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In this paper we present a novel dictionary learning framework designed

for compression and sampling of light fields and light field videos. Unlike

previous methods, where a single dictionary with one dimensional atoms is

learned, we propose to train a Multidimensional Dictionary Ensemble (MDE).

It is shown that learning an ensemble in the native dimensionality of the data

promotes sparsity, hence increasing the compression ratio and sampling

efficiency. To make maximum use of correlations within the light field

data sets, we also introduce a novel nonlocal pre-clustering approach that

constructs an AggregateMDE (AMDE). The pre-clustering not only improves

the image quality, but also reduces the training time by an order of magnitude

in most cases. The decoding algorithm supports efficient local reconstruction

of the compressed data, which enables efficient real-time playback of high

resolution light field videos. Moreover, we discuss the application of AMDE

for compressed sensing. A theoretical analysis is presented which indicates

the required conditions for exact recovery of point-sampled light fields that

are sparse under AMDE. The analysis provides guidelines for designing

efficient compressive light field cameras. We use various synthetic and

natural light field and light field video data sets to demonstrate the utility

of our approach in comparison with the state-of-the-art learning based

dictionaries, as well as established analytical dictionaries.
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1 INTRODUCTION

Over the last decade we have seen the field of computational pho-
tography, especially light field and multi-view imaging, emerge and
mature as a new paradigm in imaging technology. These technolo-
gies enable a range of novel applications ranging from advanced
multidimensional image processing such as refocusing [Ng et al.
2005] and depth estimation [Vaish et al. 2006] to cinematic editing
[Jarabo et al. 2014], glasses free 3D display systems [Jones et al.
2016; Lee et al. 2016; Wetzstein et al. 2012b,a], single sensor light
field cameras [Babacan et al. 2012; Marwah et al. 2013; Miandji et al.
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Fig. 1. Overview of our compressionmethod. An nD training data set, in this

example a monochrome light field (3D), is divided into a set of data points.

After performing pre-clustering on the data points, a Multidimensional

Dictionary Ensemble (MDE) is trained in each pre-cluster (color coded in

the figure). Next, we combine MDEs to form an Aggregate MDE (AMDE).

The AMDE is used for sparse representation of data points, which in turn

can be used for compression and compressed sensing.

2018], spectral imaging [Arguello and Arce 2014; Kittle et al. 2010],
and appearance capture [Gortler et al. 1996; Levoy and Hanrahan
1996; Müller et al. 2005]. A highly important and still unsolved
challenge inherent to capture, storage and processing of such high
dimensional data is to handle the very large data sizes. For example,
the multi-view video captured using 30 HD cameras used to drive
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the 3D display in [Jones et al. 2016] at 30 Hz corresponds to more
than 5 GB of data per second.
The majority of existing compression algorithms, e.g. the well-

established JPEG standard, rely on a simple framework. First, a data
set is divided into a set of small elements. For instance, the JPEG
algorithm divides an image into distinct patches of size 8 × 8 pixels.
The patches are transformed using a dictionary to obtain a small
number of coefficients. In the case of the JPEG standard, the Discrete
Cosine Tranform (DCT) is used as the dictionary. Indeed, since the
number of coefficients is lower than the number of pixels in the
patch, the obtained representation is the compressed form of the
image patch. The coefficients are then quantized and compressed
further using an entropy coding algorithm.

In this paper we present a novel framework for the compression
of light field and light field video data sets based on a highly effi-
cient dictionary learning approach, see Fig. 1 for an outline of the
framework. A training set is first divided into small nD data points
(typically 5D or 6D), see Section 2. The resulting data points are fed
into an one-time training process that learns a Multidimensional
Dictionary Ensemble (MDE), as described in Section 3. Each nD
dictionary in the ensemble is a collection of basis functions, also
known as atoms, that independently represent each data point along
its various dimensions in a transformation domain. The trained
ensemble enables a high degree of sparsity in the transformation
domain, which has been shown to be an important factor for effi-
cient compression [Mallat 2008; Miandji et al. 2013; Zepeda et al.
2011] and compressed sensing [Candès et al. 2006; Candes and Tao
2006]. While we only focus on light fields and light field videos, the
framework can be readily applied for compression and compressed
sensing of commonly used high dimensional data sets in graphics
such as BTFs [Dana et al. 1999], measured BRDFs, hyperspectral
images and videos (see [Miandji 2018] for a few examples).

To further improve the representation power of MDE and enable
training on large-scale data sets, we propose a novel nonlocal pre-
clustering approach to divide the data points of the training set into
groups with similar sparsity, while minimizing the reconstruction
error. For each pre-cluster an MDE is trained, then combined to form
an Aggregate MDE (AMDE). AMDE has a very small memory foot-
print (less than 1MB), hence encoding and decoding is substantially
more efficient than previous methods (see Section 6). Our proposed
pre-clustering improves the training process with regards to two im-
portant aspects: 1. It promotes sparsity for each MDE, which in turn
improves the compression and compressed sensing performance,
and 2. It reduces the training time, including pre-clustering, by an
order of magnitude (see Section 3.2).
Having the dictionary ensemble, encoding of the unobserved

light fields, i.e. the testing set, is achieved by projecting each data
point onto the dictionary in AMDE that produces the most sparse
coefficients with the least error. The coefficients are then coded and
stored to disk. The decoding process is as simple as multiplying the
decoded coefficients by their corresponding dictionary in AMDE.
Indeed for real-time rendering of light fields, one requires random
access to the compressed data. For instance, to reconstruct a single
view in one frame of a light field video, only a small portion of
the data set needs to be decompressed. We propose a method for
reconstruction of compressed multidimensional light field data sets

down to a single pixel level. Due to the small memory footprint of
the compressed data and the random-access property, our method
achieves real-time reconstruction and rendering of light field videos
at a Full HD resolution using consumer-level hardware. In Section
5, we perform a thorough parameter analysis to show the effect of
each parameter on image quality. This can be used as a guideline in
different applications for obtaining a desired compression ratio or
image quality.
An important property of AMDE is universality. The efficient

sparse representation of AMDE, achieved by nD dictionary train-
ing and pre-clustering, allows us to perform the training only once
for each application. The trained AMDE can then be used for com-
pression and compressed sensing of any unobserved data set (see
Section 3.3). This is in contrast with prior work on compression
[Bilgili et al. 2011; Maimone et al. 2013; Miandji et al. 2013; Tsai
2015; Tsai and Shih 2012; Wang et al. 2005], where a dictionary has
to be learned/computed for any unobserved data set.
The sparsity of coefficients introduced by AMDE has an addi-

tional application, namely Compressed Sensing (CS) [Donoho 2006].
Compressed sensing states that if a signal is sufficiently sparse in
a dictionary, it can be reconstructed exactly from only a few mea-
surements, much less than what is required by the Nyquist criterion
[Candes and Wakin 2008; Dragotti and Lu 2014; Gribonval and
Nielsen 2003; Tropp 2004]. We show in Section 4 that AMDE can be
used for efficient sampling of light fields using an extension of the
framework proposed in [Miandji et al. 2015] to higher dimensions.
This is particularly useful for designing light field coded-aperture
video cameras, where a mask is placed on the aperture [Babacan
et al. 2012] or at a small distance from the sensor [Marwah et al.
2013; Miandji et al. 2018]. Indeed designing such systems are essen-
tial given the excessively high data rate of a high-resolution light
field video camera. Our main contribution regarding compressed
sensing is a theoretical analysis for the uniqueness of the solution
obtained using the proposed CS framework, see Section 4.1. In par-
ticular, we will describe conditions under which one can exactly

recover an incomplete light field that is sparse under an AMDE.
Our results show that for a sufficiently sparse light field one can
uniquely recover the light field with high probability. This analysis
can provide guidelines for designing efficient light field cameras.
Recently, Convolutional Neural Networks (CNN) have been uti-

lized for light field processing. For instance, several methods for
spatial super-resolution [Wang et al. 2018; Yoon et al. 2015], angular
super-resolution (also known as view synthesis) [Choudhury et al.
2017; Kalantari et al. 2016; Wu et al. 2017b], and joint spatio-angular
super-resolution [Yoon et al. 2017] have been proposed. However,
light field compression and multidimensional compressive point
sampling (Section 4) have not been considered.
The main contributions of this paper are summarized below:

• A training-based approach that identifies intrinsic self-similarities
present in light fields to enable sparse representation using an
ensemble of nD dictionaries, with a negligible memory footprint.

• A novel nonlocal pre-clustering method for nD data sets that
not only accelerates the training process by about an order of
magnitude, but also reduces reconstruction error.

• We show that sparsity induced by AMDE can be utilized for
compressed sensing.
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• The proposed method resides on a strong theoretical foundation.
We prove required conditions on AMDE, sparsity, and the number
of samples such that one can exactly recover a light field from a
few point samples with high probability. These conditions can be
used as guidelines for designing efficient light field cameras.

