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(a) Pseudo-marginal ERPT using ratio tracking (b) ERPT with ray marching (c) PSSMLT with ratio tracking

Figure 1: Equal time renderings of a refractive glass cube containing isotropic heterogenous participating media and a diffuse torus. a) Our
method using ERPT [Cline et al. 2005] with ratio tracking [Novák et al. 2014] to obtain an unbiased estimate of the transmission. b) Same
as a) but with deterministic ray-marching used to evaluate the transmission. c) PSSMLT [Kelemen et al. 2002] with ratio tracking.

1 Introduction

Accurate and efficient simulation of light transport in heteroge-
neous participating media, such as smoke, clouds and fire, plays
a key role in the synthesis of visually interesting renderings for e.g.
visual effects, computer games and product visualization. Simi-
lar problems also has important applications in other fields such as
neutron transport and medical radiation dosimetry. While signifi-
cant progress has been made towards robust and efficient algorithms
for rendering heterogeneous participating media, scenes containing
highly anisotropic phase functions, glossy surfaces and complex
visibility still remain challenging.

Modern global illumination rendering is based on Monte Carlo
methods computing averages of stochastically sampled light paths
connecting the sensor with light sources in the scene. The efficiency
of these algorithms is directly dependent on the strategy used in the
light path sampling. For complex scenes, the Metropolis light trans-
port (MLT), [Veach and Guibas 1997], algorithm provide a power-
ful framework for sampling the path space. The method is based on
using Markov chain Monte Carlo (MCMC) to sample light paths
{x̄i}i≥1 according to some target distribution, π(x̄), proportional
to the image contribution of the paths.

However, in many applications the target distribution, π(x̄), can-
not be evaluated exactly. For example, when rendering scenes
with heterogenous participating media, where, in general, comput-
ing the transmittance along a path is analytically intractable. This
limits direct use of MLT, as it depends on Metropolis-Hastings
(MH) acceptance probabilities which cannot be evaluated in closed
form. The same problem occur for other rendering methods relying
on MCMC sampling, such as Energy Redistribution path tracing
(ERPT) [Cline et al. 2005]. Previous work, [Pauly et al. 2000], pro-
posed to substitute the exact quantity of interest, π(x̄), with a biased
approximation, π̃(x̄), to compute the MH probability. However,
direct application of this method does not to lead to a consistent
estimator.

Our main contribution is a new sampling strategy to be used within
existing MCMC based rendering methods, e.g. MLT and ERPT, for
rendering of scenes with heterogenous participating media. Specif-

ically, we show that any positive and unbiased estimator of the tar-
get distribution E [π̂(x̄)] = π(x̄) can replace the exact quantity to
simulate a Markov Chain with a stationary distribution that has a
marginal that is the exact target distribution of interest. This en-
ables us to evaluate the transmittance function with recent unbi-
ased estimators, [Novák et al. 2014], leading to significantly shorter
rendering times, see e.g. Figure 1. Our approach is based on
pseudo-marginal MCMC methods developed for Bayesian infer-
ence with intractable likelihoods, [Beaumont 2003; Andrieu and
Roberts 2009]. Compared to previous work (relying on biased ray-
marching for evaluating transmittance), our method enables simula-
tion of longer Markov chains, a better exploration of the path space,
and consequently less image noise.

2 Background and related work
2.1 Path Integral Formulation

Using the path integral formulation of light transport [Veach 1997;
Pauly et al. 2000; Wenzel 2013], the j-th pixel measurement Ij is
expressed as an integral over the space, Ω, of all valid light transport
paths of all lengths:

Ij =

∫
Ω

f(x̄)Wjdµ(x̄), with dµ(x̄) =

k∏
i=0

dµ(xi). (1)

