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Abstract
Light field imaging is rapidly becoming an established method for generating flexible image based description of scene appear-
ances. Compared to classical 2D imaging techniques, the angular information included in light fields enables effects such as
post-capture refocusing and the exploration of the scene from different vantage points. In this paper, we describe a novel GPU
pipeline for compression and real-time rendering of light field videos with full parallax. To achieve this, we employ a dictionary
learning approach and train an ensemble of dictionaries capable of efficiently representing light field video data using highly
sparse coefficient sets. A novel, key element in our representation is that we simultaneously compress both image data (pixel
colors) and the auxiliary information (depth, disparity, or optical flow) required for view interpolation. During playback, the
coefficients are streamed to the GPU where the light field and the auxiliary information are reconstructed using the dictionary
ensemble and view interpolation is performed. In order to realize the pipeline we present several technical contributions in-
cluding a denoising scheme enhancing the sparsity in the dataset which enables higher compression ratios, and a novel pruning
strategy which reduces the size of the dictionary ensemble and leads to significant reductions in computational complexity dur-
ing the encoding of a light field. Our approach is independent of the light field parameterization and can be used with data from
any light field video capture system. To demonstrate the usefulness of our pipeline, we utilize various publicly available light
field video datasets and discuss the medical application of documenting heart surgery.

CCS Concepts
• Computer graphics → Image-based rendering; Computational photography; Image compression;

1. Introduction

Light field imaging enables a range of post-capture effects such as
free-viewpoint rendering, refocusing and image processing. Unlike
traditional 2D imaging systems, light fields capture both multiple
angles and location making such data ideal for many computer vi-
sion applications. It also enables capture for novel 3D display se-
tups [WLHR12] and head-mounted displays (HMDs) such as HTC
VIVE where positional tracking is available. Light field rendering
is suitable for virtual and augmented reality applications ranging
from the entertainment industry to educational platforms. However,
a key and still unsolved challenge is handling the very large mem-
ory footprint inherent to light field imaging. The amount of data
that is required to be captured, processed, and rendered for high
resolution and high quality light fields make current solutions dif-
ficult to use in practice.

Since the introduction of light fields to the computer graphics
community by [LH96] and [GGSC96], a large number of meth-
ods have been proposed, ranging from light field acquisition and
compression to processing and view synthesis, for an overview,
see [WMJ∗17]. Light fields can be captured in different ways, in-
cluding micro-lens array (MLA) setups [NLB∗05, AW92], coded
masks [VRA∗07, WIH13], objective lens arrays, and gantry and
array-based camera systems [BSW01, KKSM19]. A few designs
have been suggested that can support light field video capture.

Wilburn et al. [BSW01] proposed a system where light field videos
were captured using an array of cameras. Using similar principles,
Ng et al. [NLB∗05] presented camera systems where a microlens
array was placed in the ray-path in the optics in front of the sen-
sor. This approach was later used in commercial light field video
cameras such as Lytro cinema [Lyt17] and Raytrix [Ray19].

In this paper, we present an end-to-end GPU pipeline from
compression to the rendering of light field videos. The proposed
pipeline is developed to be agnostic to which input device is used
to capture the light field video, so that a wide range of different
setups can be supported. The key to our solution can be found in
a highly efficient dictionary learning for sparse representation. We
extend upon the current state-of-the-art in sparse representation of
high dimensional visual data, Aggregate Multidimensional Dictio-
nary Ensembles [MHU19], and present a full pipeline for efficient
compression, storage, and real-time playback of video light fields.
A key aspect in our system is that we encode both color informa-
tion and depth in the same dictionary representation, leading to ef-
ficient reconstruction algorithms supporting parallel computation
and GPU implementation. We introduce the concept of dictionary
pruning leading to a significantly more efficient encoding algorithm
as compared to [MHU19]. Finally, we perform a study investigat-
ing how image noise in the light fields affect the dictionary train-
ing and encoding and propose a denoising scheme to increase the
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Figure 1: An overview of the end to end pipeline for Light Field Video (LFV) processing and rendering. The input to the pipeline is a LFV
and its estimated depth map/disparity. The noise in LFV is removed from the signal using a denoising algorithm (FFD-NET [ZZZ18]) to
improve the compression ratio. In the training process, a LFV dataset is used to train an Aggregate Multidimensional Dictionary Ensembles
(AMDE) used for encoding the input LFV and its corresponding depth map. The compressed coefficients together with the AMDE are passed
on to the GPU for real-time reconstruction rendering of the LFV from the vantage viewpoint.

compression ratio and reconstruction quality during rendering. The
main contributions can be summarized as:

• Sparse representation of light field videos with auxiliary infor-
mation such as depth.
• A dictionary pruning algorithm leading to significant speedups

of the light field encoding.
• A study on the effects of image noise on training, compression

ratio, and reconstruction quality leading to a denoising step to
enhance the effectiveness of the pipeline.
• A real-time combined reconstruction/decoding and geometry-

guided view interpolation algorithm.

Although our pipeline supports any light field configuration as
long as regularly sampled data points can be extracted, the main
focus in this paper is on multi-sensor and lenslet capturing systems.
Our main objective is to enable the full pipeline for real-time ren-
dering of high-quality compressed light field videos with full GPU
support, i.e. the decoding is carried out as part of the rendering
algorithm. The pipeline itself, along with the accompanying con-
tributions, relate to a wide body of different technical aspects and
scientific areas. The next section, therefore, gives an overview of
the design choices made in the development and relates each stage
of the pipeline to the relevant previous work.

2. Light field pipeline design and overview

A viable processing chain for high resolution light field imaging
needs to enable efficient compression, high quality signal recon-
struction, and real-time reconstruction and playback. Since most
view interpolation algorithms relies on geometric information such
as depth or optical flow, it is also necessary that the compression
pipeline can handle such auxiliary information efficiently. In this
paper we adhere to a general definition of the light field signal and
assume that it consists of: a set of images and the corresponding
auxiliary information required for view interpolation, e.g. depth,
disparity or optical flow. The images can be captured from differ-
ent locations using a set of cameras or a single camera equipped
with e.g. a lenslet array, or optical setups designed for compressive
light field sampling.

The light field video pipeline presented in this paper consists of

five main blocks: light field data point extraction, dictionary train-
ing, denoising, encoding, lossless coding of the coefficients, and
decoding and real-time playback. This is illustrated in Figure 1.
The different blocks in the system were developed based on meet-
ing the following design goals:

1. Quality: The light field signal should be represented in a basis,
or dictionary, which enables high PSNR vs. compression ratio.

2. Generality: The basis should be general in a sense that it can
represent light fields independently of the underlying image
statistics, and support coding of auxiliary information such as
depth, disparity or optical flow.

3. Efficiency: The basis should support random access, point sam-
pling, and parallel computations.

Point sampling and reconstruction of individual pixels without
the computational overhead of recovering the entire data point is
crucial for light field rendering since each the reconstructed and
the possibly interpolated view is generated from slices of individual
pixels from a large set of light field data points.

Light field data points - Throughout the paper, we use light fields
consisting of a set of images and auxiliary information in the form
of depth maps. The light field video is sliced into 6D data points
with s× t× u× v× c× f elements each, where s, t is the number
of pixels in the image plane u,v the pixels in the angular domain
(each from a neighboring camera view), f the number of frames
from the video sequence, and c the number of color channels plus
the depth channel. The data point size should, in general, be kept
as large as possible given the computational resources used. For the
experiments presented in this paper we typically keep the number
of data point elements around 20K and use e.g. 6×6×7×7×4×5
or 10× 10× 4× 4× 4× 4 elements. Moreover, since each data
point includes all the angular information, as well as a subset of
consecutive frames, the compression artifacts in the angular and
temporal domains are typically negligible, unless the number of
coefficients is too low.

