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Abstract
We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and
their higher dimensional variants, e.g. animations and light-fields. The algorithm relies on a learning-based basis
representation. We train an ensemble of intrinsically two-dimensional (2D) dictionaries that operate locally on a
set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal
recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework
represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace.
Such a model leads to a much more sparse representation than widely used methods such as K-SVD. To evaluate
our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D
(animations) and 4D (light-fields). We show that our method outperforms state-of-the-art algorithms in computer
graphics and image processing literature.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Photo-realistic image synthesis is one of the long standing
goals in computer graphics. The ever increasing demands
on realism and visual fidelity have lead to the development
of increasingly sophisticated algorithms for rendering and
capture of visual data. However, this growth in realism and
physical accuracy comes at the expense of increased compu-
tational complexity and long rendering times. The solution
to this has traditionally been focused around research and
development of new core rendering algorithms for efficient
light transport. However, based on results from the field of
Compressed Sensing (CS) [Don06] it can be shown that any
sparse signal (e.g. visual data represented in a suitable ba-
sis) can be reconstructed with high quality from only a small
number of measurements. This means that it is possible to
accelerate existing techniques for rendering and capture of
visual data by simply computing/measuring only a subset of
the data, and apply CS-methods to compute an accurate es-
timate of the signal.

† e-mail:ehsan.miandji@liu.se

The performance of a CS algorithm is mainly dependent
on the choice of the dictionary, a set of basis functions repre-
senting a signal. A signal exhibits different sparsity and spar-
sity patterns based on the dictionary. To minimize the recon-
struction error, the representation of the signal in the dictio-
nary should be as sparse as possible [Can08]. Most Previous
CS algorithms for image synthesis have relied on analytical
dictionaries, such as wavelets [SD11, PML∗09] and Fourier
bases [SD10]. However, due to the diversity of visual data, in
e.g. natural images, a fixed analytical dictionary will not in
general generate a sparse enough representation for accurate
signal recovery. This leads to poor reconstruction quality and
visual artifacts such as blurring, ringing, or speckle noise.

In this paper, we present a compressed sensing algorithm
using a learning based dictionary to enable accurate recon-
struction of incomplete and noisy visual data such as im-
ages, animations, and light-fields. The learning based ap-
proach enables the dictionary to exploit the sparsity pat-
terns of the visual data and leads to a more sparse repre-
sentation compared to fixed analytical dictionaries. In con-
trast to previous work, [MWBR13], who used a single 1D
learned dictionary to enable CS for light fields, we train an
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Figure 1: A flowchart of our method. The incomplete signal used here is extracted from an image, i.e. the 2D signal case.

ensemble of 2D dictionaries which admits a locally sparse
representation. In other words, our method clusters the sig-
nal space while allowing sparse representation in each clus-
ter. We show that signals represented by our method be-
long to a special case of the reduced union-of-subspaces
signal model [ZMRE12, EKB10, BCW10], which admits a
very sparse representation while keeping the size of dictio-
nary minimal. A key property of our algorithm is that the
sparsity pattern introduced by the dictionary ensemble ex-
ploits correlations in 2D. This enables near optimal recov-
ery, and exhibits a very small memory footprint. The ensem-
ble is trained only once for each specific signal type (images,
videos, and light-fields).

The main contribution of this paper is a novel reconstruc-
tion method for noisy and incomplete visual data in 2D, 3D
and 4D, combining compressed sensing with 2D dictionary
ensembles enabling very sparse representations in reduced
union of subspaces. To achieve this, we present a set of math-
ematical and algorithmic tools. In particular, we solve the
problem of mapping the 2D sparse recovery in each sub-
space to an equivalent 1D form while preserving the prop-
erties inherent to the 2D dictionaries in the ensemble. The
mapping of the problem from 2D to 1D form is an impor-
tant contribution, as it enables the use of the highly efficient
sparse solvers designed for 1D [WNF09,EHJT04,MBZJ09].
We also propose a greedy method for assignment of input
data patches to a specific dictionary in the ensemble. The
result is a robust method that, for the first time, achieves
near optimal reconstruction of visual data. To the best of our
knowledge, this is the first compressed sensing algorithm us-
ing the reduced union of subspaces model while exploiting
2D correlations and the sparsity induced by a dictionary en-
semble.

To demonstrate the usefulness of our approach, we apply
and evaluate our method in three user scenarios of different
signal dimensionality: image plane (2D), animations (3D),
and light field (4D) reconstruction. The evaluation shows
that our method outperforms current state-of-the-art from the
graphics and image processing literature. A key benefit of
our method is that it is very robust to its parameters. This
makes it possible to fix most of the parameters while pro-
viding control over the trade-off between quality and perfor-
mance. Our numerical results are well supported by a theo-
retical analysis explaining the performance achieved by our

method based on the sparsity induced using the ensemble of
2D dictionaries.

2. Algorithm Overview

In this Section, we provide a brief overview of our method as
shown in Figure 1. Given an incomplete sampling of an nD
visual dataset with noise (e.g. images, videos, or light-fields)
and the learned ensemble of dictionaries, the goal is to accu-
rately recover the original signal. Note that, the ensemble of
dictionaries is computed in a one-time preprocessing stage
(shown in a dashed box in Figure 1).

As a first step, we extract small 2D patches from the in-
complete input dataset, where the locations of missing val-
ues are known. The reconstruction of a patch can be de-
scribed as follows:

1. An initial, crude estimate of the patch is first computed
by linear interpolation.

2. The estimated patch is then used to find the best dictio-
nary using a greedy method. We call the index of such
dictionary the membership index, denoted by a.

3. We use the location of missing values for the patch to
form a binary sensing matrix.

4. The a:th dictionary, the incomplete patch, and the sensing
matrix are then taken as input to the CS algorithm, which
computes an accurate estimate of the sparse coefficients
in the selected dictionary.