We evaluate AMDE by comparing to both analytical and training-
based dictionaries. Analytical dictionaries are based on a fixed equa-
tion derived from a mathematical model of the data. Typical exam-
ples are discrete cosine transform, used in the JPEG standard, and
wavelets, used in the JPEG2000 standard. In contrast, training-based
dictionaries infer an explicit dictionary from a set of examples. The
most widely used training-based dictionary is K-SVD [Aharon et al.
2006]. Our method achieves much higher image quality in most
cases compared to both analytical and training-based dictionaries.
Moreover, the encoding and decoding time for AMDE is competitive
with analytical dictionaries while being substantially faster than
K-SVD. Additionally, the storage cost for AMDE is negligible and is
orders of magnitude smaller than a K-SVD dictionary.

Notations

Throughout the paper, we use the following notational convention.
Vectors and matrices are denoted by boldface lower-case (a) and
bold-face upper-case letters (A), respectively. Tensors are denoted
by calligraphic letters, e.g.A. A finite set of objects is indexed by

superscripts, e.g.
{
A(i)

}N
i=1

or
{
A(i)

}N
i=1

. Individual elements of a,

A, and A are denoted ai , Ai1,i2 , Ai1, ...,in , respectively. The nth
column and row of A are denoted A.,n and An, . , respectively. Given
an index set, I , the sub-matrix A.,I is formed from columns of A
indexed by I . The unfolding of a tensor A along mode j is denoted
A[j]. The �p norm of a vector s, for 1 ≤ p ≤ ∞, is denoted by ‖s‖p .
Frobenius norm is denoted ‖s‖F . The �0 pseudo-norm of this vector,
‖s‖0, defines the number of non-zero elements.

2 LIGHT FIELD DATA POINTS

Let the function l(ri , tj , uα , vβ , λγ ) describe the two plane light field
parametrization [Gortler et al. 1996] defined by a pair of spatial lo-
cations (ri , tj ), angular locations (uα , vβ ), and a spectral parameter
λγ . We divide the light field into small elements, which we call
data points. Letm1 ×m2 ×m3 ×m4 ×m5 be the dimensionality of
each data point. For a seamless angular representation of the light
field, we include all the angular (m3 ×m4) and spectral information
(m5) in each data point, while dividing the spatial domain (e.g. indi-
vidual light field view images in a multi-camera setup) into small
patches of sizem1 ×m2. The spatial patches are constructed using
a non-overlapping sliding window. Indeed for light fields with high
angular resolution, one has to also divide the angular domain in
each data point into smaller patches for exploiting the coherence in
angular domain. In this case, we obtain 7D data points. Furthermore,
if the spectral domain is divided (e.g. for hyperspectral light fields),
we obtain 8D data points. Since there are various approaches for
constructing data points from light fields, we do not assume the
dimensionality of data points and present our method for nD data
points.

A light field video can be represented by the function l(ri , tj , uα ,
vβ , λγ , f ), where f is the time domain. To exploit the coherence in

the time domain, each data point contains a small number of con-
secutive frames. Hence each data point is 6D, with dimensionality
m1×m2×m3×m4×m5×m6, wherem6 is the number of consecutive
frames used in a data point. One can also construct overlapping
data points from light fields and light field videos along e.g. spatial
dimension. This will indeed have negative effect on compression.
However, significant improvements can be achieved in compressed
sensing [Elad and Aharon 2006; Miandji et al. 2015].

3 COMPRESSION

In this section, a novel multidimensional dictionary learning method
suitable for compression and compressed sensing of multidimen-
sional data sets such as light fields and light field videos is introduced.
We start by describing the requirements for dictionary learning of
multidimensional data. In Section 3.1, the training algorithm for an
MDE is presented, which takes into account the aforementioned
requirements. In Section 3.2 our novel pre-clustering method is
presented. By training an MDE for each pre-cluster, we obtain an
AMDE, which will be described in Section 3.3. Encoding and de-
coding of light field and light field video datasets using the AMDE
will be described in sections 3.4 and 3.5, respectively. In Section 5,
we perform a thorough parameter analysis and provide guidelines
for choosing suitable values for each parameter depending on the
application at hand.

Our method for constructing the dictionary ensemble is learning
based. Hence we consider two data sets: a training set and a testing
set. The training set is utilized for learning an MDE, or AMDE, while
the testing set represents the data sets wewould like to compress.We

denote the training set as {L(i)}
Nl

i=1, where L
(i) ∈ Rm1×m2×···×mn

and Nl is the number of data points. Similarly, the testing set is

denoted {Ti }
Nt

i=1. Indeed the dimensionality of the data points in the
training and testing sets should be identical. Moreover, the training
is performed only once, unless the data dimensionality changes.
We train an ensemble of K � Nl orthonormal dictionaries of

order n, denoted
{
U(1,k ), . . . ,U(n,k )

}K
k=1

, such that each data point

L(i) is represented by one dictionary as follows

L(i) = S(i) ×1 U
(1,k ) ×2 · · · ×n U(n,k ) = S(i)

n�

j=1

U(j ,k ), (1)

where U(j ,k ) ∈ Rmj×mj is the jth dictionary element of kth dictio-

nary. The coefficient tensorS(i) ∈ Rm1×m2×···×mn is sparse and the
symbol ×j defines tensor-matrix product along the jth mode.
In addition to sparsity, we would like our representation of the

data set to possess the following properties:

• nonlocal clustering: Each data point in our model is represented
by one dictionary. Since K � Nl , the training algorithm also
performs clustering. Hence a collection of points share a multi-
dimensional dictionary. Such clustering has been theoretically
and empirically shown to promote sparsity [Eldar et al. 2010;
Elhamifar and Vidal 2013; Miandji et al. 2015; Soltanolkotabi et al.
2012]. Since the metric for this clustering is based on sparsity,
data points that are similar in an �2 sense may not be grouped
together. Hence the clustering is nonlocal.
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• representative power: The training is performed only once. Hence
AMDE should be effective enough to represent any unobserved
data set (of the same dimensionality). This property is not pos-
sessed by tensor decomposition based methods such as [Guthe
et al. 2009; Tsai 2015; Tsai and Shih 2012; Vasilescu and Terzopou-
los 2004; Wang et al. 2005].

• small dictionary size: Since we use a training based approach,
the dictionary should be stored for reconstruction. Previous meth-
ods create relatively large dictionaries that are challenging to
transmit to the decoder [Aharon et al. 2006; Guthe et al. 2009;
Tsai 2015].

• arbitrary dimensionality: The dictionary ensemble should be
flexible enough to be applied to the many variations of the Plenop-
tic function [Adelson and Bergen 1991], as well as different data
point dimensionalities.

• local reconstruction: For real-time light field rendering, efficient
local reconstruction of the compressed data is essential.

In the remainder of this section, we will describe our approach for
training an MDE, followed by the proposed pre-clustering method.
Together, these two steps construct AMDE, which satisfies the above
criteria.

3.1 Multidimensional Dictionary Ensemble

We start by formulating the problem of learning an ensemble of nD
orthonormal dictionaries that enable sparse representation:

min
U(j ,k ),S(i ,k ),Mi ,k

Nl∑
i=1

K∑
k=1

Mi ,k

������L(i) − S(i ,k )
n�

j=1

U(j ,k)

������
2

F

(2a)

subject to(
U(j ,k )

)T
U(j ,k ) = I, ∀k = 1, . . . ,K, ∀j = 1, . . . ,n, (2b)���S(i ,k )

���
0
≤ τl , (2c)

K∑
k=1

Mi ,k = 1, ∀i = 1, . . . ,Nl , (2d)

where S(i ,k ) contains coefficients of the ith data point when pro-
jected onto the kth dictionary in the ensemble. The ensemble con-
sists of K dictionaries, where each dictionary is a collection of n
matrices (which we call dictionary elements) operating along dif-
ferent modes. The orthogonality of each dictionary is ensured in
(2b). The constant τl in (2c) is a user-defined sparsity value for train-
ing. We call M ∈ RNl×K a membership matrix, a binary matrix

associating each training data pointL(i) to its corresponding dictio-

nary {U(1,k ), . . . ,U(n,k )}. Since each data point is represented by
one dictionary, each row inM has only one non-zero component.
This is enforced by the constraint in (2d). In fact, M is a clustering
matrix which groups data points based on the dictionary they are
represented in.
The two-dimensional (2D) variant of (2) was first introduced

in [Gurumoorthy et al. 2010] for the compression of facial images.
They show the superiority of the 2D dictionary ensemble over vec-
torized dictionaries [Aharon et al. 2006; Bryt and Elad 2008], since
images are intrinsically 2D objects. In other words, representation

error diminishes if the dimensionality of the dictionary matches
that of data. Hence we expect the learning based MDE presented in
(2) to be more effective for high dimensional data sets such as light
fields. Our numerical results confirms this (see sections 3.2 and 6).

