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This paper presents two new parametric models of the Bidirectional Re-
flectance Distribution Function (BRDF), one inspired by the Rayleigh-Rice
theory for light scattering from optically smooth surfaces, and one inspired
by micro-facet theory. The models represent scattering from a wide range of
glossy surface types with high accuracy. In particular, they enable represen-
tation of types of surface scattering which previous parametric models have
had trouble modelling accurately. In a study of the scattering behaviour of
measured reflectance data, we investigate what key properties are needed
for a model to accurately represent scattering from glossy surfaces. We in-
vestigate different parametrizations and how well they match the behaviour
of measured BRDFs. We also examine the scattering curves which are rep-
resented in parametric models by different distribution functions. Based on
the insights gained from the study, the new models are designed to pro-
vide accurate fittings to the measured data. Importance sampling schemes
are developed for the new models, enabling direct use in existing produc-
tion pipelines. In the resulting renderings we show that the visual quality
achieved by the models matches that of the measured data.
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Fig. 1. A comparison between the new smooth surface BRDF model pre-
sented in this paper and the Cook-Torrance model. Figure (a) shows a log-
scale plot of the scattering curve of a measured blue metallic paint (solid
red), in the plane of reflection, for a light beam incident at 45◦ from the sur-
face normal. The blue and green curves are the scattering curves of the pro-
posed model and the Cook-Torrance model respectively. Figure (b) shows a
sphere rendering using the measured BRDF data. (c) and (d) show close-ups
of renderings using the new BRDF model and the Cook-Torrance model, re-
spectively.

1. INTRODUCTION

Accurate modelling of light scattering at surfaces is a central
component of photorealistic rendering in computer graphics. Re-
flectance modelling traditionally uses parametric models, empiri-
cally or physically based, of the bidirectional reflectance distribu-
tion function (BRDF) to represent scattering. Such models are often
aimed at specific classes of surfaces, and in the case of physics-
based models, are limited to surfaces fulfilling the underlying as-
sumptions of the model. To enable reproduction of light scatter-
ing from arbitrary types of surfaces, modern research has put in-
creasing focus on data-driven models [Lensch et al. 2005; Weyrich
et al. 2008]. Data-driven models come with a cost, however, with
less control and lower efficiency. Parametric models are lightweight
and fully described by only a few parameters. The parameters often
map intuitively onto the model behaviour, and efficient methods for
off-line rendering are usually available.

In this paper, new parametric isotropic BRDF models are de-
signed, based on the observations of the scattering behaviour of real
glossy surfaces, extending the class of glossy surfaces which can be
accurately represented by parametric modelling. The new models
are inspired by scattering models from Rayleigh-Rice theory for
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Table I. Notation
Symbol
L Incident light vector
LP Component of L parallel to surface tangent plane
R Reflection vector
RP Component of R parallel to surface tangent plane
V View vector
VP Component of V parallel to surface tangent plane
N Surface normal
H Unnormalized halfway vector: L+ V

Ĥ Halfway vector: H/∥H∥
DP Projected deviation vector: VP −RP

ωi = (φi, θi) Spherical coordinates of L
ωo = (φo, θo) Spherical coordinates of V
ωh = (φh, θh) Spherical coordinates of Ĥ
(ri, ϕi) Polar coordinates of LP

(ro, ϕo) Polar coordinates of VP

ρ(ωi, ωo) Bidirectional reflectance distribution function
r(ωi) Directional-hemispherical reflectance
PSD(fx, fy) Power spectral density
S(f) Condensed ABC model
A, B, C Parameters of condensed ABC model
F (θ; η) Fresnel reflectance factor
G′ Smooth surface BRDF obliquity factor
Q′ Smooth surface BRDF polarization factor
E1(p), E2(p) Error measures used for BRDF data fitting

optically smooth surfaces and micro-facet theory, adapted to ac-
comodate for variations in reflectance behaviour observed in scat-
tering data. The models closely reproduce the quality of the mea-
sured data when used in rendering, while maintaining editability
through parameters with predictable behaviour, thereby enabling
artistic fine-tuning.

To investigate the light scattering behaviour of different glossy
surfaces, this paper conducts a study of measured BRDFs from the
MERL database [Matusik et al. 2003]. The study focuses on proper-
ties with consequences for two key aspects of BRDF modelling, pa-
rameterization and scatter distribution. The first BRDF model pre-
sented is parametrized by the projected deviation vector, the devia-
tion of the scattering (or view) direction from the mirror direction,
projected onto the unit disk (Figure 2). This vector is closely con-
nected to the parametrization of the Rayleigh-Rice BRDF model,
and is shown to work well for the measured reflectance data in the
study. Previous models in computer graphics have used constructs
similar to the projected deviation vector [Neumann et al. 1999; Ed-
wards et al. 2006]. In order to clarify the effect on parametric re-
flectance modelling, we investigate and compare the vector to the
halfway vector for parametrization. To represent the scatter distri-
bution of the BRDFs, which ranges from Gaussian-like to inverse-
power-law-like, the ABC-model [Church et al. 1989] for surface
statistics of optically smooth surfaces is utilized. The second BRDF
model, based on the halfway vector, is constructed by assuming
an ABC-model-like facet slope distribution in the Cook-Torrance
BRDF model [Cook and Torrance 1982]. To enable efficient ren-
dering, we also develop closed-form expressions for approximate
importance sampling of the new models.

The main contributions in this paper can be summarized as:

(1) A study of measured reflectance data of glossy surfaces to
identify components needed in parametric modelling, with a
focus on parametrization and scatter distribution.

Fig. 2. The vectors involved in many BRDF models. The vector DP , in
this text referred to as the projected deviation vector, is the deviation, D,
of the view direction, V , from the mirror direction, R, projected onto the
unit disk. In the figure, contour lines of a Phong lobe are shown around the
reflection vector. Contour lines on the hemisphere will be used later to show
the shape of the gloss for various BRDFs.