5. Using the coefficients obtained in step 4 and their corre-
sponding dictionary, we reconstruct the patch.

We divide the detailed presentation of our method into
three parts. The dictionary training algorithm is described in
Section 3. The main part of the algorithm, sparse recovery,
is presented in Section 4, followed by our proposed greedy
algorithm for choosing a dictionary from the ensemble in
Section 5. In Section 6 we provide an analysis of the param-
eters used by our algorithm. In Section 7 we then show that
signals represented by our method belong to a special case of
the reduced union-of-subspaces signal model. Finally, Sec-
tion 8 provides an evaluation against current state-of-the-art
methods in both computer graphics and image processing,
and in Section 9 we discuss limitations of our approach and
venues for future work.

Notation - Throughout the paper, lower case italic letters

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



E. Miandji & J. Kronander & J. Unger / Compressive Image Reconstruction in Reduced Union of Subspaces

Dimensionality Description
n - # of input patches
nt - # of training patches
m1 - # of rows for input patch
m2 - # of columns for input patch
Pi m1×m2 input patch
k - # of dictionaries

Ua m1×m1 ath 2D dictionary in the
ensemble, a = 1 . . .kVa m2×m2

Xia m1×m2
coefficients of patch i
projected onto (Ua,Va)

st - training sparsity
s - reconstruction sparsity
m - number of measurements
Φi m×m1m2 sensing matrix for patch i

Table 1: Table of notations.

(s, k, ...) denote scalars, lower case letters (x, n, ...) denote
vectors, and upper case letters (A, Φ, ...) denote matrices.
The `2, `1 norms and the `0 pseudo-norm are denoted by
‖.‖2, ‖.‖1 and ‖.‖0, respectively. The notation vec(A), im-
plies vectorization of A in a column-major fashion. The Kro-
necker product of matrices is denoted A⊗B. Finally, the
identity matrix is denoted by I. Table 1 summarizes the no-
tations used in this paper.

3. Dictionary Training

We train an ensemble of 2D sparse dictionaries using an ex-
tended version of the Exemplar Orthogonal Bases (EOB) al-
gorithm [GRBR10]. This method was introduced as an im-
age compression approach to compete with JPEG, and has
never been analyzed or used in the context of sparse sig-
nal representations or CS. Recently, Miandji et al. [MKU13]
used EOB for compression of surface light-fields, enabling
real-time reconstruction on the GPU. In this paper, we pro-
pose a novel CS framework that given incomplete and noisy
data, achieves near-optimal recovery.

In this Section, we provide a brief overview of EOB and
show that this method can be viewed as a manifold learn-
ing algorithm. Additionally, in Section 7 we present a novel
interpretation of EOB in the context of sparse signal rep-
resentation. The input data for the training phase is a set of
complete training patches Pi ∈Rm1×m2 , i = 1 . . .nt . The way
we construct these patches is dependent on the application
and will be described in Section 8.

The EOB algorithm aims at computing a set of k � nt
dictionaries {Ua ∈ Rm1×m1 ,Va ∈ Rm2×m2}k

a=1, such that
each Pi can be represented using sparse coefficients in
one of these 2D dictionaries with minimal error. Formally,
each signal can be represented as Pi = UaXiaVT

a , where
Xia ∈ Rm1×m2 is the sparse coefficient matrix with at most
st non-zero elements. From this definition, it is clear that
‖Xia‖0 ≤ st and 1≤ st ≤m1m2. One can immediately notice
the resemblance of this formula to Singular Value Decom-

position (SVD). But there are two major differences. First,
{Ua,Va}k

a=1 are trained in a way that Xi is arbitrarily sparse,
rather than being diagonal. Second, the algorithm trains a set
of k� nt basis pairs, as opposed to only one computed by
SVD. Compared to 1D dictionaries [AEB06, MWBR13], a
clear advantage of this representation is that the coherence
along rows and columns of Pi is exploited simultaneously,
allowing for a very sparse representation while keeping the
size of dictionary minimal.

Given the parameters k and st , the EOB algorithm trains
a set of 2D dictionaries {Ua,Va}k

a=1 by minimizing the fol-
lowing energy function:

E({Ua,Va,Xia,Mia}) =
nt

∑
i=1

k

∑
a=1

Mia‖Pi−UaXiaVT
a ‖

2
2 (1)

subject to UT
a Ua = I, VT

a Va = I, ∀a,

‖Xia‖0 ≤ st ,

k

∑
a=1

Mia = 1, ∀i,

where, Mia is an element in a binary matrix, M ∈ Rnt×k,
associating each signal to its corresponding dictionary. Since
each Pi uses one dictionary in the ensemble, each row of M
has a single non-zero entry. The last constraint in Eq. (1)
enforces this. An iterative algorithm for solving Eq. (1) is
presented in [GRBR10].

The EOB algorithm tries to find disjoint low-dimensional
subspaces in Rm1×m2 . An illustrative example is given in
Figure 2, where we consider patches in R3 and a subspace
dimensionality (or sparsity) of 2. These subspaces are shown
as planes. The goal of EOB is to find such subspaces and
the set of patches that can be represented efficiently in each
subspace. From this illustration and the discussion above,
it is clear that these mappings are bijective and smooth.
Therefore, one can interpret the EOB algorithm as a man-
ifold learning technique, where a chart is defined as a local
neighborhood of points that are projected onto a lower di-
mensional subspace (i.e. a low-rank approximation is per-
formed in each chart). It is important to note that the charts
are defined based on sparsity rather than proximity of points
in signal space. In other words, two signals are in the same
chart if they are sparse in the basis defined for that chart.
Low-rank representations have previously been utilized for
visual data representations, see e.g. [?]. These methods as-
sume that the signal is low-rank in a single subspace. In con-
trast, EOB performs a clustering stage with the metric de-
fined over sparsity, see Eq. (1), which leads to a collection
of low dimensional subspaces.

