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To Explore What Isn’t There — Glyph-based
Visualization for Analysis of Missing Values

Sara Johansson Fernstad and Jimmy Johansson

Abstract—This paper contributes a novel visualization method, Missingness Glyph, for analysis and exploration of missing values in data.
Missing values are a common challenge in most data generating domains and may cause a range of analysis issues. Missingness in data
may indicate potential problems in data collection and pre-processing, or highlight important data characteristics. While the development and
improvement of statistical methods for dealing with missing data is a research area in its own right, mainly focussing on replacing missing
values with estimated values, considerably less focus has been put on visualization of missing values. Nonetheless, visualization and
explorative analysis has great potential to support understanding of missingness in data, and to enable gaining of novel insights into patterns
of missingness in a way that statistical methods are unable to. The Missingness Glyph supports identification of relevant missingness
patterns in data, and is evaluated and compared to two other visualization methods in context of the missingness patterns. The results are
promising and confirms that the Missingness Glyph in several cases perform better than the alternative visualization methods.

Index Terms—Missing data, information visualization, glyphs.

F

1 INTRODUCTION

DATA sets with missing values, commonly known as in-
complete or missing data, are a frequent challenge in

data analysis across a range of domains. They are known to
cause issues such as biased, uncertain and unreliable results.
A large number of statistical methods have been developed
for dealing with missing values, which are mainly focused on
replacing missing data with plausible values (known as impu-
tation) [1]. Meanwhile, the visualization and visual analysis
of missing data is a largely overlooked topic, even though
visualization has great potential to support understanding and
knowledge generation from incomplete data. The awareness
of the existence of missing values and the patterns relating
to these missing values can be improved by visualization,
and through this many potential issues and data uncertainties
can be highlighted. In addition to supporting identification
of issues arising during data generation and pre-processing,
visualization of missing data can reveal important patterns,
such as patients missing appointments in medical studies
where the missingness may highlight a health issue. Missing
data visualization can also facilitate decision making as to
how missing values can be most appropriately dealt with.
The application of suitable statistical methods for imputation
require understanding of the patterns of missingness, and
questions such as if records are missing at random or if there
are structured patterns needs to be taken into consideration.

Research by Johansson Fernstad [2] and Johansson Fern-
stad and Glen [3] suggested a set of missingness patterns
of particular importance for analysis. Johansson Fernstad [2]
provided context to the complexities of analysing incomplete
data, and identified issues to address through evaluation of
visualization methods. This paper presents the Missingness
Glyph (MissiG), a novel visualization method for analysis of
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missing values in multivariate data. MissiG represent both
univariate and multivariate patterns of missingness as well as
relationships between missing and recorded values, to support
the identification and understanding of missingness patterns,
and through this highlight uncertainty to aid decision making.
To ensure its usability, MissiG is designed based on well
established glyph design principles [4], [5], [6], utilizing sim-
ple and clearly separable visual channels (colour, height and
shape) for category separation, magnitude representation and
distribution comparison. It is designed to work equally well as
a standalone visualization or as an enhancement to existing
multivariate data visualization methods. To demonstrate its
versatility, the paper presents two standalone layout options
for MissiG, linear and radial, as well as examples of how it
can be used as enhancement for Heatmap and Parallel Coor-
dinates (PC). The usability of MissiG is demonstrated through
two evaluations that compare MissiG with a Heatmap, which
represents missing values using colour, and with PC where
missing values are represented through location. The results
indicate that MissiG is generally better or equally good as
other visualization methods when it comes to identification
of missingness patterns, and that the performance of other
visualization methods can be improved by enhancing them
with MissiG. The main contributions of this paper are:

• MissiG, a novel glyph visualization that supports anal-
ysis of missingness patterns in data;

• two layouts (linear and radial) with additional enhance-
ments of MissiG;

• two evaluations comparing the performance of visu-
alization methods in the context of identification of
missingness patterns.

The paper is structured as follows: Section 2 provides back-
ground, the MissiG design is described in Section 3. Its usabil-
ity is demonstrated by examples in Section 4 and evaluations
in Section 5, with conclusions in Section 6.
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2 BACKGROUND

Missing records may occur in any type of data (numerical, cate-
gorical, text, relational networks etc.), and the most appropriate
method for visualizing missing data will depend on the type
of the recorded data. The focus of this paper lies mainly on
missing values in multivariate (numerical) data. The visualiza-
tion presented in the paper can, however, easily be adapted to
categorical data and the missingness patterns they are based on
are equally applicable to numerical and categorical data. The
identification of missing values in data can be a challenging
pre-processing step to data analysis, since missing values can
be represented in a range of different ways during data collec-
tion. While the identification of missing values is an important
challenge that can be facilitated by visualization, it is not within
the scope of this paper. The contributed visualization method
assume that missing values are explicitly marked in the data.
This section will provide a brief overview of the analysis of
data with missing values. More in depth discussions can be
found in, for instance, Johansson Fernstad [2].

2.1 Analysis of Missing Data
The effect missing values have on analysis results depends
both on the missingness mechanism, described in 2.2, and on
how the missing values are handled. It may also be greatly
affected by the degree of missingness and distribution of
missing values across the data set. The two main approaches
to dealing with missing values are removal and imputation.
Removal is when data items with missing values are removed
prior to analysis. This approach carries a considerable risk of
biased results, unless the values are missing completely at
random. Imputation is when missing values are replaced by
estimated values. There exist a large number of imputation
methods, ranging from replacement with arithmetic mean or
random draws from representative distributions, to complex
multiple imputation methods that combine several imputa-
tions following a set of rules [1]. Imputed values may bias and
affect the analysis results, depending on the appropriateness of
the imputation method.

2.2 Missingness Patterns
The missingness mechanism [7] is a model of how the prob-
ability of an observation being missing depends on its own
value and on the values of other variables. There are three
mechanisms defined: Missing Completely at Random, Missing at
Random and Missing Not at Random. The missingness mech-
anisms are rarely known prior to analysis, they are fairly
complex and may be difficult to apply to an exploratory
analysis approach. More recent research suggests patterns that
may be more straightforward for describing missingness in
data. Wang and Wang [8] suggested three patterns in context
of classification data, focussing on the distribution of missing
values. In a later paper [9] they described concepts of relevance
for understanding the impact of missing values on the analysis
results, addressing both missing values and the relationship
between missing and recorded. Based on previous research and
interviews with data science practitioners, Johansson Fernstad
[2] defined a set of three missingness patterns of relevance for
analysing missingness in data, as described below.

Amount Missing (AM) refers to the relative amount of
missing values in a variable or a data item, and supports

understanding of the distribution of missing values in the
data set. Insight into AM in variables can, for example, sup-
port identification of variables where the missingness may
be particularly difficult to deal with, or highlight subsets of
data where conclusions drawn from the recorded values may
be unreliable due to the large amount missing values. It can
also be useful to investigate whether the missingness may
be randomly distributed, since the amount missing would be
relatively equal across the data set for random missingness.

Joint Missingness (JM) is a multivariate or pairwise pattern
that refers to the amount of data items that have missing values
in more than one variable at the same time. The pattern may,
for example, occur in survey data where participants who
refuse to answer a specific question also tend to not answer
another specific question. Identification of JM can support
discovery of issues in data collection or pre-processing that
cause missingness to propagate across the data, as well as
identification of data subsets where missingness may need to
be dealt with differently to missingness in subsets with less JM.

Conditional Missingness (CM) is a pairwise pattern that
describes the relationship between items that are missing in
one variable and their recorded value in other variables. It
aims to describe patterns where the probability of missingness
is conditional upon recorded values, and as such supports
understanding of relationships between missing and recorded.
Investigation of CM can be useful to understand the cause of
missingness, and can support decisions on how to deal with the
missingness. For example, if missing values in variable A tend
to have low recorded values in variable B, then imputation of
missing values in A based on items with low values in B may
be more valid than imputation based on all items.

As discussed in Johansson Fernstad [2], these three pat-
terns bring together the main characteristics of the previously
suggested missingness patterns. They also provide a more
straightforward description of patterns than the missingness
mechanism. The research presented in this paper address
methods for exploration and identification of missingness in
data based on the concepts of AM, JM and CM.