Here a valid path of length k ∈ (0,∞), x̄ = x0, ..., xk con-
nects a light source to the sensor through a series of scattering
vertices, xi, located on surfaces or in participating media. Here
Wj = Wj(xk−1 → xk) denotes the pixel sensitivity/filter at the
sensor. The path measure, dµ(x̄), is a product measure over the
measures of the path vertices, where path vertices on surfaces cor-
respond to area integration, dµ(xi) = dA(xi), and vertices in a
media correspond to volume integration, dµ(xi) = dV (xi). The
measurement contribution function, fj(x̄), is defined by

fj(x̄) = Le

[
k−1∏
i=0

G(xi, xi+1)T (xi, xi+1)

][
k−1∏
i=1

ρ(xi)

]
. (2)



where Le = Le(x0 → x1) is the emitted radiance at the light
source, ρ(xi) denotes scattering functions defined at path vertices,
G(xi, xi+1) is the geometry term, and T (xi, xi+1) is the transmit-
tance defined on the segments between path vertices. For a detailed
description of these terms see e.g. [Wenzel 2013].

Figure 2: Illustration of the notation for describing the light trans-
port in the scene using the path integral formulation.

2.2 Evaluating transmittance

The transmittance between two path vertices, xi and xi+1, sepa-
rated by a distance d is given by:

T (xi, xi+1) = exp
(
−
∫ d

0

σ(x+ tωi,i+1)dt
)

(3)

where σ(x) denotes the extinction coefficient describing the loss
of light due to absorption and out-scattering per unit distance, and
ωi,i+1 denotes a unit length vector pointing from xi towards xi+1.
A challenge is that the transmittance only can be evaluated analyt-
ically in special cases, and is intractable for general heterogenous
media. Ray-marching methods [Perlin and Hoffert 1989] evalu-
ate the inner integral

∫ d
0
σ(x)dt using standard quadrature meth-

ods. However, these techniques are often computationally ineffi-
cient and the resulting transmission estimates are biased. Instead
a algorithm related to rejection sampling, known as delta tracking,
Woodcock tracking or pseudo tracking can be used. This method
was developed independently in neutron transport [Woodcock et al.
1965] and plasma physics [Skullerud 1968] for sampling free-flight
distances in heterogenous media given an upper bound of the ex-
tinction coefficient, σ̄(x) ≥ σ(x), ∀x. A detailed study of delta
tracking was presented by Coleman [1968]. To evaluate the trans-
mittance, a standard technique is to simply average M delta track-
ing samples and evaluate the ratio of samples corresponding to a
distance longer than d. Improved transmittance estimators based
on de-randomization and control variate techniques have also been
proposed in the literature. In this paper we use the ratio tracking
estimator proposed by Novak et al. [2014] providing a noisy but
unbiased estimate of the transmittance function.

2.3 Metropolis light transport

To evaluate the path integral (1) the MLT method, [Veach and
Guibas 1997], uses MCMC to sample paths from a target prob-
ability distribution, x̄ ∼ π(x̄) = L(x̄)∫

Ω L(x̄)dµ(x̄)
, where L(x̄) is a

scalar contribution function. This function is usually constructed
to be similar to the luminance of the path contribution function
f(x̄). The path integral is then estimated by the average, Îj =
Z
N

∑N
i=1

Wjf(x̄i)

L(x)
, where Z =

∫
Ω
L(x̄)dµ(x̄) is an unknown nor-

malizing constant that can be computed using traditional path trac-
ing techniques. To sample paths from the target distribution, π(x̄),
a set of seed paths are first generated using traditional path trac-
ing techniques. These initial seed paths are then iteratively updated
with the MH algorithm to construct a Markov chain on Ω that is
ergodic and has π(x̄) as its stationary distribution. Given a current
path, x̄i, a new path, x̄i+1, is first proposed using a conditional

proposal density, q(x̄i+1|x̄i), and then accepted with probability

min

{
1,
L(x̄i+1)

L(x̄i)

q(x̄i|x̄i+1)

q(x̄i+1|x̄i)

}
(4)

A sufficient condition for the resulting Markov chain to be irre-
ducible is that q is positive everywhere. In practice, this is often
met by mixing independent proposals with local exploration of the
state space. The ERPT, [Cline et al. 2005], method is an exten-
sion to the original MLT algorithm, which first samples a large set
of paths with standard path tracing methods, and then runs many
short MCMC chains starting form each initial sample. Similarly to
the original MLT algorithm, MH updates are used to simulate the
Markov chains. The main benefit of EPRT is that a well stratified
initial sample set can be preserved, e.g. using one path per pixel.