(2) Two new parametric BRDF models, aimed at reproducing scat-
tering behaviour observed in the study. One of the models is
inspired by the Rayleigh-Rice theory for optically smooth sur-
faces, and the other is inspired by micro-facet theory. With
modifications based on observations, the models enable accu-
rate representation of light scattering properties of real world
glossy surfaces.

(3) Derivation of closed form expressions for importance sampling
of the new BRDF models to enable efficient image synthesis in
a global illumination rendering framework.

2. PREVIOUS WORK

Reflectance modelling is a key part of the rendering pipeline, and
the level of realism in a synthetic image depends on the accuracy of
the models used. In physically based rendering, the BRDF is used
to model surface reflectance. It is a real-valued function of four
variables, ρ(φo, θo, φi, θi) = ρ(ωo, ωi). It describes how light in-
cident from the hemisphere around a surface point is scattered from
the surface. In order for a BRDF to be physically plausible [Lewis
1993], it must obey reciprocity, i.e., ρ(ωo, ωi) = ρ(ωi, ωo). It
must also be energy conserving, which means the following rela-
tion must hold:

r(ωi) =

∫
H2

ρ(ωo, ωi) cos θodωo ≤ 1, for all ωi ∈ H2. (1)

where r is the directional-hemispherical reflectance [Nicodemus
et al. 1977]. The BRDFs studied in this text are isotropic. This
means that the scattered intensity, in the azimuthal angle, is de-
pendent only on the difference between the incident and outgoing
(scattered) light directions:

ρ(φo, θo, φi, θi) = ρ(φo+∆φ, θo, φi+∆φ, θi), ∆φ ∈ R. (2)

Thus, for isotropic BRDFs, it is enough to study their behaviour for
a fixed φi.

2.1 Computer Graphics

In computer graphics, there are several models of surface BRDFs
available. Some of the most well-known empirical models are
the Blinn-Phong [1977], Ward [1992], Ashikhmin-Shirley [2000],
Lafortune [1997] and Neumann [1999] models. In addition to these
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there are models inspired by real physical processes. They are de-
rived from certain assumptions regarding the small scale (micro-
or nano-scale) structure of the surface at hand. The Torrance-
Sparrow [1967] and Cook-Torrance [1982] models are based on
the assumption that the surface consists of a distribution of micro-
facets that reflect rays of light. This class of models is therefore
often referred to as microfacet models. The model presented by
He et al. [1991] is, instead, based on Kirchhoff diffraction theory.

Some work has examined the applicability of existing models.
Ngan et al. [2005] make a comparison of several BRDF models
by fitting them to a large database of measured materials, the Mit-
subishi Electric Research Laboratories (MERL) database [Matusik
et al. 2003]. Westin et al. [2004] also makes a comparison between
BRDF models regarding their ability to model a smaller number
of measured BRDFs, and reaches the conclusion that there is no
single model that performs best at all times. To increase accuracy
of fittings to measured data, multilobe versions of parametric mod-
els have been investigated [Lafortune et al. 1997; Ngan et al. 2005;
Rump et al. 2008].

The BRDF is generally described as a function of four variables,
a pair of spherical coordinates for each of the incident and out-
going directions. Alternative parametrizations can yield represen-
tations of fewer variables as well as cost-savings with regard to
data-storage of measured data. Such parametrizations have been
explored by Rusinkiewicz [1998], as well as Stark et al. [2005].

For efficient off-line rendering using Monte Carlo methods, it
is beneficial to importance sample the BRDF model. Efficient im-
portance sampling requires an analytical expression of a probabil-
ity density function to draw samples from [Pharr and Humphreys
2010]. The probability density function should closely match the
cosine-weighted BRDF, up to a normalization factor. Importance
sampling schemes have been proposed for several previous models,
using probability density functions either derived directly from the
model distribution, or constructed to approximate it. Examples are
the Blinn-Phong model [Pharr and Humphreys 2010], the Lafor-
tune model [1997], the Ward model [Walter 2005], the Ashikhmin-
Shirley model [2000], the model by Neumann et al. [1999] and the
model proposed by Edwards et al. [2006]. For measured or complex
analytical BRDF models, which do not lend themselves to closed
form sample generation, factorization methods can be used for im-
portance sampling [Lawrence et al. 2004].

Over the last decade data-driven BRDF modelling has grown
more popular. In data-driven modelling, BRDF models use mea-
sured data in some form to represent surface reflectance. One of
the most well-known databases of measured BRDFs is the MERL
database [Matusik et al. 2003]. In addition to acquiring the re-
flectance data, Matusik et al. [2003] use the measured BRDFs as
basis vectors of a larger space, building custom BRDFs as combina-
tions of the measured BRDFs. Parametric BRDF models generally
have an advantage over data-driven models by offering better con-
trol over the surface appearance through a few parameters. There-
fore, effort has been put into finding factorizations of reflectance
data that yield accurate yet intuitively editable data-driven BRDF
representations [Lawrence et al. 2006].

2.2 Optical Engineering

BRDF models are commonly used in optical engineering to de-
scribe light scattering from rough surfaces, and to derive surface
statistics from measured scatter data [Stover 1995]. Theoretical
modelling and validation are active research areas. Different the-
oretical models are being employed and investigated, including
the Rayleigh-Rice theory, Beckmann-Kirchhoff theory and the so-

called generalized Harvey-Shack theory [Krywonos and Harvey
2006]. In our work, we draw inspiration from the Rayleigh-Rice
theory for smooth surfaces, i.e., surfaces with structures small com-
pared to the wavelength of visible light (see, e.g., [Stover 1995]):

ρ =
16π2

λ4
cos θi cos θo Q PSD(fx, fy). (3)

PSD is the Power Spectral Density function of the surface, de-
scribing the surface statistics in terms of spatial frequencies, fx and
fy . λ is the wavelength of the incident light, and Q is the reflec-
tivity polarization factor, depending on the surface material prop-
erties. Expressions, and approximations for special cases, for this
factor are given in [Stover 1995]. The two cosine factors together
represent an obliquity factor, which causes a roll-off toward graz-
ing angles. fx and fy are computed from the spherical coordinate
angles of the incident and outgoing directions, θi, φo and θo, using
the following relations:

fx =
1

λ
(sin θo cosφo − sin θi) , (4)

fy =
1

λ
sin θo sinφo. (5)

It is important to note that these expressions have a close connec-
tion to the projected deviation vector, DP , illustrated in Figure 2.
Ignoring the division by λ, and assuming φi = π, fx and fy cor-
respond directly to the two surface tangent space components of
DP .