2.3 Missing Data Visualization

It can often be meaningful to consider missing values as
information bearing signals, rather than issues that need to be
removed, since they may provide valuable information and
highlight potential issues in data gathering, pre-processing
and analysis processes. Fielding et al. [10] and Djurcilov and
Pang [11] provide examples from health-related surveys and
meteorological studies where the absence of data is more
informative than an estimated value, and emphasize the value
of visualization for understanding of missingness in data.

Shape Coding [12] is an early example of representing
missing values with colour to support identification of miss-
ingness related patterns in multivariate data. Twiddy et al.
[13] adopted a similar approach where recorded and missing
values were visually separated using a colour scheme. MANET
[14], [15] was another early example where visual representa-
tions of missing values were incorporated in the visualization
software. The XGobi [16] and gGobi [17] systems focussed
on exploration of missingness, and represented missing data
by imputed values which were linked to a separate view to
keep track of missing values. Wang and Wang [8] presented
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a visualization method for missing values in classification
data, utilizing self-organizing maps [18] for clustering, with
main focus on whether the missing values were randomly
distributed, unevenly distributed or biased towards a par-
ticular class. Additionally, a number of R-packages support
visualization of missing values, as described by for examples
Unwin [19]. Some of the more recent packages include Na-
niar [20], which includes a range of table and barchart based
visualization as well as an UpSet [21] style set visualization;
and extracat [22] including the Visna visualization of missing
values. VIM (Visualization and Imputation of Missing values)
[23], utilize various visual attributes to highlight missingness
in histograms, scatter plots, PC and other common visual
representations. The miP (multiple imputation plots) package
[24] use VIM to visualize imputation results from a range
of packages. Cheng et al. [25] developed an R-package that
distinguish imputed missing values from recorded values by
colour. Some R-packages, such as AmeliaView [26], also pro-
vide graphical user interfaces for manipulation and control of
imputation methods. While interesting, a large part of previous
research in missing data visualization may not be able to
efficiently deal with growing data sizes. Many methods are
focussed on supporting imputation and representing imputed
values, which is an important challenge that visualization can
facilitate. Such methods may, however, be less appropriate for
explorative analysis and knowledge generation.

Considering missing values as part of the broader issue of
data quality, a range of tools have been designed to support
data profiling and cleaning. Profiler [27] utilise inference and
data mining approaches to identify quality issues, and use vi-
sualization to investigate them in context of the larger dataset.
’Know-your-enemy’ [28] use a similar approach, with auto-
mated quality checks to support visual exploration of quality
issues in time series data. Triana et al. [29] utilise data quality
dimensions to enrich visualization with quality information.
Schulz et al. [30] defined missing data as one of several data
descriptors, and used PC with lines intersecting a point below
the axis to represent missing values. Cedilnik and Rheingans
[31] represented uncertainty using procedurally generated an-
notations, and represented missing data by a distance based
probability value. Xie et al. [32] focussed on data quality and
used imputation to obtain quality values for missing data.
Arbesser et al. [33] presented a system where missing data
is one of several quality classes represented by colour. These
papers define missingness as one of several quality descriptors
in the more general context of data quality, thus not focussing
on visual analysis and representation of the specific features of
missingness, as is the focus of the work presented here.

Although the importance of visualization of missing data
has been emphasized [3], [34], [35], little research has investi-
gated how to best represent missing values in data. Eaton et al.
[36] discussed the impact of missing data on the interpretation
of visualization, and evaluated three approaches to represent-
ing missing values in line graphs. Their results implied that
poor indication of missing values has negative effect on inter-
pretation, and suggest that visualization should be enhanced
by dedicated visual attributes, annotation or animation to
indicate the existence of missing data. They did, however, not
suggest what visual attributes may be most appropriate. A later
study by Andreasson and Riveiro [37] evaluated the impact on
decision making of three techniques for representing missing

values visually (emptiness, fuzziness and emptiness plus ex-
planation), and found that while emptiness plus explanation
was the most preferred technique and rendered the highest
decision confidence it also resulted in higher risk behaviour.
Fernandes et al. [38] evaluated the impact on decision making
of a set of uncertainty visualization on mobile displays, con-
cluding that CDF plots and quantile dotplots can successfully
improve decision making despite the limited display space.
Song and Szafir [39] investigated four categories of missing
value representation in line-graphs and bar charts, defined
as highlight, downplay, annotation and information removal.
They concluded that highlighting of missing values is usually
perceived as higher quality, while downplay and information
removal is perceived as lower quality. They also found that
visualization using highlighting and annotation while preserv-
ing the continuity of the recorded data results in the highest
perceived data quality and confidence in results.

Recent work by Johansson Fernstad [2] evaluated the per-
formance of three visualization methods in the VIM package
[23] (scatterplot matrix, heatmap and PC), which are enhanced
by visual attributes for representation of missing values. The
performance was investigated for tasks relating to the identifi-
cation of the AM, JM and CM patterns. The results indicated
that heatmap with missing values represented by colour gener-
ally performed best for tasks relating to AM and JM, while PC
with missing values represented by lines intersecting a point
above the axis, performed better for CM tasks. Conclusions
from that study suggest that it is important to:

1) Include clear frequency representations through size,
possibly combined with colour. This generally needs
more attention, and in particularly for visualization
that lack a natural frequency representation.

2) Include features that connect missing and recorded, as
well as missing and missing, across multiple variables.
This is important for identification of multivariate pat-
terns, and in particular need more attention in visual-
ization with limited representation of connections.

3) Avoid separation of missing and recorded values in
different sets of representations. This is particularly
important for CM patterns, but also since missingness
analysis would commonly be part of a more extensive
analysis where overall data patterns are of interest.

It was also concluded that location rarely is suitable as sole
representation of missing values, due to the intrinsic meaning
of location in methods such as PC and scatterplot, and that ad-
ditional features should be used to emphasize the missingness.

3 THE MISSINGNESS GLYPH

This section will describe MissiG, a novel visualization method
designed to support exploration of missing values in data,
based on the missingness patterns and results presented by Jo-
hansson Fernstad [2]. MissiG is designed to be usable both as a
standalone visualization or as a glyph-style enhancement to be
added to multivariate visualization methods, thus utilizing the
strenghts of common visualization methods while overcoming
their limitations in terms of missing data analysis. While the
examples provided in this paper mainly focus on numerical
data sets, MissiG can easily be adapted to categorical data.
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(a) The relative amount missing
in each variable is represented
as a light blue block.

(b) Recorded items are repre-
sented as histograms, with D be-
ing categorical.

(c) The joint missingness with a
selected variable is represented
as a red block, the selected
variable is highlighted in red.

(d) A red histogram is used
to represent the distribution of
recorded items that are missing
in the selected variable.

Fig. 1: The basic structure of MissiG for three or four variables.
Variable C is selected in 1c and 1d

3.1 Visual Representation of Missingness Patterns

In its basic form, each MissiG glyph represent one variable
in a data set. The glyph has a rectangular shape using blocks
and histograms to represent the data and missingness patterns.
As displayed in Fig. 1a, the relative amount missing (AM) is
represented by the height of a light blue block, where the full
length of the main rectangle represents 100%. In the figure,
30% of values are missing in the left and right variables, while
20% of values are missing in the centre variable. With block
height being a straightforward representation of frequency,
this approach provides an easily interpreted overview of the
amount missing in multivariate data sets. The distribution
of recorded items in the variable is represented by a grey
histogram in the left half of the glyph, as shown in Fig. 1b,
with low values represented at the bottom and high values
at the top. The width of the histogram bins corresponds to
the relative number of items with recorded values within the
bin range. For a categorical variable, each bin would represent
a unique category and the width would correspond to the
relative frequency of that category (variable D, Fig. 1b)

The relative number of items that are subsequently missing
in a pair of variables (i.e. the JM) and the relationship between
missing in one variable and recorded in another (i.e. the CM)
both operate on variable pairs and thus there exist a larger
number of JM and CM relationships than there are variables.
Furthermore, while the JM of a variable pair is non-directional
(AJM → BJM = AJM ← BJM ), the CM is directional
(ACM → BCM 6= ACM ← BCM ). Thus, there are twice as
many unique CM relationships as JM relationships in a data
set. To avoid visual clutter and increase scalability, MissiG
in its basic form only displays representation of JM and CM
for a selected variable. A red block is used to represent the
JM, as displayed in Fig. 1c where variable C is selected and
highlighted in red, and where the height of the red block in
A indicate that 10% of items have concurrently missing values
in A and C . CM is represented through a red histogram in
the right half of the glyph, which display the distribution of
recorded values in an unselected variable, for the subset of
items that have missing values in the selected variable. In Fig.
1d variable C is selected, and the red histogram in A represent

the distribution inA of items that are missing inC but recorded
in A. From Fig. 1d it is visible that items with missing values
in C tend to have relatively low values in A while they have
comparably high values in B.