We denote the training process, i.e. solving (2), using the following
function:{

U(1,k ), . . . ,U(n,k )
}K
k=1
= Train

({
L(i)

}Nl

i=1
,K, τl

)
. (3)

The input to this function is the training set, the number of dictio-
naries to be trained, and the sparsity. The output is an MDE.

Equation (2) can be solved efficiently using an iterative approach.

First the matrices
{
U(1,k ), . . . ,U(n,k )

}K
k=1

are initialized with ran-

dom orthonormal matrices. To do this we compute higher order
singular value decomposition (HOSVD) of a tensor with uniform
random elements. The elements of the membership matrix M are
initialized with 1/K . Then the following update rules are applied
consecutively (see the supplementary document for the derivation
of update rules):

S(i ,k) = L(i) ×1

(
U(1,k)

)T
· · · ×n

(
U(n,k )

)T
, (4)

Z(j ,k ) =

Nl∑
i=1

Mi ,kL
(i)

[j]

(
U(n,k ) ⊗ · · · ⊗ U(j+1,k )⊗

U(j−1,k ) ⊗ · · · ⊗ U(1,k )
) (

S(i ,k )
[j]

)T
, (5)

U(j ,k ) = Z(j ,k )
((
Z(j ,k )

)T
Z(j ,k )

)−1/2
, (6)

Mi ,k =

(
K∑
b=1

eβ (δ
i
k
−δ i

b
)

)−1
, (7)

where

δ i
k
=

���L(i) − S(i ,k ) ×1 U
(1,k ) · · · ×n U(n,k )

���2
F
, (8)

and L(i)

[j]
is the unfolding of L(i) along the jth dimension (mode).

We nullify (
∏n

j=1mj ) − τl elements of S(i ,k) with smallest absolute

value after each update to S(i ,k ). Equations (4)-(7) are computed for
all Nl data points and all K dictionaries in the ensemble. To avoid
matrix inversion in (6), we observe that this equation is related to
the solution of the orthogonal Procrustes problem:

min
Ω

‖AΩ − B‖F s .t . ΩTΩ = I. (9)

If we set A = I and B = Z(j ,k ), the solution of (9) is the closest

orthogonal matrix to Z(j ,k); i.e. we are seeking an orthogonalization

of U(j ,k ). To do this, we first compute the SVD of Z(k , j), i.e. Z(j ,k ) =

LΣRT , then U(j ,k ) = LRT is the closest orthogonal matrix to Z(j ,k ),
see [Schönemann 1966].
The temperature parameter, β , in equation (7) is initialized with

a small value. For a fixed value of β , the sequential updates are

repeated until the changes to the matrices
{
U(1,k ), . . . ,U(n,k)

}K
k=1

are minimal. In practice we put an upper bound for the number of
such iterations. Then the temperature parameter is increased and the
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same update procedure is repeated. The algorithm converges when
M is binary or near binary, e.g. satisfying the following criteria: ‖M−

	M
‖2 < ϵ , where ϵ is a small user-defined constant. The operator
	.
 rounds its argument to the closest integer value. In Algorithm (1)
of the supplementary document we present an implementation of
the iterative method described above. Highly scalable parallelization
can be achieved thanks to the fact that the data points are small and
unordered.

3.2 Pre-clustering

The proposed pre-clustering algorithm groups the data points of
the training set into pre-clusters. This algorithm ensures that the
data points in each pre-cluster are similar in terms of their sparse
representation. After pre-clustering, we train an MDE, described in
Section 3.1, independently in each pre-cluster. We first describe our
motivation for pre-clustering. This is followed by a description of
the algorithm and preliminary results for pre-clustering.
For the training algorithm, a larger training set (Nl ) and num-

ber of dictionaries (K ) leads to a more accurate and representative
dictionary ensemble for compression of a high-frequency data set
(see Section 5 of the supplementary document). Overfitting is not
a big issue in practice due to the high nonlinearities in the data.
As a result, increasing Nl and K will lead to a more representative
dictionary ensemble. On the other hand, the computational cost
of the training is directly proportional to Nl and K . We propose a
pre-clustering algorithm that significantly accelerates the training
process for a predefined Nl and K . In addition to the reduction in
computational cost, we show that in some cases the pre-clustering
algorithm improves the reconstruction quality.

As discussed in Section 3.1, the learning algorithm for MDE per-
forms a clustering based on sparsity and reconstruction error, see
(7) and (8). Moreover, data sets used in graphics often exhibit a
global nonlinearity, along with locally low-dimensional structures
[Elhamifar and Vidal 2013; Mahajan et al. 2007; Mairal et al. 2009;
Miandji et al. 2013, 2015; Schröder et al. 2013; Sloan et al. 2003;
Tsai 2015; Zhou et al. 2016]; in other words, these data sets are
only locally sparse. Indeed, if we pre-cluster the training set using
a sparsity-based criteria, fewer iterations are required for finding
the sparsifying dictionaries in each pre-cluster. The pre-clustering
stage combined with the clustering performed in the training phase
ensure less variations of sparsity in each cluster. As a result, we
can reduce the number of dictionaries for each pre-cluster. This
significantly reduces the computational cost during training and
encoding.

Pre-clustering has been utilized in graphics for compression. For
instance, in [Sloan et al. 2003], the authors use an iterative variant of
K-Means [Lloyd 1982] for pre-clustering of light transport matrices.
Furthermore, K-Means has been used for pre-clustering of surface
light fields [Miandji et al. 2013]. According to our discussion above,
we argue that K-Means does not accelerate the convergence of our
training based approach since the distance metric is the �2 norm
rather than the sparsity promoting �0 norm. Consider the following

two data points (matrices in this case):

L(1) =

⎡⎢⎢⎢⎢⎣
0.01 0.1 1
0.01 0.1 1
0.01 0.1 1

⎤⎥⎥⎥⎥⎦ , L(2) =

⎡⎢⎢⎢⎢⎣
0.0001 0.001 0.01
0.0001 0.001 0.01
0.0001 0.001 0.01

⎤⎥⎥⎥⎥⎦ . (10)

If the matrix components are in [0, 1], we see that the �2 distance,

‖L(1) − L(2) ‖F = 1.7234, is relatively large compared to the maximal
distance, which is 3.0. However, both matrices can be described
with one coefficient in a suitable basis (note that rank(L(1)) =

rank(L(2)) = 1). Therefore, the �0 distance is minimal while the
�2 distance is relatively large.
We propose a novel pre-clustering algorithm that satisfies the

above criteria. In particular, the pre-clustering algorithm groups the
data points based on their sparsity and representation error. More-
over, the proposed pre-clustering reduces the effect of noise and
outliers in the data. We have summarized our method in Algorithm
1. As a first step for pre-clustering, we reduce the dimensionality of
the training set. Formally, we perform the decomposition F = ABT ,
where F ∈ RNl×m1m2 ...mn contains vectorized data points as rows,
A ∈ RNl×p contains coefficients in each row, andB ∈ Rm1m2 ...mn×p

has the basis vectors as columns, where p �
∏n

j=1mj . An obvious

choice for performing this task is Principal Component Analysis
(PCA). However, PCA is known to be notoriously sensitive to out-
liers and noise [Xu et al. 2013], which are extremely common in
real-world light field data sets. Instead, we use Coherence Pursuit
(CP) [Rahmani and Atia 2017], a Robust-PCA algorithm that is sim-
ple and fast, with strong theoretical guarantees. The dimensionality
reduction will accelerate the next step in pre-clustering.
Given the coefficients obtained from CP, i.e. A, we use K-Means

to compute a small subset of the training set that is representative
of the entire set. To do so, we first apply K-Means with Nr clusters
on the p-dimensional rows of the coefficient matrix obtained from
CP, where Nr is the number of representatives. Then, using the

obtained cluster indices, the centroids of the training set,
{
L(i)

}Nl

i=1
,

are calculated. We call these centroids,
{
L̄(i)

}Nr

i=1
, the representative

set.
The representative set is then used to train an MDE with C dic-

tionaries, where C is the number of user-defined pre-clusters. Since
Nr � Nl , the computational cost of this stage is negligible com-
pared to the training process applied on the entire training set. As a
final stage, the trained MDE, together with the entire training set,
are used to produce a membership vector c ∈ RNl , which associates
each data point in the training set to a pre-cluster. This stage is also
a part of our encoding process which will be described in Section
3.4. To summarize, we use the following function to denote the
pre-clustering:

c = Precluster

({
L(i)

}Nl

i=1
,C,Nr ,p, ϵ

)
, (11)

To demonstrate the usefulness of our pre-clustering algorithm in
practice, the remainder of this section reports quality and perfor-
mance results. To facilitate a direct comparison with [Gurumoorthy
et al. 2010] and [Miandji et al. 2013], we first use a 2D training set
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Algorithm 1 The pre-clustering algorithm implementing

c = Precluster
(
{L(i)}

Nl

i=1,C,Nr ,p, ϵ
)

1: Rearrange {L(i)}
Nl

i=1 into F ∈ RNl×m1m2 ...mn .