Harvey [1977] observed the scattering behaviour of various re-
flecting surfaces in the reflection plane, i.e., the plane containing the
incident and perfect reflection directions. When plotting the scat-
tered radiance curves against sin θo instead of θo, a linear shift in-
variance was discovered. This led to a linear systems formulation,
which was later extended to the generalized Harvey-Shack theory.
With a smooth surface approximation, this theory predicts a BRDF
model very similar to the model resulting from Rayleigh-Rice the-
ory [Harvey et al. 2007]:

ρ =
4π2

λ4
(cos θi + cos θo)

2 Q PSD(fx, fy). (6)

Church et al. [1989] predicts the BRDF of optically smooth sur-
faces by measuring the surface profile of the surface finish, as a
complement to direct BRDF measurement. They fit measured pro-
file data to a surface power spectral density model called the ABC
model:

PSD(f) =
a′

(1 + b2f2)
c+1
2

, (7)

where f =
√

f2
x + f2

y , and

a′ =
1

2
√
π

Γ((c+ 1)/2)

Γ(c/2)
ab. (8)

a is determined by low-frequency spectral density, b = 2πl0 is
related to the correlation length l0, and c > 0 determines the fall-
off of the spectrum at high frequencies. The ABC model is able to
model the inverse-power-law shaped PSD of fractal surfaces, which
Church and Takacs [1991] argue are the expected PSD shape of
polished surfaces, and can be used, in addition, to model Gaussian-
like PSD functions.
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Fig. 3. Reflection plane plots of BRDF scattering curves in log-scale for incident angles θi = 0◦, 22◦, 45◦, 67◦. The θo-axis is scaled by sin θo, revealing a
symmetry around the reflection directions.

(a) alum-bronze (b) gold-metallic-paint2 (c) gold-metallic-paint3 (d) gray-plastic (e) hematite (f) purple-paint

0.15,0.25,0.60 sr−1 0.30,0.50,0.90 sr−1 0.25,0.60,2.00 sr−1 0.05,0.08,0.30 sr−1 0.03,0.10,0.80 sr−1 0.12,0.15,0.25 sr−1

Fig. 4. Contour lines on the scattering hemisphere. Contour lines of the BRDFs are shown, for isovalues specified for each plot, for incident light at angles
θi = 0◦, 25◦ and 60◦.

(a) alum-bronze (b) gold-metallic-paint2 (c) gold-metallic-paint3

0.15,0.25,0.60 sr−1 0.30,0.50,0.90 sr−1 0.25,0.60,2.00 sr−1

(d) gray-plastic (e) hematite (f) purple-paint

0.05,0.08,0.30 sr−1 0.03,0.10,0.80 sr−1 0.12,0.15,0.25 sr−1

Fig. 5. Contour line plots in polar coordinates computed from spherical coordinates using (r, ϕ) = (sin θ, φ). Contour lines of the BRDFs are plotted, for
isovalues specified per plot, for incident angles θi = 0◦, 25◦ and 60◦. Black circles are plotted to indicate constant distance from projected reflection direction,
RP , to help reveal the symmetry of the BRDFs. Gray lines correspond to azimuthal circles on the hemisphere, ten degrees apart.
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3. BRDF MODELS FOR ACCURATE SCATTERING

This section presents a study which investigates the scattering be-
haviour of measured BRDFs. We are primarily interested in prop-
erties which affect the choice of parametrization and scatter distri-
bution when designing new parametric BRDF models. The study
also includes an examination of how different vector formulations
affect the shape of the scattering lobe. The observations lead to two
new parametric BRDF models, presented in Section 3.2.

3.1 Study of Measured BRDFs

A number of BRDFs from the MERL database [Matusik et al.
2003] are employed for a study: alum-bronze, gold-metallic-paint2,
gold-metallic-paint3, gray-plastic, hematite and purple-paint. The
chosen BRDFs exhibit glossy scattering behaviour, with signifi-
cant wide-angle scattering, which is the focus of this article. Being
isotropic BRDFs, they are studied using a fixed incident azimuthal
angle, φi. For all plots in the study, the data from the red colour
channel is used unless otherwise stated.

Measured Reflectance Data. In Figure 3, log-plots are shown of
the BRDFs in the reflection plane, i.e., the plane containing the inci-
dent direction and mirror reflection direction. Note that the θo-axis
is scaled by a factor sin θo in the plots, although the corresponding
angle, θo, is kept for reference at the reference lines. The scaling
could be seen as an effect of projecting the BRDF sample locations
on the hemisphere onto the unit disc.

It is apparent from the plots in Figure 3, that there is a symme-
try around the reflection direction for all plotted incoming angles.
Also, apart from a sideways shift, the shape of the wide-angle scat-
tering is roughly invariant with respect to incident angle. This may
be compared to the shift invariance property of scattering curves
observed by Harvey [1977]. It is also consistent with Rayleigh-Rice
theory, when isolating the effect of the PSD on the BRDF (Equa-
tion (3)). For scattering closer to the mirror direction, there is a
steady increase in intensity as the incident angle approaches graz-
ing angle, which is consistent with the well-known Fresnel effect.

In Figure 4, contour line plots on the hemisphere are shown for
the BRDFs. In these plots, a spread of light towards grazing outgo-
ing angles is observed for large angles of incident light. It is worth
noticing that the scatter lobe does not get considerably narrower
in the azimuthal direction, if at all, as the incident angle increases.
This behaviour is also seen in Figure 5, where the contour lines
of the BRDFs are shown in a polar coordinate system. In this fig-
ure, the radial coordinate is scaled by sin θo. This is emphasized in
the plots by using reference lines corresponding to azimuthal cir-
cles on the hemisphere ten degrees apart. The BRDF contour lines
have been chosen to show the shape of the surface gloss. As can be
seen in the figure, the contour lines closely resemble circles. This
means the symmetry observed in the reflection plane plots extends
to circular symmetry around the specular direction. Furthermore,
the off-specular linear shift invariance is valid outside the reflec-
tion plane as well.

