysical aspects (perception)
 - speed, contrast, (eccentricity)
 - fog, (depth-of-field)

Object Resolution

- Level-of-detail (LoD)
 - Use as low resolution as possible
 - Select resolution at render-time

Textures

- Replace geometrical details with texture (Image)
 - Clothes, faces and ground

Textures

- Use photographs of things
 - Lighting
 - Material and colour
 - Microstructure

Fragment Shaders

- Hardware accelerated details
 - Each fragment individually estimated
 - Real-time updated texturing
 - Bumpiness, details, etc.
 - Relief texturing

Summary Introduction

- Do as much as you can!
- Don't do more than you can!
- Many techniques and "tricks" to achieve this

Real-Time Rendering

Third Edition

Tomas Akenine-Möller Eric Haines Naty Hoffman

Copyrighted Material

Contents

1	Intro	duction	1			
	1.1	Contents Overview	2			
	1.2	Notation and Definitions	4			
2	The Graphics Rendering Pipeline					
	2.1	Architecture	12			
	2.2	The Application Stage	14			
	2.3	The Geometry Stage	13			
	2.4	The Rasterizer Stage	21			
	2.5	Through the Pipeline	25			
3	The Graphics Processing Unit					
	3.1	GPU Pipeline Overview	30			
	3.2	The Programmable Shader Stage	30			
	3.3	The Evolution of Programmable Shading	3:			
	3.4	The Vertex Shader	38			
	3.5	The Geometry Shader	40			
	3.6	The Pixel Shader	43			
	3.7	The Merging Stage	4			
	3.8	Effects	43			
4	Transforms					
	4.1	Basic Transforms	55			
	4.2	Special Matrix Transforms and Operations	65			
	4.3	Quaternions	72			
	4.4	Vertex Blending	80			
	4.5	Morphing	8			
	4.6	Projections	8			
5	Visual Appearance					
	5.1	Visual Phenomena	99			
	5.9	Light Sources	100			

Copyrighted Material

vili			Contents
	5.3	Material	. 104
	5.4	Sensor	. 107
	5.5	Shading	. 110
	5.6	Aliasing and Antialiasing	. 116
	5.7	Transparency, Alpha, and Compositing	. 134
	5.8	Gamma Correction	. 141
6	Textu	ring	147
	6.1	The Texturing Pipeline	. 148
	6.2	Image Texturing	. 156
	6.3	Procedural Texturing	. 178
	6.4	Texture Animation	. 180
	6.5	Material Mapping	. 180
	6.6	Alpha Mapping	. 181
	6.7	Bump Mapping	. 183
7	Adva	nced Shading	201
	7.1	Badiometry	. 202
	7.2	Photometry	209
	7.3	Colorimetry	210
	7.4	Light Source Types	217
	7.5	BRDF Theory	223
	7.6	BRDF Models	. 251
	77	BRDF Acquisition and Representation	. 264
	7.8	Implementing BRDFs	. 204
	7.9	Combining Lights and Materials	. 275
8	Area	and Environmental Lighting	285
0	81	Badiometry for Arbitrary Lighting	286
	8.9	Area Light Sources	. 200
	83	Ambient Light	. 205
	8.4	Environment Mapping	. 235
	8.5	Closey Reflections from Environment Mane	. 291
	8.6	Irradiance Environment Mapping	, 314
0	Clob	al Illumination	227
2	0.1	Shadows	327
	0.9	Ambient Occlusion	. 001
	0.2	Deflections	. 313
	0.4	Trenemittence	. 360
	9.4	Definitions	. 392
	9.0	Constine	, 390
	9.0	Clubel Schember Control	. 399
	9.7	Global Subsurface Scattering	. 401