When analysing missingness it is often relevant to un-
derstand if the values are missing at random or not. The
visual features of MissiG can help out-ruling random missing-
ness through multiple properties. Firstly, where missingness is
completely random it can be expected that each variable has
roughly the same amount missing; if the height of the blue
blocks in the MissiG glyphs varies greatly, we can hence as-
sume that the missingness is not completely random. Secondly,
if the missingness is random we can expect certain levels of JM.
This expected JM can be defined as E(~dj , ~dk) = P (~dj) · P ( ~dk),
where P (~dj) and P ( ~dk) are the probabilities that a value is
missing in ~dj and ~dk respectively. If the JM deviates greatly
from E(~dj , ~dk) we may assume that the missingness is not
completely random. Thus, if 50% of values are missing in vari-
ableA and 50% are missing inB, we expect 25% of values to be
concurrently missing in A and B if missingness is completely
random. Thirdly, for CM, if the data is randomly missing in A,
we would expect the overall distribution of recorded values in
variableB to be similar to the distribution of recorded values in
B for the subset of items that have missing values in A. Hence
we would expect the grey and red histograms in the glyph for
B to have a similar shape. If the shapes of the two histograms
differ considerably, we can conclude that the missingness in
A is not random and there may be a relationship between
recorded values in B and missingness in A.

3.2 Glyph Design Considerations

Four pieces of information are represented in a glyph: 1) the
relative amount missing in a variable; 2) the relative amount
jointly missing with another, selected variable; 3) the over-
all distribution of recorded data; and 4) the distribution of
recorded data for items that are missing in another, selected
variable. MissiG was designed based on these definitions and
a number of well established glyph design principles.

MissiG utilize three main visual channels: colour to distin-
guish between three categories of information (missing values
in a variable, recorded values in a variable, and data relating to
another, selected variable), size/height to represent magnitude,
and shape for representation and comparison of data distri-
butions. This is based on the principles of Typedness [4] and
Semantic Relevance [5], which emphasize that visual channels
should be appropriate for the semanticts of the underlying
data, as well as the guidelines suggested by Borgo et al. [6].
Orderability and Channel Capacity [4] has also been taken into
account, with orderable data (magnitude) being represented
by height which has a relatively high capacity, and non-
orderable categories being represented by the lower capacity
colour channel. Borgo et al. [6] also emphasize the importance
of glyph property interaction normality as well as the use of
perceptually uniform properties. Normality and uniformity is
maintained in MissiG through magnitude values (AM and JM)
being represented relative to the full glyph height, which is the
same for all glyphs, and by distribution representations utiliz-
ing the full glyph height (this was not completely addressed in
an earlier version of the glyph, as described in Section 5).
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The importance of simplicity, the use of well known visual
channels and well defined rules is highlighted by several
design principles (Learnability [4], Complexity and Density,
Simplicity and Symmetry [6]). The MissiG design addresses
this through the use of basic visual channels representing a
clearly defined type of information, with colour representing
categories of information (missing values, recorded values,
and data relating to a selected variable), height representing
magnitudes and shape representing value distributions. The
design principles of Separability, Searchability [4] and Channel
Composition [5] emphasize the importance of clearly identi-
fiable, non-conflicting visual channels. In the MissiG design
this is achieved through the use of visually different and non-
overlaying visual channels. Alternative designs that have been
considered would generally increase the complexity of the
glyph. For example, a pie-chart style representation could have
been used for the magnitude (AM and JM), but this would have
complicated the additional representation of distributions, as
well as loosing the intuitiveness of a minimum and maximum
value and, to some extent, the ability to easily compare heights
across glyphs. For numerical variables, a violin style represen-
tation could have been used instead of histograms, these would
however not be viable for categorical variables.

Pop-out effect and saliency of visual channels are important
to take into account in glyph design, such that more impor-
tant information is made more salient. This is, for example,
highlighted by the principles of Attention Balance [4], Pop-
out Effects and Visual Hierarchy [5], and Importance-based
mapping [6]. Colour is one of the most salient visual channels
[40], and more intense colours, such as red, tend to have a
stronger pop-out effect. In the MissiG glyph, colour is used
to discriminate between the three categories ’missing data’,
’recorded data’ and ’data related to a selected variable’. Pat-
terns related to a variable that is interactively selected by the
user can be expected to be of more interest to the user, thus a
more salient colour (red) is chosen to highlight these patterns,
while the non-selected missing and recorded values have less
salient colours (light blue and light grey). This is also related
to the principle of Focus and Context [4].

3.3 Layouts and Enhancements

To provide an as flexible representation as possible, MissiG can
be used as a standalone visualization technique with different
layouts, or as a glyph-style enhancement to existing methods.
In this section two standalone layouts are suggested, with
added visual encodings to enhance representation of miss-
ingness patterns, but further layouts can also be considered.
Furthermore, two examples are provided of how MissiG can
be used to extend two common visualization methods.

Linear layout is the simplest multivariate representation,
similar to PC, as displayed in Fig. 2. This layout facilitates
comparison of in particular AM patterns, since the height of
blocks are directly comparable across multiple variables. Upon
selecting a variable by clicking on it, as displayed in Fig.
2b where x5 is selected, the JM with the selected variable is
enhanced through arcs linking variable pairs. The thickness of
the arc represents the JM of the variable pair. Alternatively, the
JM of all variable pairs can be represented by arc thickness,
as in Fig. 2c. In Fig. 2b and 2c it is, for instance, visible from
the thickness of the arcs that x5 and x3 have relatively high

(a) AM and distribution of recorded values.

(b) Variable x5 is selected. The highlighted blocks and arcs emphasize
JM and red histograms represent CM with missing values in x5.

(c) Arcs with thickness corresponding to JM for all variable pairs.

Fig. 2: MissiG with linear layout for a synthetic data set with 6
variables, where x1 has no missing values and the remaining
variables have 10% – 30% missing.

Fig. 3: MissiG with radial layout for the same data as in Fig. 2,
with x3 selected. Highlighted blocks and bands emphasize JM
and red histograms represent CM with missing values in x3.

JM, while the JM of x5 and x2 is lower. The red histograms in
the figure also reveal some CM patterns. For instance, the red
histograms in the x1, x2 and x4 glyphs, which are denser for
higher values than corresponding grey histogram, indicate a
relationship between missing values in x5 and high values in
x1, x2 and x4; while there appear to be a relationship between
missing in x5 and low values in x3. For x6, the red and grey
histogram have a similar shape, indicating that there is no
relationship between missing in x5 and recorded in x6.

Radial layout is a representation where the glyph of an in-
teractively selected variable of particular interest is highlighted
and positioned in the centre of a circle (Fig. 3). The other
variables in the data set are positioned on the circumference
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(a) PC were missing values are represented below the axes and items
with missing values in x5 is highlighted in red.

(b) Heatmap with missing values represented in red and recorded
values represented using grey scale, with dark grey corresponding to
low values and light grey corresponding to high values.

Fig. 4: PC and Heatmap enhanced with MissiG glyphs. Variable
x5 is selected in both figures.

of the circle, making it possible to analyse the relationships
between a single variable of particular interest with respect to
all other variables, inspired by the work of Johansson et al. [41].
The width of red bands between glyphs represents the JM with
the selected variable, similar to the arcs in the linear layout.
The pairwise relationships with the variable of interest may be
more easily compared in the radial layout than in the linear,
since the distance between the centred variable and other vari-
ables is equal and thus band length will not impact perception.
The high JM of x3 and x5 is clearly identifiable in Fig. 3, and
it is visible from the width of the red band that the JM of x3
and x4 is also relatively high. The red histograms are generally
mirroring the shapes of corresponding grey histogram, which
indicates that there are no strong CM patterns for items with
missing values in x3.