Compression and dictionary training - Early works on light field
compression with two plane parameterization rely on image and
video coding methods such as JPEG, JPEG2000 [TM13], MPEG-
2, MPEG-4 that were based on analytical basis functions such
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as Discrete Cosine Transform (DCT) [CDF92], wavelets, shear-
lets [ELL08] and the Fourier basis. These methods used infor-
mation such as disparity [MG00, GCRX03, JSA03] or geometry
estimation [XAG03] to propagate information between neighbor-
ing views; see [WMJ∗17] for an overview. Recently, Overbeck et
al. [OEE∗18] introduced a compression scheme for still spherical
light fields with random access to the memory based on Motion
Compensated Prediction (MPC) of VP9 codec [MBG∗13]. This
method also uses an analytical dictionary and does not exploit co-
herence in the temporal domain.

It has been shown that data driven dictionary learning algo-
rithms outperform analytical basis functions in terms of compres-
sion ratio and reconstruction quality [AEB06, MBPS09, MKU13,
SPRE18, APF17]. Miandji et al. [MHU19] presented a dictionary
learning method for compression and compressed sensing of light
field videos. The training procedure leads to an Aggregate Multidi-
mensional Dictionary Ensemble (AMDE). An AMDE consists of a
collection of orthonormal dictionaries that enable sparse represen-
tations along different dimensions of a set of data points extracted
from a light field video dataset. The method can handle various
parameterizations including unstructured light fields. AMDE relies
on a reduced union of subspaces signal model [EM09, MKU15]
such that each data point is represented in one dictionary admitting
a high degree of sparsity and low reconstruction error. This means
that the sparse representation using AMDE (even without entropy
coding) leads to a significant reduction in size, typically in the or-
der of 10 : 1 to 100 : 1 depending on the input data and the required
level of quality. The benefits of the AMDE compared to other data
driven signal models [AEB06, RD12, Rak13] are that it performs
a 2-layered clustering in the coefficient domain which enhances
sparsity with minimal error and that it enables random access to in-
dividual pixels in the light field video. The resulting dictionary can
in most cases be trained once and then used for a range of differ-
ent input light fields given that they exhibit similar image statistics
(e.g. natural images). Finally, the size of AMDE is orders of magni-
tude smaller than overcomplete dictionaries such as K-SVD and its
variants [MHU19]. Based on the above arguments, we use AMDE
as the underlying representation for light field video data points.

AMDE extensions - Although AMDE is the current state-of-the-
art in sparse representation of high dimensional visual signals, the
memory and bandwidth requirements, and the sheer number of pix-
els that need to be processed at each step in the pipeline, lead to
long processing times and sub-optimal dictionary configurations.
To meet the requirements described above, we extend AMDE in a
number of important directions to improve the computational effi-
ciency, image quality, and compression ratio:

• We extend the AMDEs from only supporting the representation
of the color channels to include also the auxiliary information
(depth) as a dimension in each data point
• We present a novel dictionary pruning strategy that analyses the

composition of the dictionaries within the AMDE and removes
redundant dictionaries, leading to at least 4 times reduction in
computational complexity for the encoding of light field videos
with negligible effect on quality.
• We investigate the effect of image noise on training and encoding

of light field videos using AMDE, and discuss the effect of noise

on the reconstruction quality and compression ratio. We enhance
the proposed pipeline with a denoising stage prior to encoding to
significantly increase the PSNR and compression ratio.

In addition to the above algorithmic extensions and improve-
ments, we have also implemented the full encoding - decoding
pipeline with GPU support. For the encoding, we have adapted the
GPU-based tensor products for light fields presented in [BMU19]
to light field videos, leading up to 10× speedup of the encoding
using a GTX 1080 Ti GPU as compared to our multi-threaded CPU
version running on 40 cores at a frequency of 2.4GHz.

Denoising - High frequency variations in the input data are likely
to reduce the efficiency of the sparse representation and lead to a
higher number of coefficients and a decrease in PSNR. We, there-
fore, conduct a set of experiments to investigate the impact of im-
age noise on the compression algorithm in the proposed pipeline
and show how only subtle denoising of the input light field data
significantly improves the reconstruction quality and the compres-
sion ratio. Any denoising algorithm capable of preserving impor-
tant features and details in the image can be used. Benchmark meth-
ods such as BM3D [DFKE07] and [GZZF14] are effective but not
fast enough for our purpose. In recent years convolutional neural
networks (CNN) have shown to be able to handle image denois-
ing very well compared to the classical approaches due to their
large modeling capacity. One state of the art learning based method,
DnCNN [ZZC∗17] has achieved competitive denoising result, how-
ever, it is limited in the flexibility of handling spatially variant noise
and the noise level is constraint to a preset. In this work, a general,
efficient and effective noise reduction is a key to improving the
training algorithm. We have used a CNN-based algorithm, FFD-
Net [ZZZ18], which is fast and flexible and suitable for handling
large datasets such as light fields. Furthermore, it has the ability to
handle a large range of different noise characteristics.

Rendering and view interpolation - Generation of novel, pre-
viously unseen views from a sampled light field requires either
highly dense sampling or auxiliary information about the geom-
etry of the scene [CTCS00], e.g. depth, disparity, or optical flow
[SCK07,CSHD11]. Recent methods based on deep neural networks
can estimate the novel view without direct access to the depth map
or disparity. However, these methods are still limited to small base-
line between the cameras, and in some cases, they can only handle
a disparity range of up to two pixels [KWR16]. To demonstrate
this issue, an example of a state-of-the-art CNN-based method is
shown in Section 6 for light field video with large baseline. More-
over, these algorithms are usually not suitable for real-time ap-
plications due to computational complexity. The processing times
range from a few seconds, [YHC∗18], to minutes, [WZW∗17], and
more, [FNPS16], per frame for high resolution light fields.

In this work we assume that the light field video is accompa-
nied by some form of auxiliary geometric information and camera
calibrations that can be used for efficient real time reconstruction,
together with bilinear view interpolation. Since depth is most com-
monly used for this purpose, see e.g. the documentation for the
upcoming MPEG-I standard [MPE19], we take this as a representa-
tive example. It should be noted that both optical flow and disparity
would work equally well within our pipeline. Since the compres-
sion method provides fast random access down to the pixel level,
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Algorithm 1 The training algorithm that is performed only once
c = Train

(
{L(i)}Nl

i=1,C,K,τl ,Nr, p,ε
)

Input: The training set {L(i)}Nl
i=1, number of clusters C, number

of dictionaries per cluster K, training sparsity τl , number of
representatives Nr, number of PCA coefficients p, and an error
threshold ε.

Output: A dictionary ensemble
{

U(1,k), . . . ,U(6,k)
}CK

k=1
1: Create data points from input training light field videos
2: Apply pre-clustering on data points
3: for c = 1 . . .C do
4: Apply MDE on each clustered data points
5: end for
6: Compute aggregated ensemble Ψ using equation (3)

both color intensity and depth information are decoded on GPU for
interpolation and refocusing purposes.