From the scatter distributions in Figure 3 it is clear that none of
the studied BRDFs, apart from the purple-paint BRDF, have shapes
that resemble a Gaussian distribution. The peaks in the mirror di-
rection are instead often sharp, and the scattering curves resemble
an inverse-power-law curve. Wide-angle scattering is often approx-
imated by a Lambertian component. On a logarithmic scale, it is
apparent that only the gray-plastic and purple-paint BRDFs exhibit
wide-angle scatter which could be accurately represented this way.

There is a small drop-off in intensity for several of the materi-
als close to the grazing outgoing angles. However, the two metallic

paints seem to be quite unaffected by attenuation effects. It should,
however, be noted, as discussed by Ngan et al. [2005], that the mea-
sured BRDFs from the MERL database are unreliable for large in-
cident and outgoing angles. Therefore, scattering curves for incom-
ing directions near the grazing angle have also been excluded from
the plots.

In summary, the most important observations of the studied
BRDFs are:

(1) There is a symmetry of the scattering curves around the reflec-
tion direction, when projecting the sample positions from the
hemisphere onto the unit disk.

(2) As the incident angle increases, off-specular parts of the scat-
tering curves remain quite unaffected, apart from a sideways
shift.

(3) The observed glossy scattering curves do not all resemble
classical parametric distribution functions such as Gaussian
or Phong-like functions. Instead, several BRDFs exhibit sharp
scattering curve peaks, and large amounts of wide-angle scat-
tering with an inverse-power-law shape.

Model Parametrization. The first two main observations above
constitute requirements for a BRDF model to enable representation
of real glossy surfaces. To find an efficient parametrization, three
different vector formulations are studied to see if they fulfill these
requirements; the deviation vector, D = V −R, the difference be-
tween the halfway vector and the normal, Ĥ−N , and the projected
deviation vector, DP = VP −RP (illustrated in Figure 2). The first
two are chosen because of their relation to the Phong lobe, ⟨R,V ⟩s,
and halfway vector lobe, ⟨N, Ĥ⟩s, respectively. The projected de-
viation vector, which is the deviation of VP from RP , i.e., the view
and reflection vectors projected onto the surface tangent plane, can
be efficiently computed using L and V accordingly:

H = L+ V, (9)
DP = H − ⟨H,N⟩N, (10)

where H denotes the unnormalized halfway vector. To compare
the different vector parametrizations, a test lobe function is used:
ρT (f) = max (1− f2, 0), where the length of the vectors are
used as function arguments, i.e., ρT (∥D∥), ρT (∥Ĥ − N∥) and
ρT (∥DP ∥). Figures 6 and 7 show contour line plots for the test
function computed using the three different vectors.

Comparing the plots with the measured BRDFs in the study, one
conclusion is that a model based on the deviation vector will not be
able to properly model the symmetries observed in the plots of the
measured BRDF data. The other formulations show a relative elon-
gation in the θ-direction on the hemisphere near grazing incident
angle. This can also be seen in Figure 8. The projected deviation
vector, DP , appears to be a good choice for model parametriza-
tion, since it preserves the circular symmetry around the reflec-
tion vector in the projected space (Figure 6) and is capable of pre-
serving the spread of the gloss. At first glance the halfway vec-
tor parametrization seems to result in a lobe too narrow near graz-
ing incident angles. Several previous models, however, have shown
that the halfway vector can be successfully employed for BRDF
modelling by introducing additional factors in the specular term to
counteract this effect (e.g., [Cook and Torrance 1982; Ashikhmin
and Shirley 2000]). Therefore both vector formulations will be used
to construct BRDFs below.
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(a) ρT (∥D∥) (b) ρT (∥Ĥ −N∥) (c) ρT (∥DP ∥)

Fig. 6. Contour lines of the test function ρT parametrized using the (a) deviation vector, (b) halfway vector and (c) projected deviation vector, plotted in a
polar coordinate system using sin θo-scaling in the θo-direction. The halfway vector and projected deviation vector lobes preserve the circular shape around
the projected reflection direction observed in the plots of the measured BRDFs, but only the last preserves the radius of the contour lines.

(a) ρT (∥D∥) (b) ρT (∥Ĥ −N∥) (c) ρT (∥DP ∥)

Fig. 7. Hemispherical contour plots of the test function ρT parametrized
using the (a) deviation vector, (b) halfway vector and (c) projected deviation
vector, with contour lines chosen to show the relative change as the incident
angle increases. Contour lines are shown for incident angles θ = 0◦, 25◦

and 60◦.

3.2 New BRDF Models

To model the scatter distribution shape of the studied BRDFs, and
meet the third main observation from the study, the ABC model in
Equation (7) will be employed in a slightly condensed version:

S(f) =
A

(1 +Bf2)C
, (11)

where A = a′, B = b2 and C = (c+1)/2. The shape of the model
is shown in Figure 9 for varying B and C. Changing the parameters
affects the shape of the model in a predictable way, with higher B
producing more narrow specular peaks and C determining the fall-
off rate of wide-angle scattering.

The BRDFs presented below are designed based on the observa-
tions in the study. They have not been modelled explicitly for en-
ergy conservation, but obey the reciprocity requirement of a physi-
cally plausible BRDF. As will be shown in Section 4, they also lend
themselves to efficient importance sampling.

Smooth Surface BRDF. The observations made in the previ-
ous section indicate that the projected deviation vector is a natural
choice for reflectance modelling. The new BRDF model is built
by modifying the model in Equation (3). It uses the ABC-function
to model the PSD, and does not take the wavelength into account.
In addition to this, the model is relaxed by adding a Lambertian
diffuse term, with scaling factor Kd, and allowing for a different
obliquity factor, G′:

Fig. 8. Grazing angle reflections of the test lobe function raised to a power,
ρsT , to produce a narrow lobe, using the three different vector parametriza-
tions discussed in the text.