An extended formulation of MLT for rendering scenes with par-
ticipating media was presented by Pauly et al. [2000]. For het-
erogenous media they used a ray-marching algorithm to evaluate
the transmittance along sampled light paths, which often requires
extensive computational effort and produces biased estimates. A
problem (see discussion in the next section) is that if a biased esti-
mate of the transmission is used in place of the exact quantity, the
resulting Markov chain does not necessarily target the desired den-
sity π(x̄). Kelemen et al. [2002] presented an alternative MCMC
method. Instead of sampling directly in path space they propose
to apply mutations to random number vectors in primary sample
space, which are then used to generate light paths via traditional
path tracing methods. We refer to this method as Primary sample
space Metropolis light transport (PSSMLT). While the method is
easy to implement it is limited to the underlying path tracing tech-
niques restricting the possible exploration of the path space. Raab
et al. [2008] introduced delta tracking to computer graphics and
argued that it could be used to derive an unbiased path tracing al-
gorithm that could then be used with PSSMLT. In this paper we
significantly extend their work by showing that we can construct
valid algorithms for the larger family of path space MLT and ERPT
methods by employing unbiased estimators of the scalar contribu-
tion function.

3 Replacing the contribution function with an
unbiased estimate

In cases where the contribution function is intractable, e.g. ren-
dering heterogenous media, the standard MH acceptance proba-
bility (4) cannot be evaluated. Instead, we propose to employ a
pseudo-marginal construction [Andrieu and Roberts 2009], where
a non-negative and unbiased estimator of the contribution function
L̂(x̄) is used in place of its intractable counterpart L(x̄). We show
that this allows us to generate a Markov chain with the exact tar-
get distribution L(x̄)

Z
as its stationary distribution although we only

have access to an approximation of the contribution function. By
employing this construction inside previous MH based rendering
algorithms, e.g. MLT and ERPT, we can not only increase their
flexibility and applicability but also their efficiency.

Let us first introduce an auxiliary random variable u denoting all the
random quantities generated to construct the estimator L̂(x̄). This
random variable follows a probability distribution g(u|x̄) defined
on some space U . Consider now the joint distribution of the light
path x̄ and the auxiliary variable u

p(x̄, u) =
L(x̄)

Z
g(u|x̄). (5)

This distribution has the target distribution as one of its marginals,
as
∫ L(x̄)

Z
g(u|x̄)du = L(x̄)

Z
. Inspired by this joint distribution we



(a) Pseudo-marginal MLT (b) MLT with ray marching (c) PSSMLT with ratio tracking (d) Bidirectional path tracing

Figure 3: Equal time renderings of the classical scene from Veach filled with anisotropic scattering heterogenous media (g = 0.85).

can construct an extended target distribution

φ(x̄, u) =
L̂u(x̄)

Z
g(u|x̄) (6)

where we have replaced the exact contribution function with an un-
biased estimator, L̂u(x̄). This extended target distribution can now
be targeted directly with a standard MH algorithm in the extended
space Ω ⊗ U . The resulting algorithm will then in fact generate
samples {x̄i}i≥1 from the target distribution L(x̄)

Z
even though we

substituted the exact contribution function with an approximation
in (6). To see why this holds, let us consider the marginal with
respect to u of the extend target distribution∫