Enhancements to existing techniques. As previously men-
tioned, the flexibility of the glyph design also makes it usable
as an enhancement to existing visualization. Fig. 4 displays
examples where MissiG is used as an enhancement of PC
(Fig. 4a) and Heatmap (Fig. 4b). The PC and Heatmap, as
implemented here, already include some representation of
missing values. For the PC missing values are represented
below the axis, with red highlighting of items with missing
values for a selected variable. In the Heatmap, cells with
missing values are represented by red colour, while recorded
values are represented by grey scale. In the implementation
described here, which is mainly focussed on exploration of
missing values, MissiG is interactively linked to the other
technique through variable selection. Selection of a variable
of interest will highlight MissiG as described above. When
linked to PC, data items with missing values in the selected
variable will be coloured red in PC (see Fig. 4a), and when
linked to Heatmap the rows will be ordered based on their

value in the selected variable (see Fig. 4b). The addition of
MissiG to these visualization aims to overcome some of the
limitations identified in [2]. In Fig. 4a it is for instance visible
that the JM of x5 and x3, as well as x5 and x4 is relatively high,
something that likely would have been hard to spot in the PC
alone. CM patterns are easier to identify in PC, as confirmed in
[2], but the added MissiG provide a confirmation of patterns
such as the relationship between missing values in x5 and
high values in x1, x2 and x4; particularly in situations where
the data is dense with a large amount of missing values. The
Heatmap in Fig. 4b displays the same data set and selection
as the PC. While the Heatmap generally performed well in
[2], particularly for identification of AM and JM patterns, it is
still likely that its performance will decline with denser data
and high amounts om missing values. For example, the CM
relationship between missing in x5 and high values in x4,
and the relationship between missing in x5 and high values
in x1 are equally visible in the MissiG representation, while
the former is less perceivable than the latter in the Heatmap,
due to x4 having a relatively large number of missing values
while x1 have none. Alternative approaches to enhance visual-
ization methods with MissiG can also be considered. The trade-
off between increased understanding of missingness patterns
and the potentially increased cognitive burden and possible
interference with overall analysis has to be taken into account
within the analytical context. In the suggested enhancements
the glyph is not overlaying the other visualization, which re-
duces its visual interference while it requires additional screen-
space compared to, for example, overlaying the glyphs on the
PC axes. Furthermore, in an analytical context where missing
data is not the main focus, it may be appropriate to use a
less salient colour than red to highlight missing values and
to provide the glyphs as an on-demand feature.

3.4 Scalability

Due to the relative simplicity of the glyph design and the
representation of summary patterns rather than features of
individual data items, the scalability of MissiG is comparable to
or even better than the scalability of common multivariate visu-
alization methods such as PC, Heatmap or Scatterplot matrix.
The visual complexity of a single glyph will not grow with an
increasing number of data items and, hence, from a perception
and interpretation point of view it will not matter if the data
set includes a few hundred items or a million items. On the
other hand, with a multivariate MissiG layout, an increasing
number of variables will require additional visual objects to be
drawn and impact the usability of the visualization, similarly
to how it impacts common multivariate visualization methods.
The exact number of variables that can be visualized effectively
depends not only on the available display space, but also on the
missingness patterns in the data as well as which layout and
visualization options are being used. A data set where only
a small number of variables have missing values will likely
result in a less cluttered display than a data set with missing
values in most variables; and a linear display where all JM arcs
are being displayed (as in Fig. 2c) will often result in a more
cluttered display than if only JM arcs of a selected variable is
displayed (as in Fig. 2b). Fig. 5, 6, 7 and 8 show the use of
MissiG, PC and Heatmap for differently sized data sets with
different missingness distributions and patterns. As with other
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(a) MissiG with linear layout.

(b) PC

(c) Heatmap

Fig. 5: Visualization of the Kamyr Digester data set with 22
variables and 301 items. BF-CMratio (third variable from the
left) is selected and highlighted.

mutlivariate visualization techniques, approaches to deal with
more complex and higher dimensional datasets may for exam-
ple include simplified glyph design with details on demand,
dimensionality reduction and quality metric approaches to aid
identification of the most interesting missingness patterns.

4 EXAMPLES OF PATTERN IDENTIFICATION

This section provides examples of how MissiG can be useful
for identifying missingness patterns. Larger versions of the
figures (5 - 8) are provided in the supplemental material. The
linear and radial MissiG layouts will be compared with PC
and Heatmap. In PC, missing values are represented at a point
below the axis, and items with missing values for a selected
variable are highlighted in red. The Heatmap use red colour to
represent missing values and grey scale to represent recorded
values with light grey corresponding to high values. The rows
in the Heatmap are ordered based on their values for a selected
variable. Two public data sets with missing values are used for
the examples, the Kamyr Digester data set [42] which contains
22 variables (observation date was removed from the data), 301
items and has 352 (5.6%) missing values, and the Communities
and Crime data set [43], which in full contains 128 variables
and 1994 data items. For the purpose of the examples here,
34 variables were randomly selected from the Communities and
Crime data, with a total of 24126 (55.2%) missing values.

Fig. 5 and 6a displays the Kamyr Digester data set with the
BF-CMratio variable selected. It is visible in the MissiG plots (5a
and 6a) and the Heatmap (5c) that there is a strong JM between
BF-CMratio and BlowFlow (third and fourth from left). This can
to some extent also be identified in the PC (5b) through the
red line below the third and fourth axis from the left, but it is

considerably harder to appreciate the amount of jointly missing
values in PC. Looking at the histograms in the MissiG glyph
of SulphidityL-4 (rightmost glyph in 5a and upper left in 6a), it
is visible that the shapes of the grey and red histograms differ,
with the red histogram being denser towards lower values.
This indicates a potential CM between missing values in the
selected BF-CMratio and low recorded values in SulphidityL-4.
The same pattern is considerably harder to identify in the PC
(5b) and in the Heatmap (5c) due to the high number of missing
values in SulphidityL-4 which largely masks the patterns of
recorded values. These JM and CM patterns are clearly not
random patterns, and if not already known it may prompt
the analyst to further examine the connection between these
variables and investigate potential issues in the data collection
or pre-processing steps.

Fig. 7 and 6b display the same data set as in Fig. 5 but
with AAWhiteSt-4 (tenth variable from the left) selected in all
views. Starting with CM patterns, it is visible in Fig. 7a and
6b that the shapes of the red histograms are very similar to
the shapes of corresponding grey histograms. This indicates
that items with missing values in AAWhiteSt-4 are randomly
distributed across the recorded values of other variables, which
may aid the choice of imputation method. These patterns are
harder to visually verify in the PC and Heatmap (Fig. 7b and
7c), and in particular when patterns occur such as the dark
grey blocks in variables Lower-HeatT-3 and Upper-HeatT-3 in
the Heatmap (column four and five to the right of the selected
AAWhiteSt-4), which are a result of the two density peaks in
the variables (as visible from the histograms in 7a) combined
with the ordering of items which in this figure is based on
values in AAWhiteSt-4. While investigating JM, two potentially
interesting relationships are identified in Fig. 7a and 6b. Firstly,
from the red block in the rightmost variable (SulphidityL-4),
which completely overlaps the blue block, it appears that all
items that are missing in AAWhiteSt-4 are also missing in
SulphidityL-4. Both AAWhiteSt-4 and SulphidityL-4 have around
50% of values missing, which means that around 25% of items
should be jointly missing if the values were missing completely
at random, hence, the high JM indicates a non-random missing-
ness pattern suggesting that the missingness in these variables
and its cause should be investigated in conjunction. The pattern
is easily identifiable also in the Heatmap (Fig. 7c) through the
blocks of red rows, and in the PC (Fig. 7b where the items
with missing values in AAWhiteSt-4 (red lines) all intersects
below the AAWhiteSt-4 axis, although the percentage missing
is hard to read from the PC. The second JM pattern that can be
identified in the MissiG representations is that the JM between
AAWhiteSt-4 and UCZAA (two steps left of AAWhiteSt-4 in 7a)
is lower than expected from a random pattern. With half of
values missing for AAWhiteSt-4 it is expected that the red block
in UCZAA would be half the size of the blue block in UCZAA if
the missingness was random, but the red block is considerably
smaller and hence indicates a non-random pattern. The same
pattern can be spotted in the Heatmap, although less obvious,
while it is considerably harder in PC since it does not clearly
represent the frequency of missing values.

Fig. 8 and 6c displays 34 variables from the Communities
and Crime data set. The Community variable (second from left)
is selected in Fig. 8a and 8b, and some patterns related to
distribution of missing values are easily identified in the linear
MissiG layout. Only 15 variables have missing values. Of
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(a) Kamyr Digester data set with 22 variables
and 301 items. BF-CMratio is selected and
positioned in the centre.