ρ =
Kd

π
+G′ Q′ S(∥DP ∥). (12)

There is no leading scaling constant for the specular term since
scaling is taken care of by the A-parameter in S. Also, since only
the square of the argument is used in the function expression of S,
the square root involved in computing the length of DP is avoided.

Two options for the obliquity factor, G′, are implied in Equa-
tions (3) and (6). Because of unreliable data near grazing angles,
however, we have chosen to let G′ = 1 for the examples be-
low. This choice is also in agreement with observations in Fig-
ure 3(b) and 3(c). The Q′-factor takes effects due to surface material
properties, as opposed to geometry or structure, into account. For
the experiments below, the Fresnel reflectance factor proposed by
Cook and Torrance [1982], with extinction coefficient set to zero,
is used as an approximation: Q′ = F (θd; η).

The argument, θd, to the Fresnel factor is computed in the same
way as in [Neumann et al. 1999]:

θd = arcsin

(
∥LP − VP ∥

2

)
, (13)

where LP and VP are the surface tangent plane parallel compo-
nents of L and V respectively. Computing the Fresnel factor in-
volves the cosine of θd, which reduces to

cos θd =

√
1.0− ∥LP − VP ∥2

4
. (14)

Considering that the shape of the scattering curve for some mea-
sured BRDFs stays roughly constant for varying incident light an-
gles, Q′ = 1 could also be used as an approximation for some
cases.

Although not used here, the Fresnel factor can be efficiently ap-
proximated according to Schlick [1994]. Note also that we are care-
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Fig. 9. ABC model curve for A = 1 and varying B and C. For the fitted
BRDFs examined in this paper the values of C used in the plots above are
common. For the parameter B however, a few BRDFs have a value as high
as 106, which produces a very sharp and mirror-like reflection. In the plot
the values are kept lower in order to yield a good understanding of the ABC
model behaviour.

ful not to call η, the Fresnel reflectance parameter, ‘index of refrac-
tion’, since the Fresnel factor used is an approximation, and the
parameter further loses it’s meaning as index of refraction when
used as a fitting parameter.

Microfacet BRDF. To create a model parametrized by the
halfway vector, the Cook-Torrance model [1982] is modified to use
an ABC-like distribution of micro-facets:

ρ =
Kd

π
+

S(

√
1− ⟨Ĥ,N⟩) F (θh; η) G

⟨L,N⟩⟨V,N⟩
, (15)

where G and F are the geometrical attenuation and Fresnel factors
respectively, as described in [Cook and Torrance 1982]. θh is the
angle between the normal and the halfway vector. The parameters
are the diffuse parameter, Kd, the Fresnel parameter, η, and the A,
B and C parameters of S. The A-parameter, as with the smooth
surface model, is used for scaling the specular term which means
that the S-factor does not directly represent a normalized facet-
distribution.

Passing
√

1− ⟨Ĥ,N⟩ as argument to the ABC model function,
S, has advantages for deriving closed form expressions for impor-
tance sampling, which will be discussed in Section 4. The square
root never has to be computed explicitly, since S uses only the
square of the argument.

4. IMPORTANCE SAMPLING

Efficient sampling schemes and variance reduction techniques are
integral components in modern image synthesis where Monte
Carlo methods for estimating light transport are used. The most
fundamental method for reducing the variance of the estimators is
importance sampling. The integral that must be evaluated is

Lo(ωo) =

∫
H2

Li(ωi)ρ(ωo, ωi) cos θidωi, (16)

where Lo and Li are outgoing and incident light respectively. Using
importance sampling, samples are drawn from a probability density
where incident light directions, ωi, are generated given a view di-
rection, ωo. For efficient sampling, the probability density function

Fig. 10. A histogram over the C-parameter for all MERL BRDFs when
fitted by the new smooth surface BRDF model.

should closely match the cosine weighted BRDF, ρ(ωo, ωi) cos θi,
up to a normalization factor.

For importance sampling the new BRDF models, the inversion
method [Pharr and Humphreys 2010] is used. To apply this method,
a normalized probability density function must be found which
has an invertible cumulative distribution function (CDF). To obtain
tractable expressions for the new BRDFs, probability density func-
tions matching the ABC-function alone are used. This is a common
approach for importance sampling BRDF models since the distri-
bution function often accounts for the largest variation in the BRDF
model [Pharr and Humphreys 2010]. The effects of the other fac-
tors in the BRDF models are neglected, which means they can be
changed without affecting the importance sampling schemes.

Smooth Surface BRDF. To find a density function, Pωi
, on the

hemisphere for the smooth surface BRDF we first consider a den-
sity function on the unit disk, Pd. The change from an area measure
on the disk to a solid angle measure on the hemisphere requires a
multiplication of cos θi, which means the cosine-weighting of the
BRDF will be conveniently incorporated:

Pωi
(φi, θi) = Pd(ri, ϕi) cos (θi), (17)

with (ri, ϕi) = (sin θi, φi). The density function, as well as the
expressions for drawing random samples, are derived in polar coor-
dinates. (ro, ϕo) are the polar coordinates of VP , the component of
the view direction parallel to the surface tangent plane, and (ri, ϕi)
are the polar coordinates of LP , the corresponding component of
the incident direction to be generated. Expressing DP in polar co-
ordinates, we get:

∥DP ∥2 = ∥VP −RP ∥2 = ∥VP + LP ∥2 =

= r2i + 2riro cos (ϕi − ϕo) + r2o.