3. Sparse representation of light field videos

Light field and light field video datasets are typically very large
even at a modest angular resolution. For instance, an hour long light
field video at 4K UHD resolution with an angular resolution of 32×
32 and a frame rate of 30Hz consumes 5.87 petabytes of storage
assuming a half-precision high-dynamic-range format. The storage
requirements are expected to increase as new light field imaging
modalities emerge. Therefore, efficient compression algorithms are
essential for storage and real time playback of light field videos. In
many cases, the compression algorithm should reduce the storage
cost so that the compressed data can be fitted into the GPU memory
for real time playback. Moreover, decreasing the storage cost via
compression enables us to transfer the data faster through a network
(or via the internet) for a multi-user experience.

As mentioned in Section 2, we use AMDE for sparse representa-
tion of light field videos. In addition to high reconstruction quality,
AMDE has a very small memory footprint for the dictionary en-
semble, which enables real time playback of high resolution light
field videos. In this section, we describe various stages of AMDE,
as well as our contributions for improving the efficiency of this
algorithm. In particular, we will briefly explain the training and en-
coding stages of AMDE in sections 3.1 and 3.2, respectively. The
reader is referred to [MHU19] for further details about the AMDE
algorithm. Section 3.3 will present an algorithm for reducing the
number of dictionaries in AMDE by a user defined factor with neg-
ligible reduction in reconstruction quality, which leads to faster en-
coding using the GPU.

3.1. AMDE Training

The computation of AMDE requires a training procedure, as a first
step, where the training set, consisting of one or more light field
video datasets, is divided into small 6D data points of dimension-
ality s× t × u× v× c× f , as described in Section 2; Algorithm
1 shows an overview of the training procedure. The data points are
fed into a pre-clustering algorithm that groups data points with sim-
ilar sparse representation and error together. The pre-clustering im-
proves the sparsity of the representation while reducing the overall

training time. Pre-clustering also reduces the effect of outliers in
the training set. In this paper we analyze the effect of noise on the
training and the encoding stages of AMDE, see Section 4. After
pre-clustering, a Multidimensional Dictionary Ensemble (MDE) is
trained for each pre-cluster, obtaining a set of MDEs for the en-
tire training set, which is combined to form an Aggregate MDE
(AMDE).

Let {L(i)}Nl
i=1 be a set of training data points in a pre-

cluster, where L(i) ∈ Rs×t×u×v×c× f and Nl is the number of
data points. The goal of MDE is to train a dictionary ensemble
{U(1,k), . . . ,U(6,k)}K

k=1, where K is the number of dictionaries in
a pre-cluster, such that each data point is represented as

L(i) = S(i)×1 U(1,k) · · ·×6 U(6,k) = S(i)
6

×
j=1

U( j,k), (1)

where S(i) is sparse and U( j,k) are orthonormal matrices containing
basis functions for dimension j. This is achieved by solving

min
U( j,k),S(i,k),Mi,k

Nl

∑
i=1

K

∑
k=1

Mi,k

∥∥∥∥∥L(i)−S(i,k) 6

×
j=1

U( j,k)

∥∥∥∥∥
2

F

(2a)

subject to(
U( j,k)

)T
U( j,k) = I, ∀k = 1, . . . ,K, ∀ j = 1, . . . ,6, (2b)∥∥∥S(i,k)∥∥∥

0
≤ τl , (2c)

K

∑
k=1

Mi,k = 1, ∀i = 1, . . . ,Nl , (2d)

where τl is a user-defined sparsity parameter and the matrix M ∈
RNl×K defines the membership of each data point in the ensemble.
Hence, equation (2d) ensures that each data point is only sparsely
represented in one dictionary.

Once all the MDEs are trained, they are combined to form the
AMDE as follows

Ψ =
C⋃

c=1

{
U(1,k,c), . . . ,U(n,k,c)

}K

k=1
=
{

U(1,k), . . . ,U(n,k)
}CK

k=1
,

(3)
where C is the number of pre-clusters.

3.2. AMDE Testing

Let {T (i)}Nt
i=1 denote a test set containing the data points obtained

from a light field video that we would like to compress, where Nt
is the number of data point. The procedure of obtaining sparse co-
efficients of a data point in the test set using a dictionary is often
called testing. To perform testing using AMDE, we first project the
data point onto all the dictionaries of AMDE as follows:

S(i,k) = T (i)
6

×
j=1

U( j,k), ∀k ∈ {1, . . . ,CK}. (4)

Afterwards, we introduce sparsity by nullifying elements of each
S(i,k) until a user-defined threshold, δt , on the representation error
is reached. We also set a user-defined upper-bound on sparsity, τt ,
so that the data points in the test set that are not intrinsically sparse
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get a fixed number of nonzero coefficients, see [MHU19] for more
details. Once the sparse coefficients of a data point for all dictionar-
ies in AMDE are computed, we pick the dictionary corresponding
to the most sparse coefficients with the least amount of error. The
index of the best dictionary, called the membership index, as well as
its corresponding coefficients are stored to disk. Indeed the above
procedure is repeated for all the data points in the test set.

3.3. AMDE Pruning

In this section, we propose an algorithm for removing a fraction
of dictionaries in AMDE to improve the testing speed. Miandji et
al. [MHU19] observe that increasing the total number of dictio-
naries in AMDE, i.e. CK, improves the reconstruction quality, and
hence the compression ratio. However, as we described in Section
3.2, the computational complexity of the testing stage is propor-
tional to CK. Hence the number of dictionaries in AMDE provides
a tradeoff between the effectiveness of AMDE and the computa-
tional complexity of testing. Since the training is done only once,
we propose to perform the training with a large number of dictio-
naries. To improve the testing performance, this section describes a
pruning algorithm to remove the dictionaries in AMDE that have a
small significance in the final image quality of the light field video.

In order to reduce the number of dictionaries in AMDE, we re-
quire a metric to select a subset of dictionaries such that the re-
construction quality or the compression performance is minimally
affected. Given the metric, we also need an algorithm to select the
dictionary subset. Intuitively, we would like this subset of dictio-
naries to capture the essential information in the test set in the
form of sparse coefficients. Hence the metric should identify the
most diverse dictionaries in the ensemble. One such metric is Mu-
tual Coherence (MC) [BHEE10]. The mutual coherence of a matrix
X ∈ Rn×n is defined as

µ(X) = max
1≤u 6=v≤n

∣∣∣XT
u Xv

∣∣∣ . (5)

where Xu is the uth column of X. Therefore, the mutual coher-
ence of a matrix defines the maximum cross-correlation between its
columns. Indeed, for an orthonormal matrix, used in e.g. AMDE,
mutual coherence of each matrix is zero. Mutual coherence can also
be defined for a pair of matrices:

µ(X,Y) = max
1≤∀u,v≤n

∣∣∣XT
u Yv

∣∣∣ . (6)

In this paper, we propose to use Average Mutual Coherence (AMC)
[AFMS10] defined as

µavg(X,Y) = n−2
n

∑
u,v=1

∣∣∣XT Y
∣∣∣
u,v

. (7)

It should be noted that AMC is defined for two matrices, while each
dictionary in AMDE, {U(1,k), . . . ,U(6,k)}K

k=1, contains 6 matrices
in one dictionary trained over a light field video dataset. In order to
define a metric for pruning the dictionaries in AMDE, one possi-
bility is to form the Kronecker dictionaries, i.e. {U(6,k)⊗U(5,k)⊗
·· ·⊗U(1,k)}K

k=1. In this way, each dictionary is defined as one ma-
trix, hence we can use equation (7) to compute the pair-wise dis-
tances between the dictionaries. However, asides from the fact that
the Kronecker dictionaries impose high storage and computational

Chess Time PSNR Size
AMDE Pruning (ours) 140.23s 43.03dB 41MB
AMDE Without Pruning 556.79s 43.01dB 40MB
Heart Time PSNR Size
AMDE Pruning (ours) 96.93s 42.93dB 205MB
AMDE Without Pruning 388.06s 42.96dB 182MB