(b) Kamyr Digester data set with 22 variables
and 301 items. AAWhiteSt-4 is selected and
positioned in the centre.

(c) The Communities and Crime data set with
the PolicBudgPerPop variable selected and
positioned in the centre.

Fig. 6: Visualization of two data sets using MissiG with radial layout.

(a) MissiG with linear layout.

(b) PC

(c) Heatmap

Fig. 7: Visualization of the Kamyr Digester data set with 22
variables and 301 items. AAWhiteSt-4 (tenth variable from the
left) is selected and highlighted.

these, the two leftmost have around 50% of values missing, as
visible from the blocks in the lower right part of corresponding
glyphs, while the remaining 13 variables have nearly 85%
missing, which can be seen from the blue blocks that are nearly
as high as the full height of the glyphs. In the PC (Fig. 8b)
it can be seen from the high number of red lines that the
selected variable has a relatively high AM, but the AM in other
variables is hard to appreciate. It can be seen from the two
leftmost glyphs in Fig. 8a that nearly all items with missing
values for Community also have missing values for County,
which is also visible in the PC (8b) from the small number
of red lines linking from missing values in Community (second

(a) Linear MissiG with the Community variable (second from left) selected.

(b) PC where the Community variable (second from left) is selected.

(c) Heatmap with PolicBudgPerPop variable (second from right) selected.

Fig. 8: Visualization of 34 variables and 1994 data items from
the Communities and Crime data set.

axis) to recorded values along the leftmost County axis. It is also
clearly visible in the MissiG representation that approximately
half of the items that have missing values in the 13 variables to
the right, also have missing values for the Community variable,
since the red blocks in the 13 variables is around half the height
of the blue blocks, which can be expected given the AM of the
individual variables. While it is visible in the PC that there is
JM between Community and the 13 variables to the right, it is
difficult to estimate the size of JM.

In Fig. 6c and 8c the PolicBudgPerPop variable is selected
(second from right in Heatmap and centre in radial MissiG). It
is clear from both figures that a majority of values (around 85%)
are missing from this variable, and that more or less all of the
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Fig. 9: The initial MissiG design, with amount missing blocks
across the width of the glyph and histograms above the blocks.

items with missing values in PolicBudgPerPop also have missing
values in 12 other variables, as visible from the red blocks in
the MissiG completely covering the blue blocks, and from the
red blocks in the Heatmap where rows are ordered by values
PolicBudgPerPop, this indicates a relationship between missing
in PolicBudgPerPop and missing in the other 12 variables that is
not occurring at random. If this JM pattern had been random,
a JM rate of around 85% would be expected rather than 100%.
In Fig. 6c it is however visible that the JM for the selected
PolicBudgPerPop and the County and Community variables (top
and top right glyph) is likely around 85%, since a part of the
blue block is visible above the red block in the County and
Community blocks, and that the grey and red histograms for
other variables have similar shapes, which indicate a random
relationship with missing values in PolicBudgPerPop. These
patterns are not as easily detected in the Heatmap, where
it for instance is hard to appreciate the amount of jointly
missing values with County and Community. While the high
AM suggest that any imputation would introduce too much
bias, the knowledge of JM patterns can help understand data
collection issues that may need to be addressed.

5 EVALUATION OF THE MISSINGNESS GLYPH

Two usability studies were carried out to establish the us-
ability of MissiG. The first was designed using interactive
visualization in the lab, while the second was an online study
comparing static visual representations. The following section
will describe the studies and their results in detail.

5.1 Visualization Methods

Six visualization methods were compared in the studies, in-
cluding different MissiG layouts and extensions. There was
a slight variation in the MissiG design between the first and
second study, as the glyph was improved after the first study.
In the initial design (Fig. 9) the amount missing blocks were
stretched across the full width of the glyph, and histograms
were squeezed into the space available above the blocks, result-
ing in different histogram heights for variables and difficulties
comparing histograms across variables. As shown in Fig. 1 the
amount missing blocks in the final design only cover half the
width, to allow more space for the histograms, and use opacity
and black borders to increase visibility of the part of the red CM
histogram that overlap the blocks. The visualization methods
compared were:
Linear MissiG (MissiG-L): The linear layout of MissiG with
display of JM arcs only for the selected variable, as in Fig. 2b.

Radial MissiG (MissiG-R): The radial layout of MissiG, where
the selected variable is positioned in the centre, as in Fig. 3. This
layout was only included in the second study.
Heatmap (HM): Heatmap where missing values are repre-
sented by red cells, and recorded values are represented in
grey scale with dark corresponding to low values and light
corresponding to high values.
Heatmap with MissiG (HM+MissiG): Heatmap with the same
colouring as above but enhanced with MissiG, as in Fig. 4b.
Parallel Coordinates (PC): PC where missing values are rep-
resented by polylines intersecting a point below the axis, and
items with missing values for a selected variable is represented
by red polylines.
Parallel Coordinates with MissiG (PC+MissiG): PC with
missing value representation as above but enhanced with
MissiG, as in Fig. 4a.

5.2 Hypotheses and Tasks

Based on the results in [2], the evaluations were designed to
test the following hypotheses:

H1 The MissiG glyphs will perform better than PC and
better or equally well as Heatmap for AM tasks.

H2 PC+MissiG will perform better than PC for AM tasks.
H3 HM+MissiG will perform better or equally well as

Heatmap for AM tasks.
H4 The MissiG glyphs will perform better than PC and

better or equally well as Heatmap for JM tasks.
H5 PC+MissiG will perform better than PC for JM tasks.
H6 HM+MissiG will perform better or equally well as

Heatmap for JM tasks.
H7 The MissiG glyphs will perform better than Heatmap

and better or equally well as PC for CM tasks.
H8 PC+MissiG will perform better or equally well as PC for

CM tasks.
H9 HM+MissiG will perform better than Heatmap for CM

tasks.
H10 Overall, MissiG will be the most preferred visualization

method by participants.

Tasks were aimed to address different aspects of the three
missingness patterns. This included approximation of percent-
age of missing values in a variable; identification of the variable
with most missing values; identification of the variable pair
that has highest joint missingness; comparison of difference in
joint missingness between variable pairs; evaluation of trends
in recorded data that possibly relates to missing values (such
as: items with missing values in variable A tend to have high
recorded values in variable B); and identification of differences
between the general data distribution and the distribution of
items that have missing values in some variable. To cover this
as broadly as possible, two different questions were defined for
each missingness patterns, with multiple choice style answers
provided. The questions were defined as follows:

AM1: Approximately how much data is missing in variable
X?

AM2: Which of the following variables have the highest num-
ber of missing values?

JM1: With which of the following variable does variable X
have the highest joint missingness?
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JM2: Is the joint missingness of variable X and Y higher than
the joint missingness of variable X and Z?

CM1: Which of the following trends is most related to missing
values in variable X?

CM2: Which image displays the highest number of variables
with a clear difference between the general data distri-
bution and the distribution of items that are missing in
the selected variable

For both studies, the performance of the visualization meth-
ods was analysed in terms of accuracy and response time
when completing the tasks. Based on the study hypothesis,
three sets of analysis were relevant for each missingness pat-
tern: 1) MissiG vs HM vs PC; 2) HM vs HM+MissiG; and
3) PC vs PC+MissiG. For the first set of significance testing,
where more than two visualization methods were compared,
one way ANOVA with repeated measures was used when
the result data were normally distributed. If data were not
normally distributed the Friedman test was used, followed by
post-hoc tests for pairwise comparison to identify for which
combinations of visualization methods the performance was
significantly different, using Wilcoxon signed rank test with a
Bonferroni correction applied resulting in a significance level
set at p < 0.017 for the first study (comparing three methods),
and at p < 0.0125 for the second study (comparing four meth-
ods). For the second and third set of significance testing, where
pairs of visualization methods were compared, a dependent t-
Test was used for normally distributed data, while Wilcoxon
signed rank test was used for non-normally distributed data.

5.3 First Study
A study with 15 participants was conducted to evaluate the
performance of an initial implementation of the MissiG visu-
alization. This study compared MissiG-L with Heatmap and
PC, as well as comparing standard Heatmap and PC with
versions enhanced with MissiG glyphs, using an interactive
environment allowing for highlighting of glyphs and polylines
in PC, and sorting of rows in Heatmap (as described in Section
3.3). Three of the above questions (AM1, JM1 and CM1) where
used in the study.