To importance sample the smooth surface BRDF model, an approx-
imation of the BRDF is used, setting C = 1. This provides a rea-
sonable approximation for most real BRDFs (see Figure 10). Thus,
the normalized probability density function, using the standard area
measure on the disk, is

Pd(ri, ϕi) =
MdA

(1 +B (r2i + 2riro cos (ϕi − ϕo) + r2o))
. (18)

Md is the normalization factor

Md =
B

πA

[
− ln 2 + ln

(
1 +B −Br2o

+

√
1 + 2B (1 + r2o) +B2 (1− r2o)

2

)]−1

. (19)

Using the inversion method, expressions are found to draw sam-
ples distributed according to Pd(ri, ϕi). Given two uniformly dis-
tributed random variables ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1], samples are
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generated by

ri =

√
(E − 2) (E + 2Br2o)

2EB
, (20)

ϕi = 2arctan

(
tan (ξ2π)

√
1 +B(ri + ro)2

1 +B(ri − ro)2

)
+ ϕo, (21)

where

E = exp

(
ξ1B

πAMd

+ ln 2

)
. (22)

The corresponding probability density for the hemisphere, using
solid angle measure, needed to weight the sample is then given by
Equation (17).

Microfacet BRDF. For the microfacet BRDF model, recogniz-
ing that ⟨Ĥ,N⟩ = cos θh, a probability density function in half-
angle space can be found as

Pωh
(φh, θh) =

MhA

(1 +B(1− cos θh))C
, (23)

matching the facet distribution up to a normalization constant,

Mh =


B

2πA ln (1+B)
, C = 1

B(C−1)

2πA(1−(1+B)1−C)
, C ̸= 1

. (24)

Given two uniformly distributed random variables, ξ1 ∈ [0, 1] and
ξ2 ∈ [0, 1], a half-angle space direction, ωh, is generated using

θh =


arccos

(
1+B−exp [ξ1 ln (1+B)]

B

)
, C = 1

arccos

(
1+B−[1+ξ1((1+B)1−C−1)]

− 1
C−1

B

)
, C ̸= 1

(25)

φh = 2πξ2. (26)

Given a randomly selected halfway vector, Ĥ (corresponding to
ωh), an incident light vector, L (corresponding to ωi), is computed
using

L = −V + 2⟨V, Ĥ⟩Ĥ, (27)

where V is the given view direction.
The transformation from half-angle space to the sphere of inci-

dent directions yields a probability density for the generated inci-
dent light vector, as shown by for example Walter [2005]:

Pωi
(φi, θi) =

Pωh
(φh, θh)

4⟨L, Ĥ⟩
. (28)

Generated half-angle space directions may produce incident direc-
tions on the hemisphere opposite to the surface normal. For these
directions the integrand in Equation (16) is assumed to be zero-
valued.

Generating samples two different expressions are obtained for
the cases C = 1 and C ̸= 1. In practice, numerical inaccuracies
arise when drawing samples using Equation (25) for the case C ̸=
1, C ≈ 1, i.e., C is very close to one. For these cases, samples
are drawn according to the case C = 1, this being a reasonable
approximation to the real BRDF.

5. RESULTS

To evaluate the new BRDF models, they have been fitted to
BRDF data from the MERL database, and rendered on spheres.
The Cook-Torrance [Cook and Torrance 1982] and Ashikhmin-
Shirley [Ashikhmin and Shirley 2000] models, with a Lambertian
diffuse term, have been chosen for comparison.

5.1 Data Fitting

To fit parametric BRDF models to measured data, two different
error metrics are used. The measured data, ρ̂, and model values, ρ,
are modified according to either

g1(ωo, ωi; p) = cos θiρ(ωi, ωo; p), (29)
ĝ1(ωo, ωi) = cos θiρ̂(ωi, ωo), (30)

or

g2(ωo, ωi; p) = ln (1 + cos θiρ(ωi, ωo; p)), (31)
ĝ2(ωo, ωi) = ln (1 + cos θiρ̂(ωi, ωo)), (32)

where p is the set of given parameters. For the logarithmic func-
tions, the data values are incremented by one to avoid arbitrarily
large negative values. The fitting is then performed in the least
squares sense in MATLAB, using the lsqcurvefit command with
a trust-region algorithm from the Optimization Toolbox:

Em(p) =

4π
9∫

0

4π
9∫

0

2π∫
0

(gm(ωo, ωi; p)− ĝm(ωo, ωi))
2 sin θodϕodθodθi

≈
∑
j

∑
k

∑
l

(
gjklm (p)− ĝjklm

)2
sin θko∆ϕl

o∆θko∆θji ,

(33)

with m = 1 or m = 2 given the choice of metric. The near-grazing
angles are excluded since the measured data is unreliable for these
angles [Ngan et al. 2005].

When the fitting is performed to the three colour channels si-
multaneously, the same set of parameters, except the diffuse and
specular scale parameters, are used for all channels. The total er-
ror is computed as the sum of the above error for each channel.
Since the measured reflectance data is isotropic, there is no need
to integrate over φi, reducing the amount of computation needed.
φo and θo are each sampled in one degree steps, yielding 360× 80
samples per sampled incident angle, θi. Observing that the shape of
the gloss changes slowly as the incident angle changes, the data is
sampled sparsely over θi, with 10 degree steps. Ngan et al. [2005]
suggest using a fast separable least squares approach for the fitting,
but since one of the error functions, g2, is non-linear in the param-
eters, this approach has not been used. The fitting computation is
not time critical however, and only needs to be performed once.

The choice of error metric is not obvious, as the discussions and
different choices of metric in [Ngan et al. 2005; Lafortune et al.
1997] show. The E1 metric emphasizes the error in the specular
direction, where the BRDF often has values several orders of mag-
nitude larger than in its wide-angle scattering directions. However,
larger weights may be desired for the wide-angle scattering, which
is accomplished with the logarithmic error metric, E2. We have
found the results of the E2 fitting metric to yield better visual re-
production of wide-angle scattering than E1 for the new models
presented in this paper, as can be seen in Figure 11.

Fittings to measured data for the new microfacet model and the
original Cook-Torrance model are shown in Figure 12. Using the
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(a) (b) (c)

Fig. 11. Closeups from sphere renderings of the alum-bronze BRDF. (a)
shows a rendering using the original measured data, while (b) and (c) show
the smooth surface model using the E1 and E2 error metrics respectively
for fitting to the measured BRDF.

logarithmic E2 error metric forces the Cook-Torrance model to
capture more of the wide-angle scattering than when using the
E1 metric. The latter produces better fitting to the specular peak,
but excludes almost all wide-angle scattering. The effect of this is
shown in Figure 13. It shows the results when rendering with the
Cook-Torrance model fitted to measured data using the two differ-
ent error metrics in 13(b) and 13(c) compared to the original data
in 13(a) and the new microfacet model in 13(d).