Table 1: Ensemble pruning results by a factor of 4 for two datasets:
Chess and Heart. The size is calculated as the storage cost of
nonzero coefficient values and their corresponding location.

burden, computing the distances over Kronecker dictionaries does
not exploit the distances among various dimensions of two dictio-
naries individually, but rather over all dimensions. Therefore we
propose to compute the pair-wise distances for each dimension in-
dividually as follows

µavg

(
U( j,k),U( j,k)

)
= n−2

j

n j

∑
u,v=1

∣∣∣∣(U( j,k)
)T

U( j,k)
∣∣∣∣
u,v

, (8)

for the jth dimension and ∀k∈{1, . . . ,K}. Given the metric defined
in equation (8), we use K-Means++ [AV07] to obtain a subset of
dictionaries in a trained AMDE. The K-Means++ algorithm was
introduced to improve the performance of the K-Means clustering
algorithm [Llo82] by initializing it with the most diverse set of data
points rather than random initialization as used by the “vanilla” K-
Means algorithm. This is exactly what we would like to achieve for
dictionary pruning, however, here we would like to find the most
diverse set of dictionaries in AMDE.

The first step in K-Means++ is to randomly select a dictionary
in AMDE to start calculating the pairwise distances. We found that
such a random initialization leads fluctuations in the reconstruc-
tion quality based on the choice of the first dictionary. Instead, we
use the membership matrix M, defined in Section 3.1, to perform
this task. Recall that the membership matrix of size Nl×K defines
which dictionary in AMDE should be used for a data point. Hence
we propose to initialize K-Means++ with the most frequently used
dictionary in AMDE. This can be simply implemented by comput-
ing the column-wise sum of M, leading to a K-length vector, and
finding the index of the largest element, which corresponds to the
most frequently used dictionary. Note that we apply this procedure
using the training set, while the pruned ensemble is used for testing.
Here, we rely on the assumption that the training set is representa-
tive of the testing set. Indeed, one can use a validation set to find
the most frequently used dictionary, which in turn can improve the
pruning results. However, we found the simple approach described
above to be sufficient in many cases, see Table 1.

To evaluate the performance of the pruning algorithm, we used
two datasets, namely Chess and Heart, and train an AMDE with
64 dictionaries for each dataset. We prune 75% of the dictionaries
in each AMDE, i.e. a reduction by a factor of 4. Because we are
analyzing the performance of the training stage, with and without
pruning, we use 20% of a dataset for training, while the testing was
performed on the entire dataset. For the results presented in the re-
mainder of the paper, the training and testing sets are distinct. Table
1 presents the results for AMDE pruning. As it can be seen, prun-
ing has minimal effect on reconstruction quality and compression
ratio. However, we observe a speed up by a factor of 4 in testing.
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(a) Chess dataset
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(b) Painter dataset

Figure 2: The effect of image noise on training. The plots show
that the compression efficiency stays relatively flat for all denoising
levels on the training set, and that the denoising of the testing data
leads to a higher degree of sparsity and better PSNR. For denoising
we used FFDNet [ZZZ18] with the parameter σ = 3,5,7,10,15.

This is indeed expected since the testing time is proportional to the
number of dictionaries in AMDE.

The results may seem counter-intuitive to the reader since test-
ing over a small subset of dictionaries is performing roughly the
same (in terms of quality) as an exhaustive search over all the dic-
tionaries. Indeed, pruning should reduce the reconstruction quality.
However, note that according to equation (8), we are allowing the
pruning algorithm to select a dictionary element for a certain di-
mension from other dictionaries in AMDE. This procedure leads to
a higher reconstruction quality rather than merely selecting a dic-
tionary regardless of the similarity of a dictionary element in the
aforementioned dictionary with the rest of the ensemble.

4. Denoising

Since we are seeking to project data points from the light field onto
the AMDE dictionaries, in which the data points are sparse, it is in-
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Figure 3: Shows the effect of image noise on testing (compression)
of Painter and Chess datasets. The plot shows that the PSNR in-
creases along with σ. Denoising was done using FFDNet [ZZZ18].

Figure 4: Image quality comparison for denoising of Chess (top
two rows) and Painter (bottom two rows). From left to right: orig-
inal, σ = 3, σ = 7, σ = 15, followed by false color insets. Details
such as textures are well preserved even in extreme denoising with
σ = 15.

tuitive that the high frequency variations introduced by image noise
are going to deteriorate our representation and lead to a higher num-
ber of coefficients, i.e. a less sparse representation. Smoothing the
input signal by removing image noise should thus lead to a more
sparse representation. From a theoretical standpoint, the effect of
noise on the efficiency of sparse representations has been thor-
oughly studied [MEUA17, BHEE10], emphasizing the importance
of noise with regards to the reconstruction quality. In this paper, we
study the effect of noise on both the training and testing/encoding
using an AMDE for the compression of light field videos.
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To investigate the impact of image noise, we performed a series
of experiments in which we compared training and testing perfor-
mance with respect to the original noisy datasets with those ob-
tained through a denoising procedure. As described in Section 2,
there is a large number of denoising methods, and we chose FFD-
Net [ZZZ18] as being representative for current state-of-the-art in
denoising. FFDNet is, due to its efficiency, also suitable for the
specific task of denoising video light fields with very large mem-
ory footprints. The experiments were carried out by comparing the
original data to the data processed with different levels of denois-
ing. We used σ = 3,5,7,10,15 as the denoising strength parameter.
Figure 4 illustrates the impact of the denoising on data points from
two different video light fields as false color images. For a detailed
description of σ we refer the reader to [ZZZ18]. For a fair compar-
ison, we measure the effect of different levels of denoising, σ, by
computing the PSNR for light field data points with the same σ.
The compression efficiency is then measured as PSNR / file size,
i.e. taking into account the sparsity achieved by each configuration.

First, we investigate the effect of image noise in the training set
on the AMDE dictionary learning process for the Chess and Painter
datasets, see Figure 2. For training, we used 12 frames for each
dataset and computed 32 dictionaries with parameters C = 4, K = 8,
τl = 64. For testing, we use 50 frames that do not include the train-
ing frames. The testing sparsity and threshold are set to τt = 256
and δt = 1e−4 for Chess and τt = 512, δt = 5e−5 for Painter. The
plots in Figure 2 show that the compression efficiency is more or
less flat for all variations of denoising in the training data, both with
noisy and less noisy test data. This can be explained either by that
the resulting dictionaries become more expressive when trained on
noisy images so that less noisy images still can be accurately rep-
resented with a small number of coefficients, or that the represen-
tative power of the dictionaries is too weak to fully represent subtle
details in neither the noise free nor the noisy images, although the
visual quality and PSNR are very high. However, looking at the ef-
fect of denoising on compression ratio and PSNR with respect to
the testing set, we see that the PSNR / file size in figures 2(a) and
2(b) increases with denoising strength, σ, even for very subtle de-
noising, keeping image details and structures intact, see Figure 4.
The improvement is also confirmed by the two plots in Figure 3,
which show that the PSNR increases by around 2dB and 4dB re-
spectively. See the Appendix for tables 3 and 4, where we present
all results from the two experiments described in this section.

Based on our investigations and the results from the experiments,
we introduce a denoising step in the extended AMDE light field
video pipeline as illustrated in Figure 1. An interesting observa-
tion regarding Figure 3 is that the effect of noise diminishes sig-
nificantly if the light field video dataset is intrinsically sparse. For
instance, we see that the Chess dataset, in contrast to the Painter,
shows a gradual increase in PSNR when the amount of noise de-
creases through denoising. We associate this effect with the fact
that the Chess dataset is significantly more sparse than Painter due
to a small disparity range over the light field views.