2: Compute F = ABT using CP with p principal components.
3: Apply K-Means to rows of A with Nr clusters.

4: The representative set {L̄(i)
}
Nr

i=1 is computed as the centroids

of {L(i)}
Nl

i=1 using cluster indices returned by K-Means.

5:

{
Ū(1,c), . . . , Ū(n,c)

}C
c=1
= Train

(
{L̄(i)

}
Nr

i=1,C, τl , ϵ
)
.

6: c = Test

(
{L(i)}

Nl

i=1,
{
Ū(1,c), . . . , Ū(n,c)

}C
c=1
, τl , ϵ

)
.

Table 1. The effect of pre-clustering for a training set of 2D data points. For

Algorithm 1 we use Nr = 2048, p = 8, τl = τt = 8, and ϵ = 10−5.

time (minute:sec)

C K PSNR pre-cluster train

SC1 (no pre-clustering) 1 32 65.00 - 62:31

SC2 (Algorithm 1) 8 4 64.65 01:24 6:51

SC3 (Algorithm 1) 16 8 66.66 02:28 14:12

SC4 ([Miandji et al. 2013]) 16 8 63.75 00:32 16:27

Table 2. Timing results for the proposed pre-clustering

time (in seconds)

CP K-Means Train Test

scenario 2 15 12 56 1

scenario 3 15 13 118 2

with 65536 data points of dimensionality 32 × 16 representing a
surface light field data set1. The following scenarios are considered:

• Scenario 1 (SC1): We do not perform pre-clustering. The training
is performed on all the data points in the training set. Since we
use 2D data points, this is essentially the compression method
of [Gurumoorthy et al. 2010].

• Scenario (SC2): We perform pre-clustering and training as de-
scribed in algorithms 1 and 2. This scenario represents ourmethod.
The values for C and K are chosen such that the total number of
dictionaries, CK , is equal to that of SC1.

• Scenario (SC3): This is the same as SC2 but we use 2C pre-clusters
and 2K dictionaries per pre-cluster.

• Scenario (SC4): We use the same parameters as SC3 applied
on [Miandji et al. 2013], which uses K-Means for pre-clustering.

Performance and image quality results (using PSNR) are reported
in Table 1. In Table 2, we break down the timing results of the
pre-clustering method according to the steps of Algorithm 1.
Comparing SC1 and SC2 we see that pre-clustering makes the

training phase more than an order of magnitude faster. This is par-
ticularly important because the time for pre-clustering is negligible
compared to training. However, there is a slight reduction in qual-
ity. This is mainly associated to the approximations done in the
pre-clustering stage. In SC3, we double the number of clusters and

1Specifically, the glossy plane of the cornell box scene in Figure 1 of [Miandji et al.
2013] was used. We observed similar results for different data sets.

Table 3. The effect of pre-clustering for a training set of 5D data points. For

Algorithm 1 we use Nr = 1000, p = 64, τl = 10, τt = 128, and ϵ = 10−4.

time (minute:sec)

C K PSNR pre-cluster train

SC1 (no pre-clustering) 1 16 31.77 - 164:21

SC2 (Algorithm 1) 8 2 31.82 02:49 24:25

dictionaries per cluster, i.e. we have 4 times more dictionaries than
SC2. One expects that the compression stage should become 4 times
slower. But we see that SC3 is only about 2 times slower. This is be-
cause more clusters are present in SC3, so that the inter-cluster data
points are more similar in terms of sparsity and reconstruction error.
Hence the training requires fewer iterations. Apart from this, we see
that SC3 achieves higher quality compared to SC1, while there is still
a large improvement in terms of speed (about 4.4 times speedup).
This demonstrates the significance of pre-clustering in terms of
reconstruction quality when compared to the image compression
method described in [Gurumoorthy et al. 2010]. Comparing SC3
and SC4, our method (SC3) achieves a much higher PSNR, while the
overall training time is similar. In addition, although the number of
dictionaries are equal, our method makes training phase faster. This
is because of the proposed sparsity-based metric for pre-clustering
compared to the �2 metric used in [Miandji et al. 2013].

To show the effectiveness of pre-clustering for high dimensional
data sets, we report results for a light field data set in Table 3. We use
the Dragon and Bunnies data set used in [Marwah et al. 2013] and
create 55440 non-overlapping data points of dimensionalitym1 = 3,
m2 = 3,m3 = 5,m4 = 5, andm5 = 3, wherem1 andm2 represents
the spatial,m2 andm3 the angular, andm5 the spectral dimensions.
We see that not only the training time decreases significantly, the
PSNR slightly increases.

3.3 The Aggregate MDE

Algorithm 2 summarizes the training process combined with the
pre-clustering stage. After performing the pre-clustering, an MDE is
trained for each pre-cluster. Hence the total number of dictionaries
will be CK . We then take the union of all the ensembles in different
pre-clusters, leading to one ensemble. Formally,

Ψ =

C⋃
c=1

{
U(1,k ,c), . . . ,U(n,k ,c)

}K
k=1
=
{
U(1,k), . . . ,U(n,k )

}CK
k=1

(12)
We call the final ensemble Ψ an aggregate ensemble, or AMDE. In
Section 5, we will discuss the effect of different parameters used for
the pre-clustered training on the reconstruction quality.

The training of an AMDE is performed once for each application,
as long as the dimension of data points in the testing set matches that
of AMDE. Even if the dimension does not match, one can change the
extraction of data points from the testing set (Section 2) to match
AMDE. For instance, assume that we have an AMDE trained on
light fields with 4 × 4 views. For compression of a testing set with
16 × 16 views, it is only required to create 4 × 4 patches on the
angular domain and use the existing AMDE; note that, in the case
of non-divisible patch sizes, one we can create overlapping patches.
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Algorithm 2 Pre-clustered Training: this is performed only once
for each application

Input: The training set
{
L(i)

}Nl

i=1
, number of clusters C , number

of dictionaries per cluster K , training sparsity τl , number of
representatives Nr , number of PCA coefficients p, and an error
threshold ϵ .

Output: A dictionary ensemble
{
U(1,k ), . . . ,U(n,k )

}CK
k=1

1: c = Precluster

({
L(i)

}Nl

i=1
,C,Nr ,p, ϵ

)
using Algorithm 1

2: for c = 1 . . .C do

3:

{
X(j)

}
⊂
{
L(i)

}Nl

i=1
such that cj == c

4:

{
U(1,k ,c), . . . ,U(n,k ,c)

}K
k=1
= Train

({
X(j)

}
,K, τl , ϵ

)
5: end for

6: Compute aggregated ensemble Ψ using (12)

3.4 Encoding

The input to encoding is the testing set
{
T(i)

}Nt

i=1
, i.e. the data set

we would like to compress, as well as the AMDE. Because each

T(i) should be represented using one dictionary in AMDE, we need
to find the best dictionary for each data point. Since our goal is
compression, we choose a dictionary that leads to the most sparse
coefficients with the least error. We can calculate the coefficients by

projecting the data point T(i) onto the chosen dictionary (see Eq.
(4)). Let us represent this procedure by the following function:[{

S(i)
}Nt

i=1
,m, z

]
= Test

({
T(i)

}Nt

i=1
,Ψ, τt , ϵ

)
. (13)

The function Test(.) takes as input a data point in the testing set,
AMDE, and thresholds for sparsity and error, respectively. Note that
the testing sparsity, τt , is an upper bound for sparsity; i.e. the number
of nonzero coefficients is typically smaller than this upper bound.
The output of the function is a collection of sparse coefficient tensors,

S(i), and a vector m ∈ RNt that associates each data point with a
dictionary in AMDE. The sparsity of each data point is stored in

z ∈ RNt . We call the index of the best dictionary for data point T(i),
denotedmi ∈ [1 . . .CK], amembership index. The vectorm is called
a membership vector, which describes the clustering of the testing
set based on a given AMDE. Algorithm (2) in the supplementary
document implements (13) using a greedy approach. This stage is
significantly faster than the training stage, see Table 2.
As an additional step, we perform Huffman coding [Huffman

1952] prior to saving to disk. This is specifically useful in scenarios
where there are limited resources for transmission or storage of
the compressed data. The vectors m and z can be directly coded,
while the coefficients need to be discretized first. To do this, we
first use the Fisher Natural Breaks Classification (FNBC) [Fisher
1958] to determine a set of partitions for the coefficient values.
The FNBC is indeed the one dimensional variant of the K-Means
algorithm. The mean of each partition is then used for defining the
codebook for Huffman coding. The number of partitions is a user-
defined parameter, denoted q. In Section 5 of the supplementary

document, we will discuss the effect of different parameters used in
the encoding stage on the reconstruction quality.

