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Figure 1: An illustration of surface light fields along with a visualization of clusters is shown in (a). A scene rendererd using our approach
is shown in (b). Close ups of the teapot rendered using CPCA and our method, both with the same storage cost, are shown in (c) and (d),
respectively. The scene was rendered at 52 fps using our method and 35 fps using CPCA.

1 Introduction
Photo-realistic rendering in real-time is a key challenge in com-
puter graphics. A number of techniques where the light transport in
a scene is pre-computed, compressed and used for real-time image
synthesis have been proposed, e.g. [Ramamoorthi 2009]. We ex-
tend on this idea and present a technique where the radiance distri-
bution in a scene, including arbitrarily complex materials and light
sources, is pre-computed and stored as surface light fields (SLF) at
each surface. An SLF describes the full appearance of each surface
in a scene as a 4D function over the spatial and angular domains.
An SLF is a complex data set with a large memory footprint often in
the order of several GB per object in the scene. The key contribution
in this work is a novel approach for compression of SLFs enabling
real-time rendering of complex scenes. Our learning-based com-
pression technique is based on exemplar orthogonal bases (EOB)
[Gurumoorthy et al. 2010], and trains a compact dictionary of full-
rank orthogonal basis pairs with sparse coefficients. Our results
outperform the widely used CPCA method [Miandji et al. 2011] in
terms of storage cost, visual quality and rendering speed. Compared
to PRT techniques for real-time global illumination, our approach is
limited to static scenes but can represent high frequency materials
and any type of light source in a unified framework.

2 Learning based SLF compression
As described in Figure 1a, an SLF can be thought of as a set hemi-
spherical radiance distribution functions (HRDF) regularly dis-
tributed over the surface. This can be described as a 3rd-order
tensor F ∈ RN×m1×m2 , where N is the number of spatial sam-
ples in (u, v)-space, and m1 × m2 is the (angular) resolution of
the HRDFs. EOB is based on training a set of K ≪ N full-rank
orthogonal basis pairs (exemplars) such that projecting each data
point onto one basis pair would lead to the most sparse coefficient
matrix while minimising the L2-error. This can be expressed by
minimizing the following energy function:
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where matrices Hi ∈ Rm1×m2 correspond to HRDFs; T repre-
sents the sparsity of the coefficient matrix Sia ∈ Rm1×m2 and
M ∈ RN×K is a binary matrix associating each HRDF to its cor-
responding exemplar pair (Ua ∈ Rm1×m1 and Va ∈ Rm2×m2 ).
Using an iterative algorithm this can be efficiently minimized [Gu-
rumoorthy et al. 2010], resulting in a set of exemplars (basis pairs)

Ua and Va for a = 1 . . .K. In order to best exploit the coher-
ence in data, HRDFs are represented as matrices instead of vectors.
To assist the convergence of EOB, we do a pre-clustering using K-
Means to group similar HRDFs. Hence a different set of exemplars
is trained for each cluster. Although this approach adds to memory
footprint, it will improve accuracy and convergence of EOB.
For training the exemplars, we randomly select 20 − 70% of the
HRDFs with a probability distribution proportional to ∥Hi∥2. The
value of T is fixed during training. Given trained exemplars, nul-
lifying m1m2− T coefficients from the optimal projection matrix
Sia = UT

a HiVa results in a sparse coefficient matrix. This is done
in a greedy manner by selecting an exemplar pair and incrementally
adding the most significant coefficients until the reconstruction er-
ror falls below a threshold. Therefore the sparsity is different for
each HRDF during the testing phase. The non-zero elements of Si

are stored as a vector of triplets with elements Sit, t = 1 . . . Ti con-
taining indices and corresponding values. Hence our method pro-
duces a very compact dictionary with sparse coefficients adapted to
the given SLF function.

3 Rendering and results
To reconstruct outgoing radiance at a point and along a view ray,
we first find the corresponding cluster c and exemplar pair a for that
point (denoted Uca and Vca). Due to uniform spatial sampling this
can be done in O(1). Our reconstruction method can be formulated
as follows:

Hi(ξ1, ξ2) =

Ti∑
t=1

Uca(Sit(1), ξ1)× Sit(3)× Vca(Sit(2), ξ2)

where Hi(ξ1, ξ2) is an element in the HRDF to be reconstructed.
Figure 1b shows a scene rendered in real-time (52 fps using a
Geforce 460) using our method including global illumination ef-
fects not possible to render with other real-time methods.
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