5. Rendering and view interpolation

A virtual camera image computed during rendering corresponds to
a 2D slice through the video light field. For a given pose of the
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Figure 5: (a) Proxy plane placed in front of the scene, (b) bilin-
ear interpolation coefficients α,β , and (c) view generation by pro-
jecting from image coordinate to world coordinate and vice versa,
moving point xA towards the projection points from nearby views.

virtual camera and a given time stamp, or video frame, f , we thus
need to reconstruct a subset of the encoded data points from a large
set of patches described by s× t×u× v× c× f . For the examples
generated here, a 6D patch typically spans 3-5 frames, f , in the tem-
poral domain, 6-12 pixel-wide patches, (s, t), in the spatial domain,
4-8 pixel-wide patches, (u,v), in the angular domain, and 4 compo-
nents for color and depth, c, in the wavelength domain. Since the
dictionary size is very small, it is uploaded once to the GPU mem-
ory as textures. During rendering the coefficients corresponding to
f frames are streamed to the GPU for reconstruction.

Our GPU algorithm for rendering and view interpolation works
as illustrated in Figure 5. For each fragment, we first render the 3D
hit point, P, in world coordinates on a proxy geometry as seen from
the virtual camera, see Figure 5(a). The proxy geometry acts as a
surface at which the real scene is parameterized, and a plane can
be used here, or more or less any other type of shape e.g. sphere,
cube, or cylinder. We then compute the ray from the hit point P to
the surface spanned by the camera positions. We usually arrange
the cameras or sensors so that the vertices corresponding to their
positions span an analytical surface, in Figure 5(a) we use a plane.
Based on the ray from P to the camera surface, we can then for each
fragment find the closest camera and use its calibrated extrinsic and
intrinsic matrices to project the point P onto its sensor. Each data
point contains the spatial, angular, spectral and time information

and its reconstruction T̂ (i)
is a simple multiplication of the coeffi-

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Saghi Hajisharif , Ehsan Miandji , Per Larsson , Kiet Tran & Jonas. Unger / Light Field Video Compression and Real Time Rendering

cients S(i) with a dictionary in the ensemble {U(1,1), . . . ,U(6,CK)}:

T̂ (i)
= S(i)

6

×
j=1

U( j,mi), (9)

where mi denotes the index of the best dictionary for the ith data
point (obtained during testing, see Section 3.2). During rendering,
for each pixel to be computed we only need a single element in-

side T̂ (i)
(assuming no interpolation). However, equation (9) re-

constructs the entire data point with several thousands of elements,
making it infeasible for real-time rendering. Instead, using the fol-
lowing formula, we can reconstruct a single element in a data point
at an arbitrary location x1, . . . ,xn:

T̂ (i)
x1,...,xn =

τi

∑
j=1
S(i)

l j
1 ,...,l

j
6
×1 U(1,mi)

x1,l
j
1
· · ·×6 U(6,mi)

x6,l
j
6

, (10)

where l j
1, . . . , l

j
6 describe the location of jth nonzero element in the

sparse tensor S(i). This fast, and parallelizable, random access to
individual elements of the light field minimizes the computational
complexity and enables fast reconstruction of a frame on the GPU.

A key challenge even for densely sampled light fields is to com-
pute novel views. Here we use the encoded depth channel to en-
able linear interpolation along the spatio-angular dimensions of the
light field. For each fragment, see Figure 5(a), we determine the
four closest cameras to the viewing ray’s intersection point at the
camera surface. Based on the position of the virtual camera and its
distance to the nearby cameras, A, B, C and D, we reconstruct the
novel view from these four cameras. Figure 5(c) illustrates this pro-
cedure for two cameras A and B. In order to interpolate between the
two points xA and xB, we project the points back to the scene using
the reconstructed depth information and then compute the projec-
tion of xB on to camera A and the projection of xA on to camera B as
xAB and xBA respectively. Interpolation is then carried out along the
vector linking the two points xA→ xAB in camera A, and xBA→ xB
in camera B, based on the interpolation parameter α that is deter-
mined from the distance between the virtual camera and cameras A
and B. Figure 5(b) illustrates this for the four cameras A,B,C, and
D, which is formulated as:

I = (1−β)∗ (α∗ IA(x̂A)+(1−α)∗ IB(x̂B))+

β∗ (α∗ IC(x̂C)+(1−α)∗ ID(x̂D)), (11)

where β is the interpolation parameter along the second dimen-
sion at the surface spanned by the cameras and x̂A, x̂B, x̂C, and x̂D
are spatial positions of each camera after the reference point is
moved towards the projection points of other cameras. For light
field videos, the coefficients are read from disk into a circular buffer
in RAM and then asynchronously streamed to the GPU as Pixel
Buffer Objects (PBOs) for fast access and continuous playback.

For the reconstruction in equation (9), we first sort the sparse
coefficients going from large to small in absolute value. Since this
corresponds to how much they contribute to the final reconstruc-
tion, we can allow the user to interactively select the number of co-
efficients, providing a trade off between reconstruction quality and
performance. Since some data points require significantly fewer co-
efficients than others, e.g. a flat region vs. a region with high fre-
quency variations, we base the truncation on the values of the coef-

Figure 6: Exemplars from datasets Painter, Chess and Heart we
used for evaluating our framework. Left: single light field view of a
frame. Right: its corresponding depth image.

Figure 7: Light field imaging in heart surgery.

ficients and sum the contributions down to a user defined threshold.
The result is a highly efficient parallel rendering and view interpo-
lation algorithm suitable for GPU implementation.

6. Results and applications

In this section, we present a number of example use cases demon-
strating and evaluating the compression, processing and playback
capabilities presented by the proposed light field video pipeline.
See the supplementary video demonstrating a "research prototype"
interface for our light field video player used to generate the results.
The interface enables the user to playback compressed video light
fields streaming from the disk, interactively control the view-point
with or without view interpolation, control the coefficient thresh-
old (quality vs. performance), and perform operations such as post-
capture refocusing. All examples are generated using a standard PC
equipped with 12 cores, 64GB DDR3 RAM, and a GeForce GTX
1080 Ti GPU.

In the evaluation, we use three different datasets with different
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dataset Chess Heart Painter
Raw Size 118.65GB 7.23GB 101.18GB

Size 1.69GB 0.84GB 8.19GB
Ours PSNR 47.37dB 41.93dB 38.16dB

K-SVD PSNR 42.55dB 39.14dB 38.12dB
HOSVD PSNR 42.07dB 39.90dB 37.49dB
6D-DCT PSNR 40.11dB 38.72dB 37.52dB
CDF 9/7 PSNR 36.13dB 39.40dB 34.84dB

Table 2: Compression comparison between datasets: Chess, Heart
and Painter where they are all compressed with depth or dispar-
ity information. Note that here we use all the available frames for
compression. The Chess has 300 frames, The Heart has 25 frames,
and the Painter has 372 frames.

(a) Vertical and horizontal interpolation of the Heart dataset.
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(b) Linear interpolation between cameras A and B.