3.5 Decoding

Reconstructing a data point in the testing set is done by evaluating
(1) using the aggregate ensemble and the coefficients calculated in
Section 3.4, i.e. we have

T(i) = S(i) ×1 U
(1,mi ) · · · ×n U(n,mi ). (14)

Since each data point includes all the angular and spectral in-
formation, random access into the compressed data point during
reconstruction is of utmost importance for real-time rendering of
a light field. This is because only a single direction per spatial lo-
cation is needed to be reconstructed from the vantage point of the
camera. Even when view interpolation is required, we reconstruct
a very small fraction of the views per spatial location. Hence, we
also propose a method for reconstructing a single element of a data
point in the testing set. The element at location x1, x2, . . . , xn of a

data point T(i) ∈ Rm1×m2×···×mn is calculated as follows

T(i)
x1,x2, ...,xn =

zi∑
z=1

S(i)

lz1 ,l
z
2 , ...,l

z
n
U
(1,mi )

x1,l
z
1
U
(2,mi )

x2,l
z
2
. . .U

(n,mi )

xn ,l
z
n
, (15)

where the index tuple (lz1 , l
z
2 , . . . , l

z
n ) defines the location of z-th

nonzero element in S(i). The computational complexity of recov-

ering a single element in T(i) is O(nzi ), which is competitive to
that of precomputed radiance transfer for diffuse surfaces [Liu et al.
2004; Sloan et al. 2002], where a dot product of two vectors with a
user-defined size is calculated.
For a GPU-based implementation, the nonzero elements of S(i),

together with their corresponding locations, are stored in textures.
The sparsity and membership index vectors, z and m, as well as
the AMDE are also uploaded as textures. For 5D light fields, the
aforementioned textures are uploaded only once. However, for the
light-field video, the textures are updated every f frames, where f
is the number of frames contained in each data point. We have used
multi-threading and pixel buffer objects (PBO) in order to accelerate
the data transfer between the CPU and GPU. For rendering with
a resolution of 2048 × 1088 pixels, and using the Painter light field
video data set (see Fig. 6), where τt = 1024, we achieve 40 frames per
second on an Nvidia Titan Xp GPU, see the supplementary video.

4 COMPRESSIVE POINT SAMPLING

For decades, the Shannon-Nyquist theorem [Nyquist 1928; Shannon
1949] had been the standard for sampling signals. This theorem
states that any function with no frequencies higher than f can be
exactly recovered with equally spaced samples at a rate larger than
2f (the Nyquist rate). Compressed Sensing (CS) [Donoho 2006]
sparked a paradigm shift in the field of signal processing. Seminal
work in the field [Candes et al. 2006; Candes and Tao 2005, 2006]
show that a signal of lengthm with at most τ ≤ m nonzero elements
(i.e. sparsity) can be recovered with overwhelming probability us-
ing Gaussian or Bernoulli sampling, provided that s ≥ Cτ ln(m/τ ),
where s is the number of samples andC is a universal constant. Note
that the number of samples is linearly dependent on the sparsity
and only logarithmically on the signal length. For an introduction
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to the field of CS, we refer the reader to [Candes and Wakin 2008;
Elad 2010].
It has been shown that an ensemble of 2D dictionaries can be

used for reconstructing incomplete measurements of visual data
using a compressed sensing framework [Miandji et al. 2015]. In this
section, we generalize this framework for arbitrarily high dimen-
sional data sets using an AMDE, which is particularly useful for
designing coded-aperture light field cameras [Ashok and Neifeld
2010; Babacan et al. 2012; Marwah et al. 2013; Miandji et al. 2018].
Our main contribution in this regard is a theoretical analysis for
the uniqueness of the solution obtained from our proposed nD CS
framework (see Section 4.1). In particular, we describe conditions
under which one can exactly recover an incomplete light field that is
sparse under an AMDE. These conditions can be used as guidelines
for designing efficient light field cameras.
Let us formulate the problem of reconstructing a signal from

its random measurements. Consider a one dimensional data point,
p ∈ Rm , and define a sampling operator, Φ ∈ Rs×m , s < m, that
samples p, i.e. y = Φp, where the number of linear samples is s .
The matrix Φ is known as a measurement or sensing matrix. On
the other hand, if p is τ -sparse, then it can be represented using a
dictionary as p = Ds, where ‖s‖0 = τ . Therefore the measurement
model becomes y = ΦDs, i.e. an underdetermined system of linear
equations for the unknowns s with an infinite number of solutions.
Since s is sparse, one can reduce the number of solutions or even
obtain a unique one by solving

min
s

‖s‖0 s.t. ‖y − ΦDs‖22 ≤ ϵ, (16)

where ϵ is related to noise power and possible representation error
introduced by the dictionary. Once the coefficients are recovered,
the data point is reconstructed by computing Ds. As we will see
later, the higher the sparsity, the lower the number of measurements
for exact recovery.
The recovery problem (16) for a 2D dictionary ensemble can be

formulated as follows [Miandji et al. 2015]:

min
s

‖s‖0 s.t.
���y − Φ(U(2,k) ⊗ U(1,k))s

���2
2
≤ ϵ, (17)

where y = Φvec(P), for a 2D data point P ∈ Rm1×m2 ; moreover,
the sensing matrix acts on the vectorized data point, hence Φ ∈

R
s×m1m2 . Since no information on the underlying data point is

available, one has to solve (17) for all the dictionaries in the ensemble
and choose the most sparse coefficient vector s as the solution.
It is straightforward to extend (17) for higher dimensions:

min
s

‖s‖0 s.t.
���y − Φ

(
U(n,k ) ⊗ U(n−1,k ) · · · ⊗ U(1,k )

)
s
���2
2
≤ ϵ,

(18)

where Φ ∈ R
s×

∏n
j=1mj , and y = Φvec(P), for a data point P ∈

R
m1×m2×···×mn . When it is required to sample different modes in-

dependently, equation (18) can be reformulated as

min
s

‖s‖0 s.t.���y −
(
Φ(n)U(n,k ) ⊗ Φ(n−1)U(n−1,k) · · · ⊗ Φ(1)U(1,k )

)
s
���2
2
, (19)

where y = vec
(
P ×1 Φ

(1) ×2 Φ
(2) · · · ×n Φ(n)

)
, and Φ(j) ∈ Rsj×mj

is a sampling matrix for mode j ∈ {1, 2, . . . ,n}. Therefore we can
have a variable number of samples, sj , for each mode. Equation
(19) is particularly useful for designing new compressive light field
cameras. Since each mode is sampled independently, this produces
new possibilities for designingmulti-sensor and single-sensor coded-
aperture cameras.

In this paper we consider point sampling operators. The sensing
matrix corresponding to a point sampling operator can be defined
as follows. Given an index set {1, . . . ,m}, associate with each index
a vector ei ∈ Rm , where (ei )j = 0, ∀i � j, and (ei )j = 1, if i =
j. Let {k1, . . . ,km } be a uniform random permutation of the set
{1, . . . ,m}.

Definition 1. The sensing matrix IΛ, . ∈ R
s×m , Λ = {k1, . . . ,ks },

called a spike ensemble, is constructed by stacking {ei }
ks
i=k1

as rows of

a matrix.

4.1 Uniqueness Analysis

In this section, we will present theoretical results for exact recovery
of a sparse data point P ∈ Rm1×···×mn under an AMDE and using
a point sampling operator IΛ, . . To define exact recovery, we need
the following definition

Definition 2. The support of a sparse data point p under a dic-

tionary D, denoted supp(p)D, is an index set holding the location of

nonzero values in x, where p = Dx.

By exact recovery, we mean the correct identification of the sup-
port. For noiseless data points, once we have the support, we can
exactly recover the nonzero values. Moreover, when the data point
is contaminated by noise but we know the location of the nonzero
values, the error in the reconstructed data point is proportional to
the noise power [Ben-Haim et al. 2010; Miandji et al. 2017].

In Theorem 1 we show that given an AMDE and a spike ensemble,
it is possible to exactly recover a sufficiently sparse light field data
point with high probability. Before presenting the theorem, let us
describe the tools used here. The function orth(X) defines orthogo-
nalization of the columns of X, using e.g. QR decomposition [Horn
and Johnson 2012]. Moreover,

Definition 3. The mutual coherence of a matrix X ∈ Rm×n is

μ(X) = max
1≤i�j≤n

|XT.,iX., j |

‖X.,i ‖2‖X., j ‖2
. (20)

We can now state the main result.

Theorem 1. Define m =
∏n

j=1mj . Assume that the data point

p = vec
(
P ∈ Rm1×···×mn

)
is at most τ -sparse under all dictionaries

in Ψ =
{
(U(n,k ) ⊗ · · · ⊗ U(1,k))

}CK
k=1

, where

τ ≤
1

2

(
1 +

1

μ
(
IΛ, .A

) ) , ∀A ∈ Ψ (21)

is satisfied for a fixed spike ensemble IΛ, . ∈ R
s×m . If

s ≥ −mα log(
1

r
), (22)
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where

α = max
j=1, ...,m

���orth (
[A.,I ,B., J ]

)
j , .