Some materials have a distinct two-lobe shape, as shown in Fig-
ure 3(b). To handle these cases, we have investigated a two-lobe
version of the smooth surface model, to increase fitting accuracy.
In the plot, the wide-angle scattering stays roughly constant as the
incident angle changes, while the small-angle scattering grows with
increasing incident angle. Thus, only the second lobe uses a Fresnel
factor, to account for the increase in intensity:

ρ = Kd + S1(∥DP ∥) + F (θd; η) S2(∥DP ∥). (34)

Figures 17 and 18 show the curves of the new models fitted to
the original data of three measured BRDFs. These plots show that
the new models, when fitted to some measured BRDFs, are nearly
indistinguishable from the original data. Figure 18(c) shows that the
Fresnel approximation used fails in some cases for large scattering
angles. This problem could be counteracted by using an attenuation
factor, but should ultimately be corrected by using a more accurate
Fresnel approximation.

In Table II the fitting errors are shown for the six measured
BRDFs from the study. In the E2 metric, the two new mod-
els generally have a smaller fitting error than Cook-Torrance and
Ashikhmin-Shirley. For the purple-paint BRDF, the latter two mod-
els compete better with the smooth surface model, but the new mi-
crofacet model performs considerably better. Using the E1 metric,
the results are less one-sided, with the fittings of the smooth sur-
face BRDF to hematite and the microfacet model to gold-metallic-
paint2 becoming worse than the models used for comparison. This
indicates a worse fitting to the specular direction for the new mod-
els. All fitting errors should be put in perspective, however, by com-
parison with the resulting renderings, which shows the difficulty of
drawing conclusions from the error metrics alone. This is further
emphasized in the supplementary material to this text.

5.2 Rendering

The new BRDF models have been fitted to the BRDFs in the MERL
database chosen for the study. For comparison of rendering quality,
a number of spheres have been rendered using original measured
data, Cook-Torrance, Ashikhmin-Shirley and the new models pre-

B
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1
)

(a) Cook-Torrance, E2 fitting metric

B
R

D
F
(s
r
−
1
)

(b) Cook-Torrance, E1 fitting metric

B
R

D
F
(s
r
−
1
)

(c) New microfacet model, E2 fitting metric

Fig. 12. Result from fitting parametric models in the least squares sense to
the alum-bronze MERL BRDF. The scattering curves are shown for incident
angles θi = 0◦ and 67◦. (a) shows the original Cook-Torrance model [Cook
and Torrance 1982] fitted to the data using the E2 error metric described in
the text. In (b), the E1 error metric is used. Figure (c) shows the E2 fitting
of the new microfacet model presented in this paper.

sented in this article. These are shown in Figure 16. For a fair com-
parison, we show renderings of the Cook-Torrance and Ashikhmin-
Shirley models fitted to data using both of the presented error met-
rics, E1 and E2.

The proposed methods for importance sampling have been
implemented in the PBRT stochastic path tracer [Pharr and
Humphreys 2010] using BRDF importance sampling to generate
ray directions, and multiple importance sampling for the last node
in each path. The rendered scenes are shown in Figure 14. 14(a)
shows a rendering using the original measured BRDF data, densely
sampled at 40000 samples per pixel, and 14(b) shows the results
from rendering using the BRDF models presented in this article
with 1000 samples per pixel. 14(c) shows the same scene using the
Ashikhmin-Shirley BRDF at 1000 samples per pixel. In the figures
are insets with close-ups on geometry with a metallic paint, a type
of BRDF with a high amount of wide-angle scattering. It shows
the benefit of using a scatter distribution function which properly
models off-specular scattering. Figure 15 shows a comparison of
the developed importance sampling schemes to sampling using a
hemispherical cosine PDF to weight samples.

In Figure 10, the C-parameter of the smooth surface BRDF
model is shown for all measured BRDFs. For most BRDFs, C is
between 0.5 and 1.5, and we have found the approximation C = 1,
used for the PDF in the importance sampling scheme of the smooth
surface model, to work well for the test cases. The leftmost bin,
with C < 0.25, contains mostly fabric BRDFs, which have a scat-
tering behaviour for which the new models are not designed.
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(a) (b) (c)

Max

Min

(d)

Fig. 13. Magnification of a sphere rendering using the alum-bronze BRDF.
Figure (a) shows a rendering using the original measured data. Column (b)
shows the Cook-Torrance model fitted to measured data using the E1 error
metric, and column (c) the Cook-Torrance model fitted to measured data us-
ing the E2 error metric. Column (d) shows the new microfacet BRDF model
fitted to data using the E2 error metric. The upper images of (b)-(d) show
the magnifications of the sphere rendered using the fitted models, while the
bottom images show the colour-coded difference images with respect to the
measured BRDF model.

To investigate energy conservation, the directional-
hemispherical reflectance functions of three different BRDFs
have been plotted in Figure 19. The two new models follow the
directional-hemispherical reflectance of the measured BRDF until
close to the grazing angle, where the apparent drop-off in the
measured BRDF is not modelled. The smooth surface model does,
however, conserve energy for the parameters resulting from fitting
to measured data. The new microfacet model has an increase in
reflectance near grazing, a common issue with microfacet shaders
as shown in [Lewis 1993].

6. DISCUSSION

Two new BRDF models have been presented in this text, both
showing the ability to give close fittings to measured scatter data for
glossy surfaces. The micro-facet model has shown slightly lower
fitting errors in most cases. It should be noted that data at grazing
angles have been excluded from the fitting procedure, and that the
calculations performed in this work indicate that the smooth surface
model has better energy conservation properties at those angles. We
believe the smooth surface BRDF is an important contribution, and
that fitting results could be further improved by better approxima-
tion of the Fresnel factor.