φ(x̄, u)du =
1

Z

∫
L̂u(x̄)g(u|x̄)du. (7)

As the contribution function estimate, L̂u(x̄), is unbiased we have

Eg(u|x̄)

[
L̂u(x̄)

]
=

∫
L̂u(x̄)g(u|x̄)du = L(x̄) (8)

which inserted into (7) proves that
∫
φ(x̄, u)du = L(x̄)

Z
is recov-

ered exactly as the marginal of the extended target distribution (6)
despite the fact that we used an approximation of the contribution
function. An interpretation of these, so called, exact approxima-
tion algorithms is that using L̂u(x̄) does change the marginal with
respect to u but it does not change the marginal with respect to x̄.

To use a standard MH algorithm in the extended space, a new light
path x̄i+1 and auxiliary variable ui+1 is proposed according to

x̄i+1 ∼ q(x̄i+1|x̄i), ui+1 ∼ g(ui+1|x̄i+1), (9)

based on the current sample pair [x̄i, ui]. Note that, the simula-
tion of ui+1 simply corresponds to generating a new estimate of
the contribution function independently of previous estimates. The
probability of accepting the new sample pair is then given by

min

{
1,

1
Z
L̂ui+1(x̄i+1)g(ui+1|x̄i+1)

1
Z
L̂ui(x̄i)g(ui|x̄i)

q(x̄i|x̄i+1)g(ui|x̄i)
q(x̄i+1|x̄i)g(ui+1|x̄i+1)

}

= min

{
1,
L̂ui+1(x̄i+1)

L̂ui(x̄i)

q(x̄i|x̄i+1))

q(x̄i+1|x̄i)

}
(10)

As we are only interested in the sampled light paths {x̄i}i≥1 and
not the auxiliary quantities, we do not need to explicitly keep track
of the generated auxiliary random variables {ui}i≥1. However, it
is necessary to keep track of the estimated contribution of the light
path L̂u(x̄), and keep this value for all comparisons with other pro-
posed paths. Note that, a key requirement for the marginal subchain

{x̄i}i>1 to target the desired distribution, is that the estimator L̂(x̄)
is unbiased. Otherwise, using for example a biased estimate, the
marginal of the extended target (5) is not necessarily equal to the
desired distribution.

3.1 Rendering of heterogeneous media

To evaluate the contribution function for a path, x̄j , in heterogenous
participating media, we estimate the transmission between all ver-
tices along the path using independent ratio trackings [Novák et al.
2014], providing us with unbiased estimators {T̂i}. By combining
these estimators, we can form an unbiased estimator of the total
path contribution as

L̂u(x̄j) = LYe

[
k−1∏
i=0

G(xji , x
j
i+1)T̂i(x

j
i , x

j
i+1)Y

][
k−1∏
i=1

ρ(xji )
Y

]

where XY is the luminance of the spectrally valued function X .
The resulting estimator L̂u(x̄j) is then unbiased as long as the ratio
tracking estimators are unbiased and independent.

To propose new paths we use the perturbation strategies originally
proposed by Veach and Guibas [1997] extended to handle partic-
ipating media. To update the position of vertices in media, we
use a proposal function similar to the medium perturbation pro-
posed by Pauly et al. [2000] and later extended in the Mitsuba
renderer [Jakob 2010]. Here, the medium vertex, xi, is perturbed
with uniform probability either forward or backward along the cur-
rent edge, with a distance proportional to γσt(xi) exp(−γσt(xi)),
where γ is a scale parameter and σt(xi) is the extinction coefficient
at the vertex. We consider both larger and smaller scales of the per-
tubations, i.e. we use a mixture of medium perturbations with dif-
ferent γs. For all results in this paper we used a mixture of γ = 100
and γ = 50. For the bidirectional path mutation, we use delta track-
ing to propose new path vertices in participating media. Note that,
the intractable terms in the proposal density q(x̄i+1|x̄i) cancels in
the acceptance ratio (10), as long as the delta tracking is performed
with respect to the luminance of the transmission. Our method is
also compatible with recent perturbation proposals such as the man-
ifold perturbation proposed by Wenzel and Marschner [Jakob and
Marschner 2012].