A disadvantage of training-based methods is that the qual-
ity of reconstruction deteriorates when the training and test-
ing sets are considerably different. For instance, consider the
case when the dictionary ensemble is trained on natural im-
ages, but is used for reconstructing a binary image. Thanks to
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(a) (b)
Figure 2: An illustration of 2-sparse points in R3. (a) Three
points in R3, where each point is representative of a patch Pi.
(b) Two two-dimensional subspaces (planes) embedded in
R3. Each point in R3 is mapped to a 2D plane. The mappings
are shown with arrows.
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Figure 3: A 3× 3 patch is first vectorized and then the cor-
responding sensing matrix is constructed. The empty pixels
are marked with a cross.

independence of the dictionaries in the ensemble, this issue
can be solved easily by training a small set of dictionaries
based on the new data (binary images). These new dictionar-
ies can then be added to the set of existing ones that were
computed using natural images. In addition, this update pro-
cedure is relatively fast, since we only train a small number
of dictionaries. Results for this simple approach will be pre-
sented in Section 8.1. Note that other learning-based meth-
ods such as K-SVD [AEB06] do not share this property and
cannot be expanded without re-training the dictionary.

4. Reconstruction From Incomplete Data

Given the ensemble of dictionaries and a set of 2D incom-
plete and noisy patches, Pi, i = 1 . . .n, our goal here is to re-
cover the sparse coefficients with minimal error. To achieve
this, we will cast the problem of 2D compressed sensing
to an equivalent 1D form, enabling us to use conventional
sparse coding algorithms, while preserving the benefits of
the 2D ensemble.

Let us first present an overview of CS for 1D signals. De-
fine pi = vec(Pi) ∈ Rm1m2 . In compressed sensing, the mea-
surement model for a signal is expressed as: yi = Φpi +
w, where yi ∈ Rm represents m measurements and Φ ∈
Rm×m1m2 , m < m1m2, is the measurement or sensing ma-
trix. In addition, w ∈ Rm is the measurement noise, often
assumed to be the zero mean white Gaussian noise with
variance σ

2, i.e. w ∼ N (0,σ2I). It is assumed that the sig-
nals are sparse or compressive in a certain orthogonal or
overcomplete dictionary Ψ∈Rm1m2×k, k≥m1m2. Formally,
pi = Ψxi, where the sparse coefficient vector xi has at most
s non-zero elements, ‖xi‖0 ≤ s� k. Define A = ΦΨ, then
given yi, one can recover the sparse coefficients for pi by
solving the following problem, known as Basis Pursuit De-

Noising (BPDN) [Tib94]:

x̂i = min
x
‖x‖1 s.t. ‖Ax−yi‖2 < ε, (2)

Once the coefficients are recovered, the reconstructed patch
can be computed as p̂i = Ψx̂i.

We now show how the 2D compressed sensing problem
can be cast into the form of Eq. (2). For a single 2D dictio-
nary, (Ua,Va), and a set of 2D patches, Pi, we can rewrite
Eq. (2) as follows:

X̂ia = min
X
‖X‖1 s.t. ‖Yi−Φm1 UaXVT

a Φ
T
m2‖2 < ε, (3)

where (Φm1 ∈ Rm×m1 ,Φm2 ∈ Rm×m2) are two sensing ma-
trices that operate on rows and columns of each Pi, respec-
tively; i.e. we have Yi = Φm1 PiΦ

T
m2 . Equation (3) is solved

independently for all i = 1 . . .n. Observe that (Φm1 ,Φm2) are
different for each patch, but we drop the index i for nota-
tional brevity. Using the properties of the Kronecker prod-
uct, we can rewrite the constraint of Eq. (3) as follows:

∥∥∥vec(Yi)−vec
[
(Φm1 Ua)X(VT

a Φ
T
m2)
]∥∥∥

2

=
∥∥∥vec(Yi)−

[
(VT

a Φ
T
m2)

T ⊗ (Φm1 Ua)
]

vec(X)
∥∥∥

2

=‖vec(Yi)− [(Φm2 Va)⊗ (Φm1 Ua)]vec(X)‖2

=‖vec(Yi)− [(Φm2 ⊗Φm1)(Va⊗Ua)]vec(X)‖2 . (4)

In general, if Ua is a basis in Rm1×m1 and Va is a basis in
Rm2×m2 , then Va⊗Ua forms a basis in Rm1m2×m1m2 [DB12].
By substituting Eq. (4) into Eq. (3) and letting xia =
vec(Xia), yi = vec(Yi), we have:

x̂ia = min
x
‖x‖1 s.t.

‖yi− (Φm2 ⊗Φm1)(Va⊗Ua)x‖2 < ε, (5)

which is equivalent to Eq. (2) for a separable sensing ma-
trix and a 2D dictionary in the ensemble. We refer to the
ensemble of 1D dictionaries formed by {Va ⊗Ua}k

a=1 as
the Kronecker-EOB ensemble, or K-EOB in short. A simi-
lar formulation was presented in [RS09], where the authors
propose an imaging method with separable sensing matrices
and a fixed analytical 2D dictionary. In contrast, our method
utilizes an ensemble of trained 2D dictionaries.

For exact recovery, it has been shown in [RS09] that a sep-
arable sensing matrix requires

√
log10(max(m1,m2)) more

measurements compared to a single sensing matrix as de-
fined in Eq. (2). Therefore, we define a single sensing matrix
that operates on vectorized representation of the patch. Ac-
cordingly, Eq. (5) becomes:

x̂ia = min
x
‖x‖1 s.t. ‖y−Φi(Va⊗Ua)x‖2 < ε, (6)

where yi =Φipi and Φi ∈Rm×m1m2 is a sensing matrix. Note
that Equations (3) and (6) are equivalent; i.e. the changes in-
troduced in Eq. (4) are merely a reformulation of Eq. (3),
which does not affect the properties of the 2D dictionary en-
semble presented in Section 3. Therefore, the 1D K-EOB
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ensemble possesses all the properties of the 2D EOB ensem-
ble and exploits the coherence of a signal along its rows and
columns simultaneously. As a result, once the coefficients
are recovered by solving Eq. (6), the 1D and 2D patches can
be computed as pi = (Va⊗Ua)x̂ia and Pi = UaX̂iaVT

a , re-
spectively.