5.3.1 Experimental Design and Procedure
The experiment was designed as a within-subject study with
visualization method as factor. Each participant performed
45 tasks and equally many tasks were performed for each
visualization method and pattern using the data sets described
in 5.3.2. No data set was used more than once per participant.
Performance was measured in terms of accuracy and response
time when performing the tasks. Ethical approval was received
prior to the study.

The study was conducted individually in a controlled set-
ting using a 15-inch MacBook Pro and an external screen where
the study interface was displayed as a fixed size 1700x920px
window. An initial scripted presentation was used to ensure
that all participants possessed the basic knowledge needed
to interpret the visual representations and understand the
missingness patterns and tasks. This was followed by a train-
ing period including a small number of test tasks using the
different visualization methods. The training was used as a
means for the participants to become familiar with the tasks,
visualization methods and experimental environment. For the

Fig. 10: The interface of the first study, with interactive visual-
ization on the left and multiple choice options to the right.

experimental phase the tasks and visualization methods were
counterbalanced using a Latin-square procedure [44], resulting
in a unique ordering for each participant and, hence, reducing
the potential learning impact on the results. The test environ-
ment (Fig. 10) consisted of two panels, one displaying one of
the interactive visualization methods representing a study data
sets, and the other displaying the task and multiple choice
answers, along with buttons for submitting the answer and
for displaying a new question. Response time was measured
from when a question was displayed until the answer was
submitted, allowing the participants to take a break before dis-
playing a new question. The answers provided and response
times were stored in log files, which were later used to analyse
the results. The experimental phase was followed by a short
questionnaire collecting information about the participants and
their previous experience of data analysis, visualization and
missing data, as well as information about which visualization
method they found easiest, hardest and preferred to use.

5.3.2 Data
Three publicly available data sets where used and modified
through controlled removal of values, to maintain realistic data
structures while controlling the missingness patterns in the
data. A total of 45 data sets were generated, 15 based on the
User Knowledge Modelling (UKM) data set [45] with 5 variables
and 403 items, 15 based on the Concrete Compressive Strength
data set [46] with 9 variables and 1030 items, and 15 based
on the Parkinsons data set [47] with 23 variables and 197 items.
Varying levels of uniformly distributed noise, with a noise level
between 1% and 15%, was randomly added, and the data sets
were separated into three groups, one for each missingness pat-
tern. Missingness patterns were created by replacing numerical
values with a NaN string, with between 0% and 40% of values
removed from each variable. The structure of missingness in
variables was defined using a similar approach to Fernstad [2].
The variable names of the original data were replaced by letters
to avoid impact of preconceptions based on variable names.

5.3.3 Results
15 participants finished the study, 2 were female and 13 male.
The biggest age group among participants was 25-34 years
(46.7%), followed by 45-54 (26.7%), 35-44 (20%) and 18-24
(6.7%). Participants were asked to rank their level of experience
of 1) visualization methods, 2) data analysis, and 3) missing
data, using 5 point likert scales ranging from No prior expe-
rience (1) to Professional (5). 46.7% ranked their experience of
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TABLE 1: Pairwise results for MissiG, Heatmap and PC.

AM Accuracy Response Time
Wilcoxon Z p Z p
HM vs MissiG 0.000 1.000 -0.284 0.776
PC vs MissiG -2.505 0.012 -2.726 0.006
PC vs HM -3.017 0.003 -3.181 0.001
JM Accuracy Response Time
Wilcoxon Z p Z p
HM vs MissiG -1.342 0.180 -2.897 0.004
PC vs MissiG -3.373 0.001 -3.408 0.001
PC vs HM -3.275 0.001 -3.294 0.001
CM Accuracy Response Time
Wilcoxon Z p Z p
HM vs MissiG -1.793 0.073 -0.568 0.570
PC vs MissiG -1.303 0.193 -3.408 0.001
PC vs HM -.905 0.366 -3.408 0.001

visualization methods high (4 or 5), while almost equally many
(40%) ranked their visualization experience low (1 or 2). A
clear majority (86.7%) ranked their experience of data analysis
high, while only 6.7% ranked it low. The opposite was the case
with missing data experience, with only 13.3% ranking their
experience high and 60% ranking their experience as low. In
addition to the results presented in this section, the descriptive
statistics of the results are provided as supplemental material.
Amount Missing: The mean values with 95% confidence in-
tervals for AM task results are displayed in Fig. 11. Statistical
testing using Friedman test confirmed significant differences
for both accuracy (χ2(15) = 14.085, p = 0.001) and response
time (χ2(15) = 12.113, p = 0.002) when comparing MissiG
with Heatmap and PC. The confidence intervals indicate worse
performance for PC both for accuracy and response time. While
there is a small overlap in response time between MissiG and
PC, research by Cumming and Finch [48] conclude that when
comparing groups using confidence intervals of individual
group estimates, the p-value is near the significance value
when the confidence limit of an interval reaches approximately
the midpoint between the point estimate and the confidence
limit of the other interval. These results were supported by
the post-hoc analysis using Wilcoxon signed rank test (table 1,
top) which confirmed significantly worse performance of PC
compared to Heatmap and MissiG for AM tasks. For Heatmap
compared to HM+MissiG, the confidence intervals overlap and
no statistical significance was found for neither accuracy nor
response time. PC+MissiG performed better than PC, although
the confidence intervals for accuracy overlap. Using Wilcoxon
signed rankt test, there was no statistically significant differ-
ence for accuracy, while the difference in response time was
significant (Z = −2.669, p = 0.008). These results all support
H1, H2 and, in part, H3.
Joint Missingness: Fig. 12 displays the mean values with 95%
confidence intervals for JM task results. Comparing MissiG
with Heatmap and PC, the confidence intervals indicate worst
performance for PC and slightly better performance for Mis-
siG compared to Heatmap. Friedman test confirm significant
differences for both accuracy (χ2(15) = 25.721, p < 0.001)
and response time (χ2(15) = 24.400, p < 0.001). Post-hoc
tests using Wilcoxon signed rank test (table 1, centre) shows
significantly worse result for PC compared to MissiG and
Heatmap for both accuracy and response time, and also
significantly worse response time for Heatmap compared to
MissiG. Although HM+MissiG perform slightly better than

(a) Number of accurate answers.

(b) Average response time in ms.

Fig. 11: Confidence intervals for AM tasks

(a) Number of accurate answers.

(b) Average response time in ms.

Fig. 12: Confidence intervals for JM tasks

Heatmap, the confidence intervals overlap for both accuracy
and response time, and no significant differences were found.
The performance of PC+MissiG for JM tasks is better than
for PC, particularly in terms of accuracy where the two confi-
dence intervals are clearly separated. Analysis using Wilcoxon
signed rank test found statistically significant differences for
accuracy (Z = −3.244, p = 0.001) as well as response time
(Z = −2.385, p = 0.017). These results support H4, and, in
part, H5 and H6.
Conditional Missingness: The mean values with 95% con-
fidence intervals for CM task results are displayed in Fig.
13. Comparing MissiG with Heatmap and PC the confidence
intervals indicate slightly worse accuracy performance for
MissiG and worse response time for PC, although the inter-
vals largely overlap for both performance measures. Friedman
test results indicate significant differences for both accuracy
(χ2(15) = 6.045, p = 0.049) and response time (χ2(15) =
22.800, p < 0.001). The Wilcoxon signed rank test (table 1,
bottom) however does not confirm any significant differences
for accuracy when the Bonferroni correction has been applied,
while the worse response time of PC is significant. The results
when comparing HM+MissiG with Heatmap, and PC+MissiG
with PC, were not significant. The results for CM tasks hence
in part confirms H7 (response time for PC is worse than for
MissiG), but not H8 or H9.

Further to the measured performance, information was
gathered with regards to which visualization method the
participants found easiest to use, hardest to use and which
they preferred to use. A majority, 50%, found HM+MissiG the
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(a) Number of accurate answers.

(b) Average response time in ms.

Fig. 13: Confidence intervals for CM tasks

easiest visualization to use, followed by 20% each for MissiG
and Heatmap, and 10% for PC+MissiG. All participants stated
that they found PC the hardest to use. The most preferred
visualization to use was HM+MissiG, 64.7%, followed by 11.8%
each for MissiG, Heatmap and PC+MissiG, and 0% for PC. This
generally support H10 and indicates that the MissiG design is
generally well received by the participants and in particular
when combined with Heatmap.