Figure 8: (a) shows vertical and horizontal interpolation of the
Heart dataset. The right most and left most images are the sampled
views. The top row demonstrates the horizontal interpolation and
the bottom row vertical interpolation. (b) View interpolation of the
state-of-the-art deep learning method EPICNN [WZW∗17].

characteristics, see Figure 6. The first dataset, named Painter, from
Technicolor [SBV∗17] consists of 372 light field frame captured
with a 4× 4 camera array system where the cameras are placed
6cm apart with a resolution of 2048× 1088 pixels. This dataset is
challenging for compression due to the large disparities (approx-
imately 70 pixels) between light field views, hence exhibiting a
small coherency along the angular domain. Moreover, this results
in inaccuracies in the estimated depth images, as it can be seen in

Figure 9: Refocusing example on the Chess dataset

Fig. 6, where a lot of noise and outliers are present. The Painter
dataset was sliced into data points with (s× t × u× v× c× f ) =
10×10×4×4×4×4 elements. The second dataset, named Chess,
consists of 300 frames captured using an R8 Raytrix camera with a
spatial resolution of 1920× 1080 pixels and an angular resolution
of 5× 5 [GjLG18]. Each light field video frame is accompanied
by disparity map images computed using the method described in
[JPG18]. This dataset has sub-pixel disparity where the minimum
disparity is -1.52 and the maximum disparity is 0.45. The overlap
between the neighboring views is very large and consequently, it is
expected to be easier to compress and render this data. The Chess
dataset was sliced into data points with 8× 8× 4× 5× 5× 4 ele-
ments. The third dataset, called Heart, comes from an application
where we, in collaboration with Barnhjärtcentrum (the children’s
heart clinic at Skåne university hospital), use light field imaging to
document live heart surgery. Figure 7 shows an example of cam-
era configuration for capture in the operating theater. Efficient pro-
cessing and high quality compression are highly important since
surgery often times take up to 10 hours or more, which for a
high resolution light field video leads to data sizes in the order of
petabytes per surgery. Please note that the data is collected with
the uttermost respect and with the consent of the patient and fol-
lows ethical guidelines and GDPR regulations (https://eugdpr.org).
The goal of the initiative is to build an annotated database of light
field videos from surgeries captured using different camera config-
urations for use in the development of teaching material, computer
vision algorithms, and machine learning solutions. The light field
video consists of 25 frames of a beating heart and is synthetically
generated from a temporal 3D reconstruction to simulate a 7× 7
camera array with a resolution of 752× 1028 pixel perfect depth
information. The disparity is around 80 pixels, which means that
it is challenging for the compression algorithm. The Heart dataset
was sliced into data points with 6×6×4×7×7×5 elements.
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Table 2 shows the original and compressed sizes using our
method for the three datasets described above. The compression ra-
tios enabled by the sparse AMDE representation are, as expected,
varying for different datasets. For Chess with only a small disparity
the compression ratio is 70:1, and for Heart and Painter with large
baseline, we obtain compression ratio of 8:1, and 12:1 respectively.
All datasets can be streamed and rendered in real-time. The sup-
plementary video shows several examples in which the light field
videos are played back to demonstrate the performance and user
interaction. To compare our method with the state of the art dic-
tionaries used in compression, we adopt the testing methodology
of [MHU19]. In particular, we set the parameters for the methods
we compare to such that they result in the same compression ratio
as our method. We then compare the image quality using PSNR.

For comparisons, we use K-SVD [AEB06], a well-established
dictionary learning algorithm, Higher Order Singular Value De-
composition (HOSVD), six dimensional Discrete Cosine Trans-
form (6D-DCT), and the CDF 9/7 wavelet dictionary [CDF92],
which is the dictionary used in the JPEG2000 image compression
standard [TM13]. Our method obtains higher PSNR for all the
datasets we used here. As mentioned earlier, due to the inaccura-
cies of the depth layer for the Painter dataset, we do not observe
a significant difference between various methods (except for CDF
9/7). However, for the Chess and Heart datasets, our method sig-
nificantly outperforms other algorithms. Note that for a fair com-
parison, we do not use pruning in our framework since such opera-
tion is undefined for the methods we compare to. Table 1 shows the
benefits of pruning in reducing the testing time with minimal im-
pact on image quality. Moreover, the training for our method and
K-SVD was performed using about 20% of each dataset.

Figure 8(a) illustrates view interpolation along the horizontal and
vertical directions for the Heart dataset. The leftmost and rightmost
images are the sampled light field view points and the intermedi-
ate views are generated with steps 0.3, 0.5, and 0.7, respectively.
Moreover, Figure 8(b) shows the result of our bilinear interpola-
tion between the four closest cameras using real-time depth map
reconstruction. The same view is estimated using the state-of-the-
art CNN-based view synthesis algorithm, EPICNN [WZW∗17],
where the reconstruction of the unseen view took about 36.4 sec-
onds with a kernel size of 21 pixels. It should be noted that EPICNN
does not have direct access to the depth map, although it outper-
forms CNN-based methods that use a depth map [KWR16]. How-
ever, as noted [WZW∗17], EPICNN and related CNN-based meth-
ods [KWR16, YHC∗18] fail when the disparity among views is
large, see Figure 8. Figure 9 shows an example where the user re-
focuses the virtual view post-capture.

As described in Section 4, we conducted an extensive experi-
ment to investigate the effect of image noise on the compression
and reconstruction quality using AMDE. Tables 4 and 3 show the
results from our investigation. The conclusion is that the smoothing
of the signal introduced by subtle denoising increases the sparsity
and leads to higher compression ratios.

7. Limitations and Future Work

The results from this paper show that data driven sparse represen-
tations constitute a key building block in the development of sys-

tems and algorithms for multi-sensor and light field imaging. Al-
though the GPU-based pipeline presented in this paper achieves
state-of-the-art performance for compression and real-time play-
back of video light fields, there are still several challenges to be
solved. The dictionary pruning algorithm presented in this paper
is currently carried out after the AMDE dictionary optimization. In
the future, we plan to include dictionary similarity as a constraint in
the AMDE optimization. Even though the compression algorithm
provides fast access to each data point, it is still challenging to re-
construct multiple points for view interpolation. One way to solve
this issue is to perform the interpolation and reconstruction in the
coefficient space of data points, which removes the requirement for
multiple reconstructions prior to interpolation. Regarding denois-
ing, we believe that a multidimensional algorithm that exploits the
intrinsic structures in a light field video is likely to perform bet-
ter for enhancing the sparsity than image-based techniques, such as
the one we utilized in this paper. Further explorations of this topic
is left for future work. Moreover, an interesting direction for future
research is the estimation of noise parameters of existing capturing
systems and data sets. Given the noise parameters, there exists a
large body of theoretical research that describe the tolerance of a
sparse recovery algorithm to noise power, with respect to the spar-
sity and dictionary properties [Can08, MEUA17, DET06, EM09].

8. Conclusion

This paper presented a systems pipeline for compression and ren-
dering of light field videos with real time playback. Building upon
a previous method, AMDE, for sparse representation of high di-
mensional visual signals, we proposed a set of extensions to en-
able a full GPU powered pipeline for compression, processing and
playback of high resolution and high quality light field videos. The
novel contributions in this paper include: a dictionary formulation
combining both color and depth information, a novel dictionary
pruning algorithm, and an investigation of effects of noise on sparse
representations. The result is a very efficient GPU powered end-to-
end pipeline for light field video compression and playback.
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Appendix

The two tables below report all our results from the denoising ex-
periments described in Section 4 for the Chess and Painter datasets.