4 Results

To evaluate the performance our new pseudo-marginal approach,
we compare it to representative methods for efficient rendering of
anisotropic heterogenous participating media and glossy transfer.
All renderings were generated using the Mitsuba renderer [Jakob
2010].



(a) M = 1 (b) M = 2 (c) M = 3

Figure 4: Equal time comparisons with varying number of aver-
aged ratio trackings used to estimate the transmission between ver-
tices along the path. Using a low M generally leads to more effi-
cient estimators.

In Figure 1, we show equal time comparisons for our pseudo-
marginal ERPT method using ratio tracking, ERPT using Simp-
son quadrature ray-marching, and PSSMLT with ratio tracking.
Note that, Raab et al. [2008] originally proposed to use PSSMLT
with delta tracking to evaluate the transmission, however here
we instead use the more recent ratio tracking estimator. For the
ERPT algorithms, we use the manifold perturbation by Wenzel and
Marschner [2012]. For ray-marching based MLT and ERPT, the
default step-size selection implemented in Mitsuba was used. The
glass cube contains a diffuse torus shape and an isotropic heteroge-
nous media. Classical volumetric path tracing algorithms, such as
bidirectional path tracing, produce very noisy results for this scene.
Compared to ray-marching, the significanlty faster ratio tracking
enables longer Markov chains to be used in the ERPT algorithm
and a better exploration of the path space resulting in less image
noise. The PSSMLT algorithm has problems finding good light
paths in the scene, as it lacks the ability to use the efficient local
path perturbations exploited by the ERPT algorithms.

Figure 3 shows equal time renderings of a scene from Veach [1997],
filled with anisotropic scattering heterogenous media, (g = 0.85),
stored as 643 voxels. As can be seen, this scene presents a difficult
case for bidirectional path tracing. PSSMLT using ratio tracking
performs slightly better, but also produces noisy results. Again, the
pseudo-marginal MLT algorithm benefits from long Markov chains,
efficient exploration of the path space, and outperforms previous
methods in terms of image noise.

Parameter calibration An important practical consideration when
using the pseudo-marginal MH update (10), is how many samples
M should be used to compute the unbiased estimator L̂u(x̄). If a
lower number of samples is used, the mixing of the marginal sub-
chain, {x̄i}i>1 can be poor. For example, if the the exact quantity
is overestimated, the chain might get stuck at the current light path
leading to a long series of rejected samples. A theoretically justi-
fied rule of thumb is to choseM so that the variance of log(L̂u(x̄))
is approximately one, see e.g. Doucet et al. [2012]. However, this
only holds when the noise in the estimate is independent with re-
spect to the current light path x̄, i.e. an assumption which often does
not hold in practice. For most scenes where the MCMC based sam-
pling methods provide a good alternative, i.e. scenes with complex
light paths, we have found that using a small M is beneficial. The
reason is that the noise introduced by an unbiased approximation
is well compensated for by the faster exploration of the path space
using longer Markov chains. A comparison of different settings for
the number of averaged ratio trackings, M , is shown in Figure 4.
For all the other result shown in this paper we used a single ratio
tracking, M = 1, to evaluate the transmission.

5 Future work

Although the examples in this paper are based on replacing the in-
tractable transmission term with unbiased estimators, the algorithm

is general. It allows for any unbiased estimator of the scalar con-
tribution function to be used in place of the corresponding exact
quantity. This also opens up the possibility of replacing a known
quantity with a more efficient approximated quantity, thus enabling
more iterations of the underlying Markov chain in the same com-
putational budget. An interesting venue for future work is to inves-
tigate applications of such procedures in rendering problems using
e.g. expensive shading models.
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