The new models are more flexible in the types of surfaces which
can be represented compared to the Cook-Torrance and Ashikhmin-
Shirley models. This comes with the small additional cost of an
extra parameter in the function determining the scatter distribution.
When the scatter distribution is more Gaussian-like, one may there-
fore opt for one of the other models. A multi-lobe approach is also
an alternative to increase fitting accuracy. This makes the optimiza-
tion process of the data-fitting more demanding, however, with in-
creasing cost and with local minima of the error metric becoming
more of a problem [Ngan et al. 2005].

7. LIMITATIONS AND FUTURE WORK

The models presented are aimed at glossy surfaces. For BRDFs
with other types of scattering behaviour, e.g. fabrics, our tests do
not indicate improvements over previous models. Also, for nearly
diffuse surfaces, small specular peaks occasionally appeared in the

automatic fitting process. This may be explained by local minima of
the error metric. The small peaks cause a small unwanted mirroring
effect for the surfaces. With gloss being the focus of this article, we
did not pursue better automatic fitting for these classes of BRDFs.

The choice of Fresnel factor is not optimal, as illustrated in the
results section. We believe that many models, not only the mod-
els presented in this work, would benefit from better off-specular
approximations to Fresnel reflectance and polarization effects. A
thorough investigation of previous theoretical results, coupled with
observation of experimental data, should be performed. The re-
flectance data employed in this work are unreliable close to the
grazing angle, and we therefore also want to make measurements
of different surfaces’ grazing angle drop-off behaviour, to find other
useful attenuation and obliquity factors.

A further investigation into different error metrics as well as their
effect on the final rendered result would be valuable. For the new
models, a visually better result was achieved when using a loga-
rithmic error metric. This raises the interesting question of how to
construct metrics for visually best results.

For the models presented in this paper, an empirical approach
was taken, making design choices primarily based on observations
of measured BRDF data. The observations are important for future
work and modelling. The results, however, also indicate that the-
ory not commonly used in computer graphics can be used for im-
proving parametric modelling. Recent results in optical engineer-
ing, where accuracy is of high importance, could be interesting for
computer graphics as well.

8. CONCLUSION

In this paper we have addressed the important area of accurate mod-
elling of light-matter interaction for synthesis of realistic images, in
particular surfaces exhibiting glossy scattering. In a study of mea-
sured BRDFs, we have observed the key properties which need to
be modelled to yield an efficient and accurate representation of
glossy scattering, in particular surfaces exhibiting sharp specular
peaks and significant non-Lambertian wide-angle scattering. The
observations also show consistencies with Rayleigh-Rice scattering
theory for optically smooth surfaces. Based on the gained insights,
and previous BRDF models used in computer graphics and opti-
cal engineering, two new BRDF models tailored for glossy surface
scattering are presented. The parameters of the models affect the
scattering distribution in a predictable way, which allows for artistic
adjustment and control of appearance. The models lend themselves
to efficient importance sampling for use in offline rendering.
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Fig. 16. Sphere renderings of five different BRDFs, gold-metallic-paint3, hematite, alum-bronze, gray-plastic and gold-metallic-paint2. The leftmost images
show renderings using the original measured BRDF data. The rightmost images show renderings using the new BRDF models, fitted to data using the E2

metric described in the text. For comparison, the Ashikhmin-Shirley and Cook-Torrance models, fitted to data using both of the E1 and E2 metrics, are shown
in the middle. The bottom row shows the quality gain when using the two-lobe smooth surface model for gold-metallic-paint2, which has a distinct two-lobe
shape (see Figure 3(b)). ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.
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(a) gold-metallic-paint3, smooth surf. BRDF (b) gold-metallic-paint2, two-lobe smooth surf. BRDF (c) purple-paint, microfacet BRDF

Fig. 17. The presented BRDF models fitted to measured data. In the plots the scattering curve of the red colour channel is shown. The scattering curve of the
parametric model is plotted in black and the original measured data in red.

(a) gold-metallic-paint3, smooth surf. BRDF (b) purple-paint, microfacet BRDF (c) alum-bronze, microfacet BRDF in blue and smooth
surf. BRDF in green

Fig. 18. BRDF models fitted to measured data. The plots show contour lines of the same levels for measured BRDF and fitted BRDF model. The plots in (a)
and (b) show the high accuracy achieved by the presented models. A future challenge is to investigate and find more accurate approximations of attenuation
and polarization effects to improve the fitting to scatter near grazing incident and outgoing angles for some BRDFs (c).

r
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(a) alum-bronze (b) gray-plastic (c) gold-metallic-paint3

Fig. 19. Directional-hemispherical reflectance functions, r(ωi), for the two new BRDF models fitted to the red channel of three different measured BRDFs.
In red is the reflectance of the original measured data, in green is the reflectance of the smooth surface model and in blue the microfacet model. The models
closely follows the directional-hemispherical reflectance of the measured BRDF, up to grazing incoming angle. The fitting procedure do not take this part of
the original BRDF into consideration.

Table II. Square root of the fitting errors of BRDF models to selected measured BRDFs from the MERL database.
Smooth surface BRDF√

E1(p) /
√

E2(p)
Microfacet BRDF√
E1(p) /

√
E2(p)

Cook-Torrance√
E1(p) /

√
E2(p)

Ashikhmin-Shirley√
E1(p) /

√
E2(p)

alum-bronze 0.2852 / 0.0765 0.2515 / 0.0638 0.3445 / 0.1112 0.3428 / 0.1103
gold-metallic-paint2 0.6412 / 0.1085 1.3965 / 0.1214 0.6792 / 0.1703 0.6802 / 0.1656
gold-metallic-paint3 1.1903 / 0.0384 2.0019 / 0.0451 2.2189 / 0.2033 2.2188 / 0.2031
gray-plastic 0.2353 / 0.0458 0.0957 / 0.0304 0.2076 / 0.0633 0.2075 / 0.0632
hematite 4.2070 / 0.0392 1.6654 / 0.0297 1.7595 / 0.1235 1.7595 / 0.1234
purple-paint 0.0507 / 0.0336 0.0313 / 0.0175 0.0411 / 0.0272 0.0455 / 0.0283
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