References
[AEB06] AHARON M., ELAD M., BRUCKSTEIN A.: K-SVD: An Algo-

rithm for Designing Overcomplete Dictionaries for Sparse Representa-
tion. IEEE Transactions on Signal Processing 54, 11 (Nov 2006), 4311–
4322. 3, 10

[AFMS10] ABOLGHASEMI V., FERDOWSI S., MAKKIABADI B.,
SANEI S.: On optimization of the measurement matrix for compressive
sensing. In 2010 18th European Signal Processing Conference (Aug
2010), pp. 427–431. 5

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Saghi Hajisharif , Ehsan Miandji , Per Larsson , Kiet Tran & Jonas. Unger / Light Field Video Compression and Real Time Rendering

Testing σ File Size(MB) PSNR PSNR/Size
Training Ref Ref 234 40.53 0.1734

3 128 41.20 0.3215
5 88 41.59 0.4740
7 71 41.96 0.5897

10 61 42.37 0.6915
15 56 42.76 0.7691

σ = 3 Ref 235 40.52 0.1727
3 129 41.19 0.3183
5 90 41.63 0.4639
7 73 42.00 0.5747

10 63 42.45 0.6742
15 57 42.86 0.7485

σ = 5 Ref 237 40.57 0.1715
3 131 41.29 0.3143
5 91 41.68 0.4596
7 74 42.04 0.5671

10 64 42.46 0.6644
15 58 42.86 0.7409

σ = 7 Ref 238 40.53 0.1704
3 130 41.16 0.3169
5 89 41.55 0.4683
7 71 41.91 0.5862

10 61 42.33 0.6909
15 55 42.76 0.7729

σ = 10 Ref 242 40.59 0.1679
3 135 41.32 0.3062
5 93 41.76 0.4512
7 75 42.17 0.5599

10 65 42.65 0.6536
15 59 43.09 0.7257

σ = 15 Ref 238 40.54 0.1703
3 130 41.16 0.3168
5 88 41.52 0.4718
7 71 41.87 0.5916

10 61 42.30 0.6971
15 55 42.72 0.7753

Table 3: Denoising effect on compression of Chess (50 frames).

[APF17] ABDI A., PAYANI A., FEKRI F.: Learning Dictionary for Ef-
ficient Signal Compression. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (March 2017),
pp. 3689–3693. 3

[AV07] ARTHUR D., VASSILVITSKII S.: K-means++: The Advantages
of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (2007), SODA ’07, Society for In-
dustrial and Applied Mathematics, pp. 1027–1035. 5

[AW92] ADELSON E. H., WANG J. Y. A.: Single lens stereo with a
plenoptic camera. IEEE Transactions on Pattern Analysis and Machine
Intelligence 14, 2 (Feb 1992), 99–106. 1

[BHEE10] BEN-HAIM Z., ELDAR Y. C., ELAD M.: Coherence-Based
Performance Guarantees for Estimating a Sparse Vector Under Random
Noise. IEEE Transactions on Signal Processing 58, 10 (Oct 2010),
5030–5043. 5, 6

[BMU19] BARAVDISH G., MIANDJI E., UNGER J.: Gpu accelerated
sparse representation of light fields. In 14th International Joint Confer-
ence on Computer Vision, Imaging and Computer Grahics Theory and
Applications (Feb 2019). 3

[BSW01] BENNETT S. WILBURN MICHAL SMULSKI H.-H. K. L. M.
A. H.: Light field video camera. vol. 4674. 1

[Can08] CANDÈS E. J.: The Restricted Isometry Property and its Impli-

Testing σ File Size(MB) PSNR PSNR/Size
Training Ref Ref 1048 39.56 0.03775

3 851 41.91 0.04926
5 711 42.85 0.06024
7 631 43.26 0.06857
10 561 43.55 0.07765
15 487 43.77 0.08998

σ = 3 Ref 1048 39.55 0.03775
3 851 41.91 0.04924
5 713 42.85 0.06011
7 631 43.25 0.06850
10 561 43.54 0.07760
15 487 43.76 0.08988

σ = 5 Ref 1048 39.53 0.03775
3 852 41.89 0.04915
5 715 42.83 0.05992
7 634 43.23 0.06823
10 563 43.52 0.07729
15 489 43.75 0.08954

σ = 7 Ref 1048 39.53 0.03775
3 850 41.88 0.04924
5 712 42.81 0.06012
7 630 43.21 0.06856
10 560 43.49 0.07768
15 487 43.73 0.08987

σ = 10 Ref 1048 39.53 0.03775
3 851 41.88 0.04920
5 712 42.82 0.06011
7 631 43.22 0.06852
10 560 43.50 0.07768
15 486 43.73 0.09007

σ = 15 Ref 1048 39.50 0.03775
3 852 41.84 0.04908
5 715 42.77 0.05979
7 634 43.17 0.06815
10 563 43.47 0.07722
15 488 43.70 0.08951

Table 4: Denoising effect on compression of Painter (50 frames).

cations for Compressed Sensing. Comptes Rendus Mathematique 346, 9
(May 2008), 589–592. 10

[CDF92] COHEN A., DAUBECHIES I., FEAUVEAU J.-C.: Biorthogonal
bases of compactly supported wavelets. Communications on Pure and
Applied Mathematics 45, 5 (June 1992), 485–560. 3, 10

[CSHD11] CHAURASIA G., SORKINE HORNUNG O., DRETTAKIS G.:
Silhouette-aware warping for image-based rendering. Computer Graph-
ics Forum 30, 4 (2011). 3

[CTCS00] CHAI J. X., TONG X., CHAN S. C., SHUM H. Y.: Plenoptic
sampling. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (2000), SIGGRAPH ’00, ACM
Press/Addison-Wesley Publishing Co., pp. 307–318. 3

[DET06] DONOHO D., ELAD M., TEMLYAKOV V.: Stable recovery of
sparse overcomplete representations in the presence of noise. Informa-
tion Theory, IEEE Transactions on 52, 1 (Jan 2006), 6–18. 10

[DFKE07] DABOV K., FOI A., KATKOVNIK V., EGIAZARIAN K.: Im-
age denoising by sparse 3-d transform-domain collaborative filtering.
IEEE Transactions on Image Processing 16, 8 (2007), 2080–2095. 3

[ELL08] EASLEY G., LABATE D., LIM W.-Q.: Sparse directional im-
age representations using the discrete shearlet transform. Applied and
Computational Harmonic Analysis 25, 1 (2008), 25–46. 3

[EM09] ELDAR Y. C., MISHALI M.: Robust recovery of signals from a

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.



Saghi Hajisharif , Ehsan Miandji , Per Larsson , Kiet Tran & Jonas. Unger / Light Field Video Compression and Real Time Rendering

structured union of subspaces. IEEE Transactions on Information Theory
55, 11 (Nov 2009), 5302–5316. 3, 10

[FNPS16] FLYNN J., NEULANDER I., PHILBIN J., SNAVELY N.: Deep
stereo: Learning to predict new views from the world’s imagery. In IEEE
CVPR (June 2016), pp. 5515–5524. 3

[GCRX03] GIROD B., CHUO-LING CHANG, RAMANATHAN P., XIAO-
QING ZHU: Light field compression using disparity-compensated lifting.
In IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’03). (April 2003), vol. 4, pp. IV–760. 3

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The lumigraph. In Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA,
1996), SIGGRAPH ’96, ACM, pp. 43–54. 1

[GjLG18] GUILLO L., JIANG X., LAFRUIT G., GUILLEMOT C.: Light
field video dataset captured by a r8 raytrix camera, April 2018. 9

[GZZF14] GU S., ZHANG L., ZUO W., FENG X.: Weighted nuclear
norm minimization with application to image denoising. In 2014 IEEE
CVPR (June 2014), pp. 2862–2869. 3