5.4 Second Study

The first study was followed by an online study, aiming to
further confirm the results and investigate a broader set of
tasks related to the three missingness patterns (using all six
questions in Section 5.2), as well as including the radial MissiG
layout. Furthermore, the second study focused on the visual
representation of data, using static images rather than an inter-
active environment to reduce the potential impact of variation
in interactivity across methods. The study compared MissiG
(both MissiG-L and MissiG-R) with Heatmap and PC, as well
as Heatmap with HM+MissiG, and PC with PC+MissiG.

5.4.1 Experimental Design and Procedure
The experiment was designed as a within-subject study with
visualization method as factor. Each participant performed 36
tasks, with one task per question, visualization method and
missingness pattern, using the data sets described in 5.4.2.
Performance was measured in terms of accuracy and response
time. Ethical approval was received prior to the study.

The study was conducted online, and implemented using
the Gorilla experiment builder [49]. The experiment was sep-
arated into three phases, one for each missingness pattern,
each consisting of a training part and a test part. The training
included descriptions of the visualization methods and how to
interpret them, in context of the relevant missingness pattern,
followed by training using the same type of questions as in
the test phase but with feedback on whether the response
was accurate to support understanding of the question and
visualization. The test phase was similar to the training, with
the difference of not including description of visualization and
not providing feedback on whether responses were correct or
not. The presentation order of visualization methods was ran-
domized for both training and test phases, to reduce the impact
of learning effects. The order of missingness patterns were
fully counterbalanced, resulting in 6 different orders which

Fig. 14: The interface of the second study, with question and
visualization at the top and answer buttons at the bottom.

were randomly balanced across the participants. The study
interface (Fig. 14) consisted of a question and static image of
the visualization method, with a set of multiple choice answers
available through buttons. The study was restricted to only
run on computers (not mobile phones and tablets) to reduce
impact of screen size, and a range of anonymized study data
was recorded through Gorilla, of which accuracy and response
time was used for the analysis. Background information about
participants were collected through a questionnaire, and at the
end of each missingness pattern phase the participants were
asked to rank their visualization preference for the task.

5.4.2 Data
As for the first study, a public data set was used and modified
through controlled removal of values, to maintain realistic data
structures while controlling the missingness patterns in the
data. A total of 54 data sets were generated, using the ’cars’
[50] data set, which contains real measurements of 392 cars.
For each car, seven variables were collected (miles per gallon,
number of cylinders, displacement, horsepower, weight, accel-
eration year, origin). The variable origin that describes where
the cars were made (Europe, America and Asia) is categorical
and was therefore removed, since some of the visualization
methods used (PC in particular) does not perform well with
categorical data. The variable names were anonymized and
participants did not know which data set was used, thus
limiting the impact of preconceptions based on variable names
and any need of specific knowledge about cars.

Missingness patterns were introduced by replacing numer-
ical values with a NaN string. For AM and JM patterns, be-
tween 0% and 40% of values were randomly removed for each
variable. This generated data sets where values are missing
completely at random, and JM occur as a result of the random
missingness in multiple variables, which works well for the
tasks defined in Section 5.2 for AM and JM pattern identifi-
cation. CM patterns required a more controlled removal, with
slightly different approaches taken for CM1 and CM2 tasks.
First, between 5% and 10% of values were removed randomly
from all variables. Then two variables,X1 andX2, were chosen
and between 35% and 70% of values in X1 were removed for
data items with recorded values below the first quartile or
above the third quartile in X2. Through this generating CM
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(a) Preference of visualization methods for AM tasks.

(b) Preference of visualization methods for JM tasks.

(c) Preference of visualization methods for CM tasks. One partic-
ipant did not provide answer for MissiG-R and PC+MissiG.

Fig. 15: Visualization method preference for different tasks,
ranked using a 6 point likert scale ranging from Strongly Dis-
liked (1) to Strongly Liked (6). Blue colour represents negative
responses and red represent positive responses.

patterns between missing values in X1 and low or high values
inX2. For CM2 tasks, which require more than one data set per
task, each data set was separated into four subsets with four
variables in each, of which one displayed more CM patterns.

5.4.3 Results

24 participants initially finished the study. Of these two were
removed from analysis due to data quality issues, one of them
finishing the whole study in less than three minutes (only
possible if not reading instructions and answering without
trying to solve tasks), and the other due to the response time to
a single question being more than 13 minutes (likely caused by
disruption while responding). Of the 22 included participants
(5 female, 16 male and 1 preferred not to disclose gender) the
majority were between 25 and 44 years old (18-24: 4.5%, 25-34:
45.5%, 35-44: 31.8%, 45-54: 18.2%, 55 or older: 0%). Participants
were asked to rank their level of experience of: 1) visualization
methods, 2) data analysis, and 3) missing data, using 5 point
Likert scales ranging from None (1) to Expert (5). 68.2% ranked
their visualization experience as high (4 or 5), while only 9.1%
ranked it as low (1 or 2); 81.8% ranked their experience of data
analysis as high, while none ranked it as low; and 22.7% ranked
their experience of dealing with missing data as high, while
31.8% ranked it as low.
Amount Missing: Fig. 15a displays a summary of the prefer-
ence of the participants for each visualization method for AM
tasks, using a likert scale ranging from 1 (strongly disliked)
to 6 (strongly liked). From the figure we can conclude that

(a) Number of accurate answers.

(b) Average response time in ms.

(c) Response time in ms for correct answers only.

Fig. 16: Confidence intervals for AM tasks

MissiG-L was the most preferred visualization method for AM
tasks, followed by HM+MissiG and MissiG-R, which supports
H10. PC was the least liked method for AM tasks. Confidence
intervals for the performance of the visualization methods are
presented in Fig. 16. When comparing the two MissiG layouts
with Heatmap and PC, Friedman tests confirmed statistically
significant differences in accuracy (χ2(22) = 29.110, p < 0.001)
and response time (χ2(22) = 20.018, p < 0.001), while differ-
ences for response time only for accurate answers were not sig-
nificant. For accuracy and response time, Wilcoxon signed rank
test (table 2) revealed significantly worse performance for PC
compared to all other visualization methods. No other differ-
ences were significant. These results confirm that MissiG per-
forms better than PC, and equally good or better than Heatmap
for AM tasks (H1). Wilcoxon tests revealed significant differ-
ence in response time for Heatmap compared to HM+MissiG
(Z = −2.127, p = 0.033) with better performance for Heatmap,
while differences in accuracy and response time for correct an-
swers were not significant. These results does not confirm H3.
For PC compared to PC+MissiG, Wilcoxon tests showed sig-
nificant differences for accuracy (Z = −2.202, p = 0.028) and
response time for correct answers (Z = −2.315, p = 0.021),
with higher accuracy but slower response time when PC is
enhanced with MissiG. The overall difference in response time
was however not significant. This support H2 for accuracy, but
not response time. An explanation to slower response times
for visualization methods enhanced with MissiG can be the
additional cognitive burden of combining two visualization
methods instead of one, as well as the likely unfamiliarity of
the MissiG visualization. The accuracy results, which generally
would be more important than response time, however does
support the benefit of enhancing PC with MissiG.
Joint Missingness: Fig. 15b displays a summary of the prefer-
ence of the participants for each visualization method for JM
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TABLE 2: Pairwise results for AM tasks for MissiG-L, MissiG-
R, Heatmap (HM) and PC.

Accuracy Response Time
Wilcoxon Z p Z p
MissiG-L vs HM -1.414 0.157 -0.081 0.935
MissiG-R vs HM 0.000 1.000 -1.088 0.277
PC vs HM -3.207 0.001 -2.646 0.008
MissiG-R vs MissiG-L -1.414 0.157 -0.828 0.408
PC vs MissiG-L -3.500 <0.001 -3.685 <0.001
PC vs MissiG-R -3.207 0.001 -3.393 0.001

(a) Number of accurate answers.

(b) Average response time in ms.

(c) Response time in ms for correct answers only.