In this work we only show examples using binary sensing
matrices that extract certain elements of the patch at random.
For signals in Rm1m2 we construct an identity matrix of the
same size. We then remove m1m2−m rows at random. An
Illustrative example is shown in Figure 3. An advantage of
this simple construction is that we do not need to store sens-
ing matrices, but just the indices of missing values. Note that
our method is not limited to this choice. In fact, sensing ma-
trices constructed from Gaussian and sub-Gaussian distribu-
tions, along with optimized sensing matrices [DCS09], can
be applied directly.

5. Approximating Dictionary Membership Index

A key step in our algorithm is to, for each patch, find the
index, a, of the best dictionary in the ensemble. A naïve
approach would be to solve Eq. (6) for all dictionaries,
{Va⊗Ua}k

a=1, and pick the best result based on the recon-
struction error. However, since we do not have the complete
patch, it is impossible to define a metric for choosing the best
result of Eq. (6). Moreover, this approach is computationally
expensive which renders it impractical for the applications
we considered in this paper. In this Section, we introduce a
fast greedy algorithm that finds the index of a K-EOB dic-
tionary in the ensemble which produces the most sparse co-
efficients with the least reconstruction error. We use the term
membership index for the index of such a dictionary (denoted
by a in Eq. (6)).

Our greedy method for computing the membership index
is outlined in Algorithm 1. We project a patch, pi, onto all
K-EOB dictionaries in the ensemble, leading to a set of co-
efficient vectors, xia, see line 4. Given a threshold parame-
ter, τ, and a value for maximum sparsity, s, we incrementally
nullify m1m2− t, t = 1 . . .s, elements from xia with smallest
absolute value, while the reconstruction error is above τ; i.e.
we are gradually adding more coefficients until a maximum
number of coefficients is reached or our reconstruction error
is good enough. The index of the dictionary that produces
the sparsest coefficient vector for pi is stored at mi, shown at
line 11. For the case that we reach the maximum sparsity and
the threshold constraint is not satisfied, the index of the dic-
tionary with least reconstruction error is stored. Algorithm 1
is applied on all patches pi, i = 1 . . .n.

If the incomplete patches are used directly in Algorithm
1, the probability of misclassification will be increased. In-
stead, we form an estimate of each patch by linear inter-
polation and feed the results to Algorithm 1. For this pur-
pose, we use the Delaunay Linear Interpolation (DLI) algo-
rithm, a fast and commonly used method for scattered data

Algorithm 1 Compute Dictionary Membership Index a

Input: A vectorized patch pi, tolerance τ, sparsity s and the
K-EOB ensemble {Va⊗Ua}k

a=1
Output: The dictionary membership index a

1: e ∈ Rk←∞ and z ∈ Rk← 1
2: for a = 1 . . .k do
3: xia← (Va⊗Ua)

T pi
4: while za ≤ s and ea > τ do
5: y← Nullify m1m2− za smallest elements of xia
6: ek←‖pi− (Va⊗Ua)y‖2

2
7: za = za +1
8: end while
9: end for

10: a← index of min(z)
11: if min(z) = s then
12: a← index of min(e)
13: end if

interpolation. We found that performing DLI does not affect
the computational complexity of the overall framework and
improves our results by a relatively small margin. Figure 4
compares three types of input for Algorithm 1: complete,
interpolated and incomplete patches. The dashed line repre-
sents DLI applied directly onto incomplete patches without
compressed sensing. Although the approximation using DLI
gives very poor results (dashed-line in Fig. 4), when we use
this crude approximation in Algorithm 1, the performance of
CS algorithm is slightly improved. These results also imply
that the subspaces spanned by the ensemble are fairly dis-
tinct, which allows Algorithm 1 to detect a subspace close to
the optimal one, even when the data is incomplete.

6. Parameters Analysis

Our method has the following parameters: training sparsity
(st ), number of dictionaries in the ensemble (k), Algorithm
1 threshold (τ), Algorithm 1 sparsity (s), patch size, and the
number of measurements (m). In order to analyze how sen-
sitive our method is to parameter changes, we performed an
evaluation, where we varied one parameter at the time keep-
ing the other three fixed and measured the reconstruction
quality using PSNR. Figure 5 plots reconstruction quality
given a large range of values for st , k, τ, and s. For these
tests, we used the castle image (also used in Table 3). Rel-
atively small changes in PSNR suggests that our method is
not very sensitive to parameters. This is an important aspect
which distinguishes our method from most of the previous
work (see Section 8). The robustness of our algorithm al-
lowed us to keep k and τ fixed for all of the applications
(images, animations, light fields) described in Section 8. The
parameters st and s were adjusted between applications, but
kept fixed for all experiments within each application respec-
tively. Keeping st , k, τ, and s fixed enables the parameter
m to control the trade-off between quality and performance.
Patch size does not have a significant affect on image quality
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Figure 4: Percentage of observed data vs. reconstruction
quality for three types of input for Algorithm 1, compared
to naïve solution of linear interpolation (dashed line).

(a) (b)

(c) (d)

Figure 5: Reconstruction of the Castle image using 50% and
80% of pixels while changing the parameters. (a) τ = 10−4,
s = 18, st = 18, and variable k. (b) τ = 10−16, k = 64, st =
18, and variable s. (c) s = 432, k = 64, st = 18, and variable
τ. (d) τ = 10−4, s = 18, k = 64 and variable st . Patch size is
12×36, and therefore s≤ 432.

and was set heuristically based on computation time for each
application.

Regardless of application, one can construct overlapping
or non-overlapping patches from the input data. In the over-
lapping case, a patch is centered around each data point
(e.g. each pixel). After reconstructing all patches, the fi-
nal value for a data point is computed from patches that
cover it [EA06]. Overlapping patches lead to a significant
improvement in quality, but they are computationally expen-
sive. However, one can define the distance between overlap-
ping patches, e.g. every other or every third data point. The
distance between overlapping patches provides a quality-
performance trade-off.