���2
2
, ∀A,∀B ∈ Ψ, A � B, (23)

r = rank
(
[A.,I ,B., J ]

)
, (24)

I = supp(p)A, A ∈ Ψ, (25)

J = supp(p)B, B ∈ Ψ, (26)

then with probability at least

1 − r (0.3679)
s

mα , (27)

the sparsest solution of (18), among CK solutions, is unique, i.e. it is

the global minimizer of (18) for all k = 1, . . . ,CK .

The proof is presented in the supplementary document accom-
panying this paper. Note that (21) ensures there exists a unique
solution for each dictionary [Gribonval and Nielsen 2003]. More-
over, equation (21) can be replaced with similar conditions on the
dictionary, see e.g. [Candès et al. 2006; Donoho and Elad 2003; Tropp
2004]. Hence (27) describes the probability that amongCK solutions
of (18), the sparsest solution is the unique global minimizer.

Since we can rewrite (19) as

min
s

‖s‖0 s.t.
���y −

(
Φ(n) ⊗ Φ(n−1) · · · ⊗ Φ(1)

)
(
U(n,k ) ⊗ U(n−1,k ) · · · ⊗ U(1,k )

)
s
���2
2
, (28)

Theorem 1 can also be applied to evaluate the uniqueness of the
solution of (19).

To demonstrate the usefulness of Theorem 1, we report the prob-
ability of success, i.e. equation (27), given a randomly generated
data point and an AMDE with C = 4 and K = 8 trained on the
Dragon and Bunnies data set [Marwah et al. 2013]. The data point
dimensionality was set tom1 = 9,m2 = 9 (spatial),m3 = 5,m4 = 5
(angular), and m5 = 3 (spectral). Since Theorem 1 only requires
the support of the data point to be known, we construct the two
support sets I and J uniformly at random. We perform 105 trials,
where in each trial we create a new random spike ensemble, as well
as the random support sets. The effect of the number of samples
and sparsity on the probability of success is shown in Fig. 2. We do
not take into account (21) and assume that the data point is sparse
in each dictionary.
Theorem 1 can be used to guide the design of compressive light

field cameras. For instance, single sensor light field cameras have
been proposed by placing a translucent random mask in front of the
sensor [Marwah et al. 2013; Miandji et al. 2018]. The compressive
light field camera is modeled using a measurement matrix Φ, as
in (16) for 1D light fields or (18) for nD light fields. Changing the
design of the camera, e.g. by changing the placement of the mask,
leads to a different measurement matrix. Indeed if we know the
properties of a “good” measurement matrix, as defined in Theorem
1, hardware implementations can be more cost effective and efficient.
We have left the theoretical analysis of existing light field capture
systems using Theorem 1 for future work. Moreover, design of new
multidimensional compressive light field cameras can be realized
using the proposed nD CS framework and its theoretical analysis.
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Fig. 2. Simulation results for Theorem 1. We use an AMDE trained on the

Dragon and Bunnies synthetic light field data set.

5 PARAMETER ANALYSIS

In this section we analyze the parameters used in our compression
algorithm described in Section 3. For the training set, the Dragon
and Bunnies synthetic light field data set of [Marwah et al. 2013]
was used. This data set is a collection of 25 images taken on a 5 × 5
grid. We create non-overlapping data points of sizem1 = 5,m2 = 5,
m3 = 5,m4 = 5, andm5 = 3.

The results of parameter analysis are summarized in Fig. 3. For
each parameter, we fix other parameters and plot the reconstruction
quality using PSNR. Table 3 lists all the values for fixed parameters
in each test scenario. These values are set to emphasize the effect
of each parameter on the reconstruction quality. For instance, Nr

and p are related to pre-clustering, and therefore we use a small
number of dictionaries, K = 2, and a large number of pre-clusters
C = 8. Moreover, the PSNR is calculated as the average of 8 trials of
our compression algorithm. This is due to random initializations in
K-Means, CP, and the training algorithm.
Figures 3a and 3b show that increasing C and K will improve

quality. We see a sharp increase in quality for small values of C and
K . Thereafter, the increase in quality is gradual (almost linear). Since
these two parameters only affect the training (in terms of computa-
tional complexity), we set them to the largest number possible, as
long as training can be done in a reasonable time. To fine-tune the
choice of these parameters, one can produce plots such as 3a and 3b
for a small training set chosen at random from the main training set.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: June 2019.



1:10 • E. Miandji et al.

5 10 15 20 25 30

41.6

41.8

42

42.2

(a)

5 10 15 20 25 30

40.5

41

41.5

42

(b)

1000 2000 3000 4000
41.5

41.6

41.7

41.8

41.9

42

(c)

100 200 300 400 500
41.5

41.6

41.7

41.8

41.9

42

(d)

20 40 60 80 100 120
34.5

34.6

34.7

34.8

34.9

35

35.1

(e)

50 100 150 200 250

20

25

30

35

40

(f)

0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

(g)

50 100 150 200 250 300 350

15

20

25

30

35

(h)

20 40 60 80 100

36

36.5

37

37.5

(i)

Fig. 3. Results for parameter analysis. Table 4 lists all the configurations of parameters used here.

Table 4. Values for parameters used in various plots of Figure 3.

parameter C K Nr p τl τt q ϵ Nl
Fig. 3a - 2 3000 64 20 256 - 10−6 100%

Fig. 3b 1 - 3000 32 20 256 - 10−6 100%

Fig. 3c 8 2 - 128 20 256 - 10−6 100%

Fig. 3d 8 2 3000 - 20 256 - 10−6 100%

Fig. 3e 1 4 3000 32 - 64 - 10−6 100%

Fig. 3f 4 8 3000 32 64 - - 10−6 100%

Fig. 3g 4 8 3000 32 20 1875 - - 100%

Fig. 3h 4 8 3000 32 20 64 - 10−6 100%

Fig. 3i 2 4 3000 32 20 128 - 10−6 -

In this way, we can set these parameters to the smallest value such
that the image quality or the training time becomes acceptable.
As it can be seen in figures 3c and 3d, the parameters Nr and

p have negligible effect on reconstruction quality. This shows the
effectiveness of the pre-clustering algorithm since both of these
parameters reduce computation time drastically. Moreover, we see

that as we increase Nr , the PSNR stabilizes more. This is because
the dictionary training stage of Algorithm 1 has more data points as
the training set. The PSNR variations in Fig. 3d are due to random
initialization in our implementation of CP and K-Means.

In Fig. 3e, we plot reconstruction quality with respect to training
sparsity τl . The testing sparsity was fixed, τt = 64. An interesting
property of this plot is that it shows the intrinsic sparsity of the data
set used for training. The rapid increase in PSNR continues until
we have about τl = 10, and linearly afterwards. This implies that
the light field data set used here is approximately 10-sparse. Note
that the sparsity of a data set is indeed dependent on the dictionary.
Therefore it is not possible to estimate this value prior to training.
Moreover, we see that PSNR declines when τl > τt = 64. Hence, the
training sparsity should be set to the smallest value possible.
In Fig. 3f, we analyze the effect of testing sparsity. This figure

reveals another interesting property. Even though τl = 64, we see
that the sharp increase in quality stops at around τt = 10, which is
the actual sparsity of the data set as discussed earlier. Intuitively one
expects the reconstruction quality to increase until τt = 64 since

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: June 2019.



A Unified Framework for Compression and Compressed Sensing of Light Fields and Light Field Videos • 1:11

this is the sparsity value we used for training. This shows that even
if we set the training sparsity to a value that is different from the
actual sparsity of the data set, we will still see results that obey the
true sparsity value. Figure 3g shows a similar trend as 3f, which is
expected since both parameters work together to define the number
of coefficients. The effect of the number of quantization partitions
used for Huffman coding is shown in Figure 3h. Indeed increasing
this value beyond a threshold does not contribute to quality, but
rather reduces the compression ratio. Finally, we also plot the effect
of training set size on the quality of reconstruction in Figure 3i. It
can be seen that the reconstruction quality does not improve with
more than 20% of the data points in the training set. The subset of
the data points used for training were selected uniformly at random.

The following remark will present guidelines for setting parame-
ter values in order to obtain a desired compression ratio or quality.

Remark 1. Most of the parameters are for the training. For τl , we
produce a plot of τl such as the one in Fig. 3e on a subset of the training
set. The plot clearly shows a suitable value for τl (e.g. τl ≈ 10 in Fig.

3e). Moreover, the parameters C and K only affect the training time

and reconstruction quality. Because the training is performed once, we

use largest values possible, as long as the training time is acceptable.

Nr and p do not have a significant effect on the quality of the ensemble.

Given the dictionary ensemble, the main parameter used for encoding

is ϵ , see Eq. (13). Since τt is an upper bound for sparsity, we can ignore

this parameter by setting τt =
∏n

j=1mj . However, in practice we set

τt to a smaller value since some data points may not be compressible.