[JPG18] JIANG X., PENDU M. L., GUILLEMOT C.: Depth estimation
with occlusion handling from a sparse set of light field views. In 2018
25th IEEE International Conference on Image Processing (ICIP) (Oct
2018), pp. 634–638. 9

[JSA03] JAGMOHAN A., SEHGAL A., AHUJA N.: Compression of light-
field rendered images using coset codes. In The Thrity-Seventh Asilomar
Conference on Signals, Systems Computers (Nov 2003), vol. 1, pp. 830–
834 Vol.1. 3

[KKSM19] KONIARIS C., KOSEK M., SINCLAIR D., MITCHELL K.:
Compressed animated light fields with real-time view-dependent recon-
struction. IEEE Transactions on Visualization and Computer Graphics
25, 4 (April 2019), 1666–1680. 1

[KWR16] KALANTARI N. K., WANG T.-C., RAMAMOORTHI R.:
Learning-based view synthesis for light field cameras. ACM Transac-
tions on Graphics 35, 6 (Nov 2016). 3, 10

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques (1996), SIGGRAPH ’96, ACM, pp. 31–42. 1

[Llo82] LLOYD S.: Least squares quantization in PCM. IEEE Transac-
tions on Information Theory 28, 2 (1982), 129–137. 5

[Lyt17] The ultimate creative tool for cinema and broadcast, 2017. 1

[MBG∗13] MUKHERJEE D., BANKOSKI J., GRANGE A., HAN J.,
KOLESZAR J., WILKINS P., XU Y., BULTJE R.: The latest open-source
video codec vp9 - an overview and preliminary results. In 2013 Picture
Coding Symposium (PCS) (Dec 2013), pp. 390–393. 3

[MBPS09] MAIRAL J., BACH F., PONCE J., SAPIRO G.: Online Dic-
tionary Learning for Sparse Coding. In Proceedings of the 26th Annual
International Conference on Machine Learning (2009), pp. 689–696. 3

[MEUA17] MIANDJI† E., EMADI† M., UNGER J., AFSHARI E.: On
Probability of Support Recovery for Orthogonal Matching Pursuit Using
Mutual Coherence. IEEE Signal Processing Letters 24, 11 (Nov 2017),
1646–1650. † equal contributor. 6, 10

[MG00] MAGNOR M., GIROD B.: Data compression for light-field ren-
dering. IEEE Transactions on Circuits and Systems for Video Technology
10, 3 (April 2000), 338–343. 3

[MHU19] MIANDJI E., HAJISHARIF S., UNGER J.: A unified frame-
work for compression and compressed sensing of light fields and light
field videos. ACM Trans. Graph. 38, 3 (May 2019), 23:1–23:18. 1, 3, 4,
5, 10

[MKU13] MIANDJI E., KRONANDER J., UNGER J.: Learning Based
Compression of Surface Light Fields for Real-time Rendering of Global
Illumination Scenes. In SIGGRAPH Asia 2013 Technical Briefs (2013),
ACM, pp. 24:1–24:4. 3

[MKU15] MIANDJI E., KRONANDER J., UNGER J.: Compressive Image
Reconstruction in Reduced Union of Subspaces. Computer Graphics
Forum 34, 2 (May 2015), 33–44. 3

[MPE19] Coded representation of immersive media, 2019. 3

[NLB∗05] NG R., LEVOY M., BREDIF M., DUVAL G., HOROWITZ M.,
HANRAHAN P.: Light field photography with a hand-held plenopic cam-
era. Technical Report CTSR 2005-02 CTSR (01 2005). 1

[OEE∗18] OVERBECK R. S., ERICKSON D., EVANGELAKOS D.,
PHARR M., DEBEVEC P.: A system for acquiring, processing, and ren-
dering panoramic light field stills for virtual reality. ACM Trans. Graph.
37, 6 (Dec. 2018), 197:1–197:15. 3

[Rak13] RAKOTOMAMONJY A.: Direct Optimization of the Dictionary
Learning Problem. IEEE Transactions on Signal Processing 61, 22 (Nov
2013), 5495–5506. 3

[Ray19] RAYTRIX: 3d light field camera technology, 2019. 1

[RD12] RUSU C., DUMITRESCU B.: Stagewise K-SVD to Design Effi-
cient Dictionaries for Sparse Representations. IEEE Signal Processing
Letters 19, 10 (Oct 2012), 631–634. 3

[SBV∗17] SABATER N., BOISSON G., VANDAME B., KERBIRIOU P.,
BABON F., HOG M., GENDROT R., LANGLOIS T., BURELLER O.,
SCHUBERT A., ALLIÉ V.: Dataset and pipeline for multi-view light-
field video. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (July 2017), pp. 1743–1753. 9

[SCK07] SHUM H. Y., CHAN S., KANG S. B.: Image-Based Rendering.
Springer US, 01 2007. 3

[SPRE18] SULAM J., PAPYAN V., ROMANO Y., ELAD M.: Multilayer
Convolutional Sparse Modeling: Pursuit and Dictionary Learning. IEEE
Transactions on Signal Processing 66, 15 (Aug 2018), 4090–4104. 3

[TM13] TAUBMAN D., MARCELLIN M.: JPEG2000 Image Compres-
sion Fundamentals, Standards and Practice. Springer Publishing Com-
pany, Incorporated, 2013. 2, 10

[VRA∗07] VEERARAGHAVAN A., RASKAR R., AGRAWAL A., MOHAN
A., TUMBLIN J.: Dappled photography: Mask enhanced cameras for
heterodyned light fields and coded aperture refocusing. vol. 26. 1

[WIH13] WETZSTEIN G., IHRKE I., HEIDRICH W.: On plenoptic mul-
tiplexing and reconstruction. International Journal of Computer Vision
101, 2 (Jan 2013), 384–400. 1

[WLHR12] WETZSTEIN G., LANMAN D., HIRSCH M., RASKAR R.:
Tensor Displays: Compressive Light Field Synthesis using Multilayer
Displays with Directional Backlighting. ACM Trans. Graph. 31, 4
(2012), 1–11. 1

[WMJ∗17] WU G., MASIA B., JARABO A., ZHANG Y., WANG L., DAI
Q., CHAI T., LIU Y.: Light field image processing: An overview. IEEE
Journal of Selected Topics in Signal Processing 11 (2017), 926–954. 1,
3

[WZW∗17] WU G., ZHAO M., WANG L., DAI Q., CHAI T., LIU Y.:
Light field reconstruction using deep convolutional network on epi. In
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (July 2017), pp. 1638–1646. 3, 9, 10

[XAG03] XIAOQING ZHU, AARON A., GIROD B.: Distributed com-
pression for large camera arrays. In IEEE Workshop on Statistical Signal
Processing, 2003 (Sep. 2003), pp. 30–33. 3

[YHC∗18] YEUNG H. W. F., HOU J., CHEN J., CHUNG Y. Y., CHEN
X.: Fast light field reconstruction with deep coarse-to-fine modeling of
spatial-angular clues. In Computer Vision – ECCV 2018 (2018), Springer
International Publishing, pp. 138–154. 3, 10

[ZZC∗17] ZHANG K., ZUO W., CHEN Y., MENG D., ZHANG L.: Be-
yond a gaussian denoiser: Residual learning of deep cnn for image de-
noising. IEEE Transactions on Image Processing 26, 7 (July 2017),
3142–3155. 3

[ZZZ18] ZHANG K., ZUO W., ZHANG L.: Ffdnet: Toward a fast and
flexible solution for cnn-based image denoising. IEEE Transactions on
Image Processing 27, 9 (Sep. 2018), 4608–4622. 2, 3, 6, 7

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.