7. Theoretical Analysis

The sparse signal model closest to K-EOB is the reduced
union-of-subspaces model [BCW10] and its special case, the

one-block-sparse model [EKB10]. In this model, the dictio-
nary is composed of several blocks of atoms and each signal
is dense in a single block (subspace) while it is sparse in
the union of subspaces. Considering each K-EOB dictionary
in the ensemble as a block, we can easily define a block-
sparse dictionary by concatenating all Ua⊗Va next to each
other. The resulting block-sparse dictionary will be of size
m1m2 × km1m2. Since Ua and Va are both orthogonal, so
is Ua⊗Va. Therefore, atoms in each block are linearly in-
dependent, conforming to the requirement of a block-sparse
dictionary.

In fact, K-EOB can be considered as a special case of
the one-block-sparse model, where in addition to the spar-
sity in the reduced union of subspaces, the signal is also
sparse in the single subspace it belongs to. In other words,
after selecting a subspace out of k disjoint subspaces (Al-
gorithm 1), one has to construct a subspace of dimension-
ality s inside this subspace. This task involves searching for
a subspace in (m1m2

s ) subspaces, see Eq. (6). These types
of nested sparsity patterns are termed hierarchical spar-
sity [SRSE11]. In case of K-EOB, we have two levels of
sparsity: the inter-block sparsity and the intra-block spar-
sity. Unfortunately, natural images and their higher dimen-
sional variants are too diverse to be analytically categorized
based on their sparsity pattern. However, Our numerical re-
sults show that the model used here is well-suited for this
class of signals. In addition, using a block-sparse represen-
tation, Zelnik-Manor et al. [ZMRE12] also report superior
results compared to traditional overcomplete representations
for natural images [AEB06].

By clustering images based on their sparsity, the K-EOB
ensemble is able to exploit non-local coherencies in an im-
age, or a light-field. This clustering is done via the member-
ship index. Patches that are represented by one dictionary are
not necessarily close to each other in the image space, yet
they have minimal distance in the space spanned by the dic-
tionary. This coherency, or sparsity, in the dictionary space
is further exploited by projecting these patches to a lower
dimensional space.

As mentioned before in Section 1, sparsity is an impor-
tant factor in faithful reconstruction. To see why our method
leads to better results, we compare the EOB and K-EOB en-
sembles with a conventional overcomplete dictionary trained
with K-SVD and a one-block-sparse dictionary trained with
the BK-SVD method [ZMRE12]. Our comparison is based
on the sparsity induced by these dictionaries. To have a com-
mon ground for comparison, we assume that the size (stor-
age cost) of these dictionaries are equal. We show that the
K-EOB ensemble admits a more sparse signal representa-
tion, which in turn leads to a more accurate reconstruction.
Assume that we have square patches of size l = m2

1. An over-
complete dictionary with βl atoms is of size l×βl, where β is
a multiplier that defines overcompleteness. In order to have
a same size ensemble for EOB, the number of dictionaries
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Figure 6: A subset of natural images we used for training

should be:

size of EOB
size of overcomplete

=
k(l + l)

βl2 = 1 ⇒ k =
1
2

βl (7)

If we form the equivalent K-EOB ensemble, and by using
Eq. (7), we can see that the K-EOB dictionary has

# EOB atoms
# overcomplete atoms

=
kl
βl

=
0.5βl2

βl
=

l
2
,

times more atoms than a conventional overcomplete dictio-
nary with the same size. For instance, assuming signals of
size 12× 12, our dictionary is, implicitly, 72 times more
overcomplete. Block-sparse dictionaries also possess this
property. An advantage of using the K-EOB ensemble over
a block sparse dictionary is that the former admits sparsity
in each block, while the latter assumes dense coefficients
for each block of the dictionary. Therefore, the K-EOB en-
semble is more sparse than an equivalent one-block-sparse
dictionary. In addition, the computational cost of training a
block sparse dictionary that has the same size as the K-EOB
ensemble is much higher.

8. Evaluation

We demonstrate the usefulness of our method in three dif-
ferent applications: 2D image reconstruction (Section 8.1),
3D image sequence reconstruction (Section 8.2), and 4D
light-field reconstruction (Section 8.3). To solve Eq. (6),
we used the Smoothed-`0 algorithm [MBZJ09]. Comparing
Smoothed-`0 to different methods, including the reportedly
best performing algorithm in [MWBR13], this method pro-
duced the best results with lowest computation time. We
implemented our framework in MATLAB, while computa-
tionally expensive parts such as training, Algorithm 1, and
the Smoothed-`0, were implemented in C++. All the results
were obtained on a machine with 16 physical cores, run-
ning at 2.0GHz with 24GB of RAM. We used Peak Signal
to Noise Ratio (PSNR) as our image quality metric. For our
method, the timing results include the run-time of DLI, Al-
gorithm 1 and Smoothed-`0 for solving Eq. (6).

In all our results, we set τ= 10−4 and k = 32. Since signal
dimensionality changes per application, we have different
values for training sparsity, st . The sparsity in Algorithm 1 is
set to the same value, i.e. s= st . The threshold for Smoothed-
`0, denoted as ε in Eq. (6), was fixed for all the tests to 10−4.

8.1. Image Reconstruction

In this application, a photo-realistic renderer generates an
image while randomly skipping a set of pixels. The loca-
tions of missing pixels are stored in a binary mask. From
the incomplete image and its corresponding binary mask,
we construct a set of overlapping patches centered around
each pixel. The locations of missing pixels in the binary
mask patches are used for constructing sensing matrices, as
shown in Figure 3. The input to our reconstruction method is
the set of sensing matrices and incomplete image patches. In
the evaluation, we consider image reconstruction using 20%,
60%, 70%, and 80% of the original pixels. Our approach is
purely image-based and independent of the scene informa-
tion. It can therefore be applied as an addon to increase the
efficiency of most existing rendering and image sampling al-
gorithms [LAC∗11, ODR09].