6 RESULTS

In this section, we describe our results for compression of natural
light fields (Section 6.1) and natural light field videos (Section 6.2).
Results for compression of synthetic data sets are included in the
supplementary document accompanying this paper. Our method
(AMDE) is compared with K-SVD [Aharon et al. 2006], multidimen-
sional Discrete Cosine Transform (nD DCT), higher order singular
value decomposition (HOSVD), and CDF 9/7 wavelets [Cohen et al.
1992]. The K-SVD algorithm has been used previously for compres-
sion and compressed sensing of light fields [Marwah et al. 2013]
and BTF compression [Roland and Reinhard 2009]. The nD DCT
algorithm has been used as a sparsifying dictionary in [Kamal et al.
2016] for compressive light field photography. Moreover, HOSVD,
and other variants of tensor decomposition, have widely been used
in graphics for compression [Ballester-Ripoll and Pajarola 2016; Bil-
gili et al. 2011; Pajarola et al. 2013; Wang et al. 2005]. The JPEG2000
standard [Taubman and Marcellin 2013] uses CDF 9/7 wavelets for
sparse representation of images.

We use half-precision for storing input data sets, coefficients, and
the dictionaries used in all the methods above. After encoding a
data set using our method, we calculate the storage cost and set
the parameters for other methods so that the same storage cost is
achieved. We then measure the visual quality after decoding. The
coefficients are stored as value-location pairs, where we only store
nonzero coefficients. The storage cost is calculated according to
this model. Since we are interested in comparing the effectiveness
of different dictionaries, the results reported here do not utilize
quantization of the coefficients and Huffman coding, as described

in Section 3.4. Given that these two steps do not have a substantial
effect on quality (see Section (5) of the supplementary document),
the compression ratio can be significantly improved. Note that if
Huffman coding is performed, there is no need to store the location
of nonzero coefficients. For an overview of techniques for light field
coding see [Wu et al. 2017a].

The K-SVD algorithm trains a dictionaryD ∈ R
(
∏n

j=1mj )×κ(
∏n

j=1mj )

on one dimensional data points, where κ > 1 defines the overcom-
pleteness. The encoding stage calculates sparse coefficients using
Orthogonal Matching Pursuit (OMP) [Pati et al. 1993] by solving

x̂(i) = min
x

‖t(i) − Dx‖22 s.t. ‖x‖0 ≤ τ , (29)

for all data points t(i) = vec(T(i)). Since the size of vectorized data
points is very large, utilizing a greedy and fast algorithm such as
OMP is essential. Moreover, OMP has been shown to have strong the-
oretical guarantees [Chang and Wu 2014; Miandji et al. 2017; Tropp
2004]. Given the sparse coefficient vectors, decoding is achieved by

calculating t̂(i) = Dx̂(i). For HOSVD, we calculate the coefficient
tensor and the multidimensional dictionary for each patch, see (1).
The elements of the obtained coefficient tensor with smallest ab-
solute value are nullified until the target storage cost is achieved.
Note that in this method a multidimensional dictionary have to be
stored for each data point. Hence the storage cost for each data point
is τ +

∏n
j=1(mj )

2. The dictionary for CDF 9/7 is analytical, hence

there is no need to store it. However, this dictionary can only be
used for 2D data points. Therefore we create patches from light field
views. Each patch is projected onto CDF 9/7 and the coefficients
are nullified to achieve the target storage cost. The patch size and
the number of levels for CDF 9/7 is set for best image quality. The
nD DCT algorithm does not have any parameters and we use the
same nullification procedure that is used for other methods.
To measure reconstruction quality, we use Peak Signal to Noise

Ratio (PSNR), and SNR, defined respectively as

PSNR = 10 log10

(
l2

η

)
, SNR = 10 log10

(
1

Ntη

Nt∑
i

���T(i)
���2
F

)
.

where η is the mean square error. We also report results using two
perceptual image quality metrics. In particular, we use SSIM [Wang
et al. 2004] and LPIPS [Zhang et al. 2018], where the latter is a newly
proposed image quality metric using a deep neural network. Note
that LPIPS measures the distance between two images; hence, a
smaller value corresponds to a higher reconstruction quality. PSNR
and SNR are calculated over the entire data set, while SSIM and
LPIPS are calculated by taking the average of obtained values from
each angular image. Timing results were obtained using a machine
with four Xeon E7-4870, i.e. a total of 40 cores operating at 2.4GHz.
Encoding and decoding times are denoted te and td , respectively,
and measured in seconds.

6.1 Light Field

To evaluate our method for natural light fields, we use the Stanford
Lego Gantry data set2. The results are summarized in Fig. 4 and
Table 5, as well as the Section 6 of the supplementary document

2http://lightfield.stanford.edu/
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Lego Knights Bracelet Tarot Cards

Reference Reference Reference

AMDE AMDE AMDE

K-SVD K-SVD K-SVD

5D DCT 5D DCT 5D DCT

HOSVD HOSVD HOSVD

CDF97 CDF97 CDF97

Fig. 4. Visual quality comparison for a natural light field data set. Visual quality metrics and timing results are reported in Table 5 below. Moreover, Fig. 5

contains false color insets to facilitate image quality comparisons.

Table 5. Compression results for the natural light field data set. The storage cost is measured in megabytes (MB). The size of the K-SVD dictionary is 88MB,

while AMDE only requires 0.046MB. Encoding and decoding times are denoted te and td , respectively, and measured in seconds. Note that a smaller value for

LPIPS corresponds to a higher reconstruction quality.

Lego Knights (size: 384MB) Bracelet (size: 240MB) Tarot Cards (size: 384MB)

size PSNR SSIM LPIPS te td size PSNR SSIM LPIPS te td size PSNR SSIM LPIPS te td
AMDE 29.3 40.90 0.9725 0.012 124 1.2 18.1 39.90 0.9801 0.014 83 0.7 44.2 38.54 0.9731 0.004 122 1.2

K-SVD 29.3 38.39 0.9592 0.025 882 18 18.1 36.73 0.9734 0.018 556 12 44.3 38.81 0.9803 0.003 1651 18

5D DCT 29.3 37.24 0.9580 0.030 10.6 10.6 18.0 33.98 0.9624 0.034 6.7 6.4 44.3 34.53 0.9659 0.012 10.1 9.8

HOSVD 29.4 37.29 0.9547 0.032 2.3 1.2 18.1 32.31 0.9525 0.040 1.4 0.6 44.2 33.03 0.9600 0.013 2.3 1.1

CDF 9/7 29.0 33.71 0.9138 0.051 8 10 18.2 31.98 0.9387 0.040 5 6 44.3 29.17 0.8645 0.066 7 9

where we include false color insets. The insets were taken from the
first angular image of each light field. Among the available light
fields, we used the following for training: Chess, Lego Bulldozer,
Lego Truck, Eucalyptus Flowers, Amethyst, Bunny, Jelly Beans, and
Treasure Chest. The test set includes Lego Knights, Bracelet, and Tarot
Cards. The central 8 × 8 views of the light field were used to create
5D data points, wherem1 = 5,m2 = 5,m3 = 8,m4 = 8, andm5 = 3.
Training of AMDE was done using C = 16, K = 8, τl = 20, p = 128,
and Nr = 4000. During encoding we used ϵ = 5×10−5, ϵ = 5×10−5,

and ϵ = 7 × 10−5, respectively for the three light fields. Moreover,
the sparsity was set to 300, 390, and 412, respectively. The dictionary
for K-SVD was trained using τ = 20 and κ = 1.5. We did not observe
improvements in image quality by increasing κ. In addition, the
patch size for CDF 9/7 was set to 64 × 64 and we used 4 wavelet
levels.
Our method significantly outperforms other approaches except

for Tarot Cards, for which K-SVD achieves a marginally higher PSNR.
However, the size of the K-SVD dictionary is more than three orders
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Reference Reference Reference

AMDE AMDE AMDE

K-SVD K-SVD K-SVD

5D DCT 5D DCT 5D DCT

HOSVD HOSVD HOSVD

CDF97 CDF97 CDF97

Fig. 5. False color insets for Fig. 4 above.

of magnitude larger than AMDE. In fact the K-SVD dictionary is
two times larger than the resulting compressed data. This is a well-
known problem of K-SVD with regards to large data points and has
been addressed previously [Rubinstein et al. 2010], however, at the
cost of reducing the representative power of the dictionary. Apart
from dictionary size, encoding and decoding time is about 13 times
higher for K-SVD. Note that we have ignored the dictionary size of
K-SVD in computing the storage cost of compressed data in Table 5.
For Tarot Cards, the storage cost of our method for dictionary and
coefficient (combined) is about 33% of what is required by K-SVD.