Fig. 17: Confidence intervals for JM tasks

tasks. From the figure we can conclude that HM+MissiG was
the most preferred visualization method for JM tasks, followed
by MissiG-L, PC+MissiG and Heatmap, which generally con-
firms H10 for JM tasks. PC was the least liked method also for
JM tasks. Confidence intervals for the performance of the visu-
alization methods for JM tasks are presented in Fig. 17. When
comparing the two MissiG layouts with Heatmap and PC,
Friedman tests confirmed statistically significant differences
in response time (χ2(22) = 32.073, p < 0.001) and response
time only for accurate answers (χ2(22) = 30.491, p < 0.001),
while the differences for accuracy were not significant. For
response time and response time of accurate answers, Wilcoxon
signed rank post-hoc tests (table 3) revealed significantly better
performance for Heatmap and MissiG-L compared to MissiG-
R and PC, which support H4 for response time, although
not for accuracy. Wilcoxon tests revealed that the difference
in performance for Heatmap compared to HM+MissiG was
significant for accuracy (Z = −2.646, p = 0.008), response
time (Z = −3.360, p = 0.001) and response time only for
accurate answers (Z = −3.295, p = 0.001), with overall
better performance for Heatmap. There were no significant
performance differences for PC compared to PC+MissiG. Thus,
H5 and H6 are not supported by these results.
Conditional Missingness: Fig. 15c displays a summary of the

TABLE 3: Pairwise results for JM tasks for MissiG-L, MissiG-R,
Heatmap (HM) and PC.

Response Time
Wilcoxon Z p
MissiG-L vs HM -0.276 0.783
MissiG-R vs HM -3.133 0.002
PC vs HM -3.328 0.001
MissiG-R vs MissiG-L -3.782 <0.001
PC vs MissiG-L -3.782 <0.001
PC vs MissiG-R -0.828 0.408

Response Time Correct
Wilcoxon Z p
MissiG-L vs HM -0.893 0.372
MissiG-R vs HM -3.198 0.001
PC vs HM -3.100 0.002
MissiG-R vs MissiG-L -3.912 <0.001
PC vs MissiG-L -3.263 0.001
PC vs MissiG-R -0.990 0.322

(a) Number of accurate answers.

(b) Average response time in ms.

(c) Response time in ms for correct answers only.

Fig. 18: Confidence intervals for CM tasks

preference of the participants for each visualization method
for CM tasks. It can be concluded that PC+MissiG was the
most preferred visualization method for CM tasks, followed
by PC, MissiG-L, and MissiG-R, again confirming that the
participants liked using MissiG as part of the analysis (H10).
Heatmap was the least liked method. Confidence intervals
for the performance of the visualization methods are pre-
sented in Fig. 18. When comparing the two MissiG layouts
with Heatmap and PC, tests confirmed statistically signifi-
cant difference in response time (ANOVA: F (1.452, 30.499) =
11.906, p = 0.001) and response time for accurate answers
(Friedman: χ2(14) = 20.229, p < 0.001), but not for accuracy.
Post-hoc analysis with ANOVA and Wilcoxon signed rank test
(table 4) showed that MissiG-R and PC performed significantly
better than Heatmap for both response time and response time
for accurate answers, and PC performed significantly better
than MissiG-L for both response times as well, which is also
clear from the confidence intervals. Additionally, MissiG-L
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TABLE 4: Pairwise results for CM tasks for MissiG-L, MissiG-R,
Heatmap (HM) and PC.

Response Time
ANOVA p
MissiG-L vs HM 0.135
MissiG-R vs HM 0.006
PC vs HM 0.004
MissiG-R vs MissiG-L 0.033
PC vs MissiG-L 0.005
PC vs MissiG-R 1.000

Response Time Correct
Wilcoxon Z p
MissiG-L vs HM -2.731 0.006
MissiG-R vs HM -2.953 0.003
PC vs HM -2.897 0.004
MissiG-R vs MissiG-L -2.959 0.003
PC vs MissiG-L -3.243 0.001
PC vs MissiG-R -0.121 0.904

performed significantly better than Heatmap, and MissiG-R
performed significantly better than MissiG-L for response time
for accurate answers. This supports H7 in terms of response
time, while accuracy results are inconclusive. Looking at the
results in Fig. 18, HM+MissiG generally performs better than
Heatmap, which supports H9, although Wilcoxon signed rank
test show that the difference is only significant for response
time for correct answers (Z = −2.731, p = 0.006). A dependent
t-Test showed that the difference in response time for PC
compared to PC+MissiG, with slightly better performance for
PC, was significant (t(21) = −2.2374, p = 0.027), which does
not support H8, while there was no difference for accuracy or
response time for accurate answers.

6 DISCUSSION AND CONCLUSIONS

This paper presented MissiG, a novel glyph based method for
visualization of missing values and missingness patterns in
data. The method was designed based on established glyph.
design guidelines to focus on the representation of three pat-
terns of importance for understanding missingness in data,
namely the amount missing in variables, the joint missing-
ness in pairs of variables, and the conditional missingness
between missing and recorded values in variables. MissiG
can be used both as a standalone multivariate visualization
method, with two different layouts presented in the paper,
and as an enhancement to existing visualization methods,
here demonstrated through enhancement of Heatmap and PC.
These four methods were evaluated against Heatmap and PC
through two usability studies.

The results from the studies indicate that MissiG performs
better than PC and equally well as Heatmap for amount
missing and joint missingness tasks. The results for conditional
missingness tasks indicate that MissiG is equally good as PC
and may be better than Heatmap, although the results are
not conclusive across the two studies. This may be due to the
concept of conditional missingness being more complex than
amount missing and joint missingness, which was indicated
by questions made by participants in the first study, and thus
can have resulted in a higher degree of uncertainty in the
results. It is also worth noting that the lack of difference for
accuracy in some cases may be the result of ceiling effects
when a majority of participants answered correctly to most
questions. The difference in results across the two evaluations

can furthermore be a result of the different study designs,
with the first study using interactive visualization and the
second study including additional questions. This difference
was intentional to cover a broader range of analysis situa-
tions and tasks, but may have impacted results. In terms of
using MissiG as an enhancement, PC with MissiG generally
performed better than PC for amount missing in both studies
and joint missingness in the first study, while it did not perform
better for conditional missingness tasks. Conversely, Heatmap
enhanced with MissiG did not perform as well as Heatmap for
amount missing and joint missingness tasks, but did in part
perform better for conditional missingness, although results
were not conclusive across the two studies. Several aspects
may have influenced these results. Firstly, the analysis of two
coordinated views compared to a single view may have a
higher cognitive burden, resulting in longer response times for
the enhanced visualization methods. Furthermore, the majority
of participants ranked their experience of visualization as high
rather than low, which suggests that they may have had
previous experience of Heatmap and PC, whereas MissiG is
a novel visualization method. This can have impacted MissiG
negatively, particularly in terms of response time. It is worth
noting that enhancement with MissiG seems to be mostly
beneficial for tasks where the basic visualization method is
limited (i.e. amount missing and joint missingness for PC, and
conditional missingness for Heatmap), whereas the benefit of
enhancement is more questionable for tasks where the basic
method already performs well. The studies confirmed that
MissiG is the preferred choice by users as a method for visual-
izing missingness in data, which further confirms its usability
and the potential of its utility as part of more complex visual
analysis workflows. To summarize the main results:

• MissiG performs better than PC, and equally well as
Heatmap, for amount missing and joint missingness.

• MissiG in part performs better than Heatmap, and
equally well as PC, for conditional missingness.

• PC+MissiG generally performs better than PC for
amount missing and joint missingness.

• Heatmap+MissiG performs equally well and in part
better than Heatmap for conditional missingness.

• Visualization with MissiG was generally the preferred
choice by users across all three missingness patterns.

These results are encouraging and strongly suggest that
MissiG has potential to greatly improve analysis and under-
standing of missingness patterns in data, and through this sup-
port decision making as to how to deal with missing values, as
well as to reveal important insights related to missing values.
Future work includes the application and qualitative testing of
MissiG with application domain experts in substantially more
complex analysis settings. Of interest would be to apply the
technique to IoT and sensor data. In domains such as Air
traffic control and unmanned aerial management, as well as
in medical digital mobility assessment, where missing values
may have a pertinent meaning and where many parameters
interplay with each other. Using this kind of tool to analyse re-
lationships between missing data could potentially give a bet-
ter understanding of how to improve such systems. Utilizing
the flexibility of the glyph design to provide additional layout
options and enhancement of more visualization methods is a
topic for immediate future work.
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