We used the LuxRender to render three scenes with differ-
ent characteristics, shown in Figure 7. The scenes were ren-
dered using the Metropolis sampler [?] and the bi-directional
integrator [?]. Fixing the resolution at 1280× 960, the ren-
dering times for the Bedroom, Bottles and Bamboo scenes
were 6, 48 and 12 hours, respectively (utilizing 16 physical
cores on the CPU). Despite long rendering times, these im-
ages have moderate noise. Due to the high-frequency details
in the Bottles and the Bamboo scenes, they are considered as
the most challenging test scenarios. In particular, the Bam-
boo scene was rendered using a pinhole camera, leading to
very sharp edges across the image plane. Since we wanted
to compare our results to the ground truth, we performed a
full rendering of each scene and tone-mapped the image. Af-
terwards, we randomly removed a percentage of pixels and
constructed overlapping patches. Our method can be used
on High Dynamic Range (HDR) results of the renderer di-
rectly, provided that the dictionary is also trained on HDR
natural images. For all the results reported here, we com-
puted PSNR on the reconstructed data in the 0-255 range,
but before quantization.

For each color channel, we trained a 6-sparse ensem-
ble of 32 dictionaries on 12× 12 non-overlapping patches
extracted from 86 natural images (i.e. m1 = 12, m2 = 12,
k = 32, and st = 6). These images were collected from differ-
ent databases and a subset is shown in Figure 6. We did not
observe any changes in the results by using a different set of
natural images. However, the number of training patches, nt ,
affects the results. Since theoretical bounds for nt are well-
beyond what is required in practice [GE11], we heuristically
require at least 105 training patches for all applications.

We compare our approach to the following meth-
ods: DLI, Steering Kernel Regression (SKR) [TFM07],
K-SVD [AEB06, EA06] and Compressive Rendering
(CR) [SD11]. The DLI method is implemented in MATLAB
as the griddata function. For SKR, we used the refer-
ence implementation provided by the authors. This method
is very sensitive to parameters and requires fine tuning for
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Bedroom Scene Ref. Input DLI SKR KSVD CR Ours Input DLI SKR K-SVD CR Ours

Bottles Scene Ref. Input DLI SKR K-SVD CR Ours Input DLI SKR K-SVD CR Ours

Bamboo Scene Ref. Input DLI SKR K-SVD CR Ours Input DLI SKR K-SVD CR Ours

Figure 7: Image quality comparison for image plane reconstruction using DLI, SKR, CR, K-SVD and our method. For each
scene, we extracted three insets. For all the methods, the insets represent reconstruction from 80% of pixels (left) and 60% of
pixels (right).

Figure 8: PSNR comparison for the Bottles scene between
our method, K-SVD, and DLI for a large range of available
pixels.

each image and test scenario. To have a fair comparison, we
optimized the parameters for SKR based on the Bedroom
scene for 70% and 20% cases. We implemented the CR al-
gorithm using the guidelines provided in [SD11]. Since our
implementation was in MATLAB, we do report timing re-
sults. In addition, due to a high sensitivity to small changes
in the parameters, we used the same strategy for parameter
tuning as we used for SKR. For K-SVD, we used a patch size
of 12×12 and trained a 6-sparse dictionary with 288 atoms,
i.e. a two-times overcomplete dictionary. Although theoreti-
cally a more overcomplete dictionary leads to better results,
we found that increasing the number of atoms does not have
any effect other than increasing the computational time. The
same parameters are used in [AEB06, MES08].

The image quality results are summarized in Figure 7, fol-
lowed by PSNR results in Table 2. The timing results are
also included in Table 2. We encourage the reader to com-

Ratio DLI SKR K-SVD CR Ours

Bedroom
(PSNR)

80% 46.58 47.48 50.89 38.78 52.16
70% 44.68 46.56 48.31 42.45 49.41
60% 43.14 44.66 46.48 41.71 47.15
20% 37.70 38.73 38.13 32.22 38.37

Bottles
(PSNR)

80% 42.49 42.49 45.11 36.25 46.88
70% 40.79 41.62 42.69 34.37 44.41
60% 39.53 40.20 40.77 35.03 42.46
20% 34.92 36.01 35.73 30.42 36.03

Bamboo
(PSNR)

80% 38.12 40.56 41.56 34.57 43.35
70% 36.60 39.12 39.17 33.21 40.58
60% 35.45 36.76 37.01 32.42 38.33
20% 30.60 31.77 31.43 26.41 30.81

Bedroom
(Timing)

80% 17 432 1720 - 1566
70% 16 424 1498 - 1425
60% 15 394 1301 - 1308
20% 15 290 962 - 955

Table 2: PSNR and timing results (in seconds) for image
plane reconstruction.

pare full resolution images included in the supplementary
materials. For the cases where our method is applied to im-
age reconstruction with 60%− 80% of pixels rendered, we
observe a large image quality improvement compared to pre-
vious work. Note that PSNR is a logarithmic function of the
mean-square-error. For the 20% case, our method achieves
competitive results compared to K-SVD and SKR. Looking
at Figure 7, we see that SKR produces blurry results with
washed out textures. The CR method generated the most
blurred results, even compared to DLI. Reducing the size of
blur kernel slightly sharpened the images but led to noise-
like artifacts. Figure 8 plots PSNR values for the Bottles
scene using 10%−90% of pixels and compares our method,
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Reference Equal-time, 35.22 dB Ours, 38.31 dB

Reference Equal-time, 35.76 dB Ours, 42.46 dB

Figure 9: Comparison of our method using 60% of pixels to
an equal-time rendering for the Bamboo scene (7 hours and
34 minutes) and the Bottles scene (29 hours and 10 minutes).
PSNR is computed on full images.