CONA	icilat	hot	Billion 1	ori	al
Cobai	IGIII	eu	1ALCIA	en	aı

Cor	ntents		ix
	9.8	Full Global Illumination	407
	9.9	Precomputed Lighting	417
	9.10	Precomputed Occlusion	425
	9.11	Precomputed Radiance Transfer	430
10	Image	-Based Effects	439
	10.1	The Rendering Spectrum	440
	10.2	Fixed-View Effects	440
	10.3	Skyboxes	443
	10.4	Light Field Rendering	444
	10.5	Sprites and Layers	445
	10.6	Billboarding	446
	10.7	Particle Systems	455
	10.8	Displacement Techniques	463
	10.9	Image Processing	467
	10.10	Color Correction	474
	10.11	Tone Mapping	475
	10.12	Lens Flare and Bloom	482
	10.13	Depth of Field	486
	10.14	Motion Blur	490
	10.15	Fog	496
	10.16	Volume Rendering	502
11	Non-P	Photorealistic Rendering	507
	11.1	Toon Shading	508
	11.2	Silhouette Edge Rendering	510
	11.3	Other Styles	523
	11.4	Lines	527
12	Polygo	onal Techniques	531
	12.1	Sources of Three-Dimensional Data	532
	12.2	Tessellation and Triangulation	534
	12.3	Consolidation	541
	12.4	Triangle Fans, Strips, and Meshes	547
	12.5	Simplification	561
13	Curve	s and Curved Surfaces	575
	13.1	Parametric Curves	576
	13.2	Parametric Curved Surfaces	592
	13.3	Implicit Surfaces	606
	13.4	Subdivision Curves	608
	13.5	Subdivision Surfaces	611
	13.6	Efficient Tessellation	629

Copyrighted Material

x		Contents
14 Accel	leration Algorithms	645
14.1	Spatial Data Structures	647
14.2	Culling Techniques	660
14.3	Hierarchical View Frustum Culling	. 664
14.4	Portal Culling	667
14.5	Detail Culling	670
14.6	Occlusion Culling	670
14.7	Level of Detail	680
14.8	Large Model Rendering	693
14.9	Point Rendering	693
	u de la companya de l	
15 Pipeli	ine Optimization	697
15.1	Profiling Tools	698
15.2	Locating the Bottleneck	699
15.3	Performance Measurements	702
15.4	Optimization	703
15.5	Multiprocessing	
16 Inters	ection Test Methods	725
16.1	Hardware-Accelerated Picking	726
16.2	Definitions and Tools	797
16.3	Bounding Volume Creation	739
16.4	Geometric Probability	735
16.5	Bules of Thumb	737
16.6	Rues of Thand	738
16.7	Ray/Son Intersection	741
16.8	Ray/Dox Intersection	746
16.0	Ray/Inlange Intersection	750
16.10	Ray/Forgon Intersection	
16.10	Triangle (Triangle Intersection	. 100
16.10	Triangle/Inangle Intersection	
10.12	DV/DV Interpret	700
10.13	N' E to Lto ti	(02
10.14	View Frustum Intersection	((1
16.15	Shaft/Box and Shaft/Sphere Intersection	118
16.10	Line/Line Intersection Tests	780
16.17	Intersection Between Three Planes	782
16.18	Dynamic Intersection Testing	
17 Collis	ion Detection	793
17.1	Collision Detection with Rays	. 795
17.2	Dynamic CD using BSP Trees	. 797
17.3	General Hierarchical Collision Detection	802
17.4	OBBTree	807

Col	ntents		xi			
	175	A M LET LOUIS OF C	011			
	17.5	A Multiple Objects CD System	811			
	17.6	Miscellaneous Topics	816			
	17.7	Other Work	826			
18	Grap	hics Hardware	829			
	18.1	Buffers and Buffering	829			
	18.2	Perspective-Correct Interpolation	838			
	18.3	Architecture	840			
	18.4	Case Studies	859			
19	The F	uture	879			
	19.1	Everything Else	879			
	19.2	You	885			
A	Some	Linear Algebra	889			
	A.1	Euclidean Space	889			
	A.2	Geometrical Interpretation	892			
	A.3	Matrices	897			
	A.4	Homogeneous Notation	905			
	A.5	Geometry	906			
в	Trigonometry					
	B.1	Definitions	913			
	B.2	Trigonometric Laws and Formulae	915			
Bib	liogra	phy	921			

Index