DLI, and K-SVD. Our CS framework maintains a large im-
provement in PSNR over K-SVD and DLI when using 20%
to 90% of pixels as input data.

The computational complexity of our algorithm is only
dependent on the image resolution and the number of sam-
ples, m. Therefore, in Table 2 we report timing results only
for the Bedroom scene. For the 70% case, the computation
time for Algorithm 1 is 437 seconds, and 972 seconds for
Smoothed-`0. Considering the Bottles scene for the 20%,
60%, 70% and 80% cases, the rendering time saved using
our method is about 38, 18, 14, and 9 hours, respectively.
An advantage of our method is that the reported speedup for
60%-80% cases is achieved without noticeable degradation
of visual quality. In addition, our method can be used to gen-
erate preview-renderings using only a very small percent-
age of pixels, e.g. 20%. Moreover, since patches are recon-
structed independently, the performance boost with multi-
processor and multi-computer architectures grows linearly,
as in conventional ray tracing.

We also compared our reconstruction results with an
equal-time rendering, i.e. when the renderer generates an im-
age in 60% of the time required to render the reference im-
age. Figure 9 presents these results for the Bamboo and Bot-
tles scenes. Apart from a large improvement in PSNR for our
method, severe noise artifacts are evident in the equal time
rendering.

Although we focused on photo-realistic rendering, our

(a) (b) (c) (d)

Figure 10: (a) A reference synthetic image, (b) Input im-
age, (c) reconstruction using a dictionary ensemble trained
on natural images (PSNR: 34.79dB), (d) Reconstruction us-
ing an expanded ensemble (PSNR: 36.42dB). We used 50%
of pixels.

Image Ratio DLI LRTC NBDL PLE Ours

Castle

80% 32.64 38.22 41.51 48.26 56.49
50% 28.69 31.01 36.45 38.34 40.60
30% 26.86 27.90 32.02 33.01 33.22
20% 25.95 26.21 29.12 30.07 30.65

Mushroom

80% 36.02 39.53 42.56 49.25 54.83
50% 31.81 31.72 38.88 40.72 41.69
30% 29.72 28.20 34.63 35.36 34.85
20% 28.69 26.46 31.56 32.06 32.04

Train

80% 28.75 33.04 40.73 44.01 52.94
50% 24.83 26.14 32.00 32.75 35.12
30% 23.07 22.94 27.00 27.46 27.56
20% 22.26 21.45 24.59 24.73 25.14

Horses

80% 33.92 38.76 41.97 48.83 56.35
50% 29.89 31.23 37.27 38.52 39.90
30% 28.09 28.02 31.54 32.99 32.75
20% 27.30 26.48 28.81 30.26 30.43

Table 3: PSNR comparison for image reconstruction from
irregular samples. The methods that we compare here are:
DLI, LRTC, BP, PLE and our method

method is flexible enough to reconstruct non-photo-realistic
images. Let us consider the worst-case scenario, as shown
in Figure 10, where a completely synthetic image is sub-
sampled. Reconstructing this image with the dictionary
trained using natural images leads to artifacts around edges,
see Figure 10c. A simple approach for solving this problem
was presented in Section 3. We trained 8 dictionaries on vari-
ants of the image in Figure 10a. These new dictionaries were
appended to the ensemble of 32 dictionaries we trained on
natural images, leading to an ensemble with 40 dictionaries.
Reconstruction result is shown in Figure 10d. Our extended
dictionary ensemble has substantially reduced the artifacts
around edges.

We also compared our results to state-of-the-art meth-
ods in image processing for interpolation of irregular pixel-
samples. We use combined color patches of size 12×36 with
different missing values for each color channel. This is the
input data typically used in the image processing literature.
The methods we compared to are DLI, Low Rank Tensor
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Completion (LRTC) [LMWY13], Nonparametric Bayesian
Dictionary Learning (NBDL) [ZCP∗12], and Piecewise
Linear Estimator (PLE) [YSM12]. We used a standard
dataset commonly used in the image processing community.
For BP and PLE, the results reported in the corresponding
papers are used. For LRTC, we used the reference imple-
mentation of the authors, and generated the results using the
high accuracy variant of the LRTC algorithm, HiLRTC. For
our method, we trained an 18-sparse ensemble of 32 dictio-
naries on the same training set we used before (Figure 6).
Image quality results using PSNR are summarized in Table
3. Our method outperforms the state-of-the-art, PLE, by a
very large margin for 50%-80% cases, and achieves compet-
itive or better results for 20% and 30% cases.

8.2. Image Sequence Reconstruction

We applied our method for reconstructing a sequence of
photo-realistically rendered images, i.e. a 3D data structure
representing a video. In order to exploit the temporal co-
herency, we constructed patches from a small set of consec-
utive frames. As a result, we have m1 = s1c and m2 = s2 ∗ f ,
where s1×s2 is the patch size in one image, c= 3 is the num-
ber of color channels, and f = 3 is the number of consecu-
tive frames. One can set a larger value for f , which allows
for taking less samples; at the same time, increasing f will
increase the reconstruction time and will demand a larger
training set. The comparison of our method with DLI, SKR
and K-SVD is shown in Figure 11, Table 4 and the accom-
panying video. The image sequence consists of 150 frames
and was rendered in 23 hours and 41 minutes. It is evident
in Figure 11 that K-SVD produces severe noise-like artifacts
(in the red part of the inset) and SKR generates blurred im-
ages. Our method is considerably faster and does not have
these artifacts. Note that these results were obtained on a se-
quence without motion blur. Adding motion blur increases
coherence between frames and, consequently, improves re-
construction result.

To obtain these results, we trained a 60-sparse ensemble
of 32 dictionaries (st = 60 and k = 32) on an image sequence
of the same scene but with a completely different camera
path. The 60-sparse K-SVD dictionary was trained on the
same training set and with 1152 atoms (two times overcom-
plete). The input to our method and K-SVD is the same, but
DLI and SKR were applied on each image separately (it is
not clear how to extend these methods to higher dimensions).
The rendering and reconstruction time for our method using
70% of the pixels was 17 hours, leading to a 6 hour and
41 minute reduction in rendering time and without notice-
able degradation in visual quality. The results reported here
are for non-overlapping patches. One can create overlapping
patches not only for each image in the sequence, but also
in the temporal domain. For instance, when we have three
consecutive frames, the overlapping temporal frames will be
[1,2,3], [2,3,4], [3,4,5], etc.

Frame 133

Ref. Ours K-SVD

Input SKR DLI

Figure 11: Reconstruction results for a single frame of an
image sequence using 70% of pixels. Zoom in the digital
version.

Ratio DLI SKR K-SVD Our Method

PSNR
80% 38.67 40.21 49.45 52.56
70% 36.89 37.54 46.51 48.77
60% 35.60 34.27 43.99 45.11

Time
80% 44 2977 10856 3040
70% 45 3025 7914 2406
60% 48 3068 6164 1922

Table 4: PSNR and timing results (in seconds) for image se-
quence reconstruction.

8.3. Light-field Reconstruction

A light-field is a function defined as f (u,v,φ,θ), where (u,v)
and (φ,θ) define the spatial and angular domains, respec-
tively. A discretization of this function leads to a 4D data
structure. A common way to store the light-field of a scene
is to capture photographs from different vantage points on
a regular grid. Given such a data set, we define m1 = cs1s2
and m2 = a1a2, where s1× s2 is the patch size in one im-
age, a1 and a2 represent grid dimensions (angular samples),
and c is the number of color channels. This approach was
used in a recent work by Marwah et al., Compressive Light-
Field Photography (CLFP) [MWBR13], where authors re-
construct these patches given that the observed data only in-
cludes a single direction, i.e. one photograph. The goal is
then to reconstruct remaining data in the angular domain.
Such a limitation was imposed by the hardware design pro-
posed in their paper. CLFP uses online dictionary learning
and a compressed sensing framework similar to the one we
used for K-SVD in Section 8.1.

The synthetic data-set used in [MWBR13] is a collection
of 25 images of a rendered scene, hence a1 = a2 = 5. While
CLFP uses a spatial patch size of 9×9, we divide the spatial
domain into 5× 5 patches (s1 = s2 = 5), leading to a light-
field patch size of 75× 25. We trained a 10-sparse ensem-
ble of 32 dictionaries using the training set of [MWBR13],
shown at the top of Figure 12. Results for CLFP are reported
using the original implementation of the authors with the
same parameters and the provided optimized dictionary. For
both methods, we used binary sensing matrices as described
before. Although CLFP uses Gaussian sensing matrices, we
did not observe any change in PSNR or computation time
using binary sensing matrices.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



E. Miandji & J. Kronander & J. Unger / Compressive Image Reconstruction in Reduced Union of Subspaces

Training Set

Reference Input

CLFP Our Method

Input

CLFP

Our Method
Figure 12: Image quality comparison for light-field recon-
struction using overlapping patches.

Patch Config. CLFP Time Our Method Time
Non-overlapping 24.83 183 31.17 565

Overlapping 26.56 1907 33.49 2931

Table 5: PSNR and timing results for light-field reconstruc-
tion. Timing results are in seconds.

Table 5 reports the PSNR and timing results for our
method and CLFP. Note that only 4% of the light-field data is
available. The use of Smoothed-`0 solver already improves
the results reported in [MWBR13] for non-overlapping
patches by 1.83dB. We compared our results with this
improved version of their method. For non-overlapping
and overlapping patches, our method achieves 6.34dB and
6.93dB improvement over CLFP, respectively. Figure 12
compares a single image from the light-field reconstructed
by both methods. In addition, the accompanying video con-
tains an animated visualization of the reconstructed light-
fields.

Comparing Tables 2 and 4 suggests that as the dimension-
ality of the signal grows, i.e. 2D to 3D, our method becomes
considerably faster than K-SVD. However, looking at Table
5, we see that our method is slower for light-field data (4D)
compared to the 2D and 3D cases. This is due to the fact that
CLFP uses a K-SVD dictionary optimized for speed which
is 1.2 times overcomplete (instead of 2) and is trained us-
ing coresets [MWBR13]. Regardless, since the parameters
for CLFP are optimized and the results reported are the best
achievable ones, the large improvement in image quality mo-
tivates the use of our method.

9. Discussion and Future Work

We presented an approach for reconstruction of visual data
using a new compressed sensing framework based on an en-
semble of dictionaries. For different applications, the dictio-
nary ensemble is trained on a generic dataset, computed only
once, and can be used in a wide variety of reconstruction sce-
narios. Based on the excellent performance of our method
for reconstructing images, animations, and light-fields, we
believe that it can also prove to be useful in other applica-
tions in computer graphics where compressed sensing has
been successfully applied in the past, e.g. compressive light
transport sensing [PML∗09].

A limitation of our work for rendering is that if the miss-
ing pixels are computationally cheap to render, e.g. using
simple scenes and coarse light transport models, our method
might be slower than brute force rendering. However, since
`1 reconstruction is the bottleneck, a GPU implementation of
the Smoothed-`0 algorithm will greatly improve the compu-
tation time of our method. Other `1 solvers such as SPARSA
[WNF09] have a GPU implementation but provide worse re-
sults in terms of reconstruction quality.

In this paper, we considered the pixels in the rendered im-
age to be independent from each other. An interesting ex-
tension would be to instead consider sub-pixel samples. If
the dictionary ensemble is trained using sub-pixel samples, it
would be possible to reconstruct the final pixel values using
standard smoothing filters taking into account effects such as
anti-aliasing in the image plane. Extending this to capturing
lens or temporal samples would enable also reconstruction
of motion blur and depth-of-field effects. A benefit of our
CS framework is that, for all these effects, the proposed ap-
proach can be utilized directly since only the input data for
training and reconstruction is changed.
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