6.2 Light Field Video

We used the Technicolor natural light field video data set [Sabater
et al. 2017] to evaluate our method, see Fig. 6. The data set consists
of multiple light field videos with an angular resolution of 4× 4. We
chose frames 50 to 150 of the Painter scene and frames 150 to 200
of the Trains scene in our experiments. Frames 50 to 100 of Painter
were used for training. The trained AMDE was used to compress all
the frames of both light field videos. The data set is very challenging
for compression since the disparity between adjacent views in each
frame is very large. In Fig. 9 we plot the disparity for the Painter
and Trains with respect to two adjacent horizontal views. As it can
be seen, the disparity can be up to 150 pixels. Since each data point
includes all the angular information, there exists high frequency
variations within each data point.

The results for light field video compression are demonstrated in
Fig. 6 and Table 6. The insets were taken frommoving objects, which
aremore challenging to reconstruct. False color insets corresponding

to Fig. 6 are included in Section 6 of the supplementary document.
The data point dimensionality was set tom1 = 10,m2 = 10,m3 = 4,
m4 = 4, m5 = 3, and m6 = 4. To train the AMDE, we set C = 4,
K = 32, τl = 100, p = 400, and Nr = 6000. The encoding for
both scenes was done using τ = 1024 and ϵ = 0.00015. The K-SVD
dictionary was trained on the same training set and with τ = 20
and κ = 1.5. Moreover, due to the large dictionary size and long
encoding time, we use a smaller spatial patch size of 8 × 8. For CDF
9/7 we used a patch size of 256×256 and 4 wavelet levels for Painter,
and a patch size of 512 × 512 and 3 wavelet levels for Trains.
While the PSNR and SSIM of K-SVD for Painter are competitive

with our method, the visual quality comparison shows that our
approach is more efficient in reconstructing animated objects. This
is due to the fact that the K-SVD dictionary is trained on vectorized
data points. Given that the data points contain temporal informa-
tion, the linear combination of dictionary atoms leads to ghosting
artifacts. A severe case of this effect can be seen in the middle inset
of Fig. 6g, where what is behind the painter is visible. We would
like to emphasize that here we have also ignored the dictionary size
of K-SVD in computing the storage cost; the size of the compressed
data for K-SVD in Table 6 does not include the dictionary size. Yet
our method shows higher image quality even though the combined
storage cost of coefficients and dictionary is about 68% of K-SVD.

Our method shows significantly higher image quality for Trains
compared to K-SVD. This is important because both methods were
trained on a subset of the Painter scene to compress a completely
different data set. Hence, AMDE shows more representative power
for sparse representation. HOSVD and 6D DCT suffer from ghosting
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(a) First angular images for frames 50, 87, and 120 of Painter (b) First angular images for frames 150, 175, and 200 of Trains

(c) Reference (d) Reference

(e) AMDE (f) AMDE

(g) K-SVD (h) K-SVD

(i) 6D DCT (j) 6D DCT

(k) HOSVD (l) HOSVD

(m) CDF 9/7 (n) CDF 9/7

Fig. 6. Visual quality comparison for natural light field videos. See Table 6 below for timing and image quality metric results. Moreover, Fig. 7 contains false

color insets to facilitate image quality comparisons. See the supplementary video for real-time playback of these two data sets, as well as synthetic light fields.

Table 6. Results for the natural light field video data sets. The storage cost is measured in megabytes (MB). Encoding and decoding times are denoted te and

td , respectively, and measured in seconds. Note that a smaller value for LPIPS corresponds to a higher reconstruction quality.

Painter (size: 20604MB) Trains (size: 10302MB)

size PSNR SNR SSIM LPIPS te td size PSNR SNR SSIM LPIPS te td dict. size (MB)

AMDE 941 38.25 27.40 0.9286 0.051 12436 572 809MB 37.00 29.39 0.9461 0.014 6688 301 0.063MB

K-SVD 942 38.12 27.27 0.9281 0.051 67235 1465 807MB 35.06 27.47 0.9283 0.018 93548 730 432MB

6D DCT 942 36.91 26.06 0.9189 0.080 489 532 807MB 35.29 27.71 0.9372 0.019 247 252 -

HOSVD 941 36.79 25.92 0.9147 0.068 792 555 807MB 35.20 27.60 0.9337 0.020 402 294 -

CDF 9/7 941 31.69 23.25 0.8222 0.210 974 371 1116MB 29.80 24.08 0.7461 0.190 486 223 -

and block artifacts. The results for CDF 9/7 are severely blurred.
It should be noted that only AMDE and HOSVD admit real-time
playback. AMDE achieves 40 frames per second on an NVidia Titan

Xp when rendered at the full spatial light field resolution. See the
supplementary video for the rendering performance of AMDE.
Finally, results for compressed sensing of Knights and Painter

data sets are shown in Fig. 8. The samples were taken uniformly
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(a) Reference (b) Reference

(c) AMDE (d) AMDE

(e) K-SVD (f) K-SVD

(g) 6D DCT (h) 6D DCT

(i) HOSVD (j) HOSVD

(k) CDF 9/7 (l) CDF 9/7

Fig. 7. False color insets for the Painter (left) and the Train (right) scenes corresponding to Fig. 6 above.

at random to construct a spike ensemble for each data point, as
described in Section 4. Moreover, the SL0 algorithm [Mohimani et al.
2009] was used for solving (18). We can see that using a sampling
ratio of at least 0.3 one can achieve acceptable visual quality. Note
that all the reported results are with non-overlapping patches. As
shown in [Marwah et al. 2013; Miandji et al. 2015], using overlapping
patches significantly improves image quality.

7 CONCLUSIONS AND FUTURE WORK

We presented a unified framework for compression and compressed
sensing of light fields. The proposed training based dictionary en-
semble is negligible in size, yet shows superior effectiveness for
sparse representation of light fields and light field videos. Addi-
tionally, the pre-clustering method proposed here enables training
on large data sets. We showed that this increase in efficiency is
accompanied with improved reconstruction quality. An important
property of our framework is the representation of the light field
data in its intrinsic dimensionality. Our empirical results show that
this approach leads to sparser coefficients. AMDE was also used for

compressed sensing. The theoretical results presented here provide
guidelines for improving AMDE for compressed sensing, as well as
designing effective consumer-level light field video cameras.
The empirical results obtained from a wide range of data sets

show the clear advantage of our method over the state-of-the-art.
In particular, our method overwhelmingly outperforms nD DCT,
HOSVD, and CDF 9/7 in image quality. In terms of computational
complexity, our method under performs during encoding. How-
ever, considering the large gap in image quality, we believe that
our method can be utilized in variety of applications. Moreover,
the encoding can be significantly accelerated using a GPU-based
implementation to achieve interactive encoding of light field videos.
Our method outperforms K-SVD in image quality for an overwhelm-
ing majority of data sets. In addition, encoding and decoding times
are significantly lower for AMDE. Furthermore, the size of AMDE
is orders of magnitude smaller than the dictionary trained by K-
SVD. The results reported in the supplementary document of this
paper shows the advantages of our method compared to deep learn-
ing and convolutional sparse coding methods for compression and
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Reference ratio=0.1, PSNR = 27.74dB, SSIM = 0.8383 ratio=0.2, PSNR = 33.48dB, SSIM = 0.9309

ratio=0.3, PSNR = 36.90dB, SSIM = 0.9586 ratio=0.5, PSNR = 42.13dB, SSIM = 0.9814 ratio=0.7, PSNR = 46.43dB, SSIM = 0.9913

Reference ratio=0.1, PSNR = 25.89dB, SSIM = 0.6629 ratio=0.2, PSNR = 34.82dB, SSIM = 0.8913

ratio=0.3, PSNR = 38.30dB, SSIM = 0.9345 ratio=0.5, PSNR = 41.81dB, SSIM = 0.9678 ratio=0.7, PSNR = 45.43dB, SSIM = 0.9866

Fig. 8. Visual results for compressed sensing of a natural light field (Lego Knights) and light field video (Painter).
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Fig. 9. Disparity maps for the data sets used in Fig. 6.

compressed sensing. In addition, due to the independence of the
proposed framework from data dimensionality, our method can be
readily applied to a variety of data sets used in computer graphics,
as well as new data sets to appear in the future. Preliminary results
of utilizing our framework for the compression of scene appear-
ance data sets (i.e. spherical light fields), as well as compressive
BRDF measurements for accelerating the capturing process of a
gonioreflectometer are reported in [Miandji 2018].

With respect to futurework, we believe that our theoretical results
can be significantly improved by replacing the mutual coherence
with another metric to tighten the bound on sparsity. For instance,
Restricted Isometry Property (RIP) has been previously used for
compressive spectral imaging [Arguello and Arce 2014]. In addition,
utilization of the theoretical results for the evaluation of existing
light field imaging systems, as well as deriving new designs for
efficient coded-aperture light field video cameras are left for future
work. Moreover, as suggested by a reviewer of this paper, an iterative
approach based on consecutive pre-clustering and AMDE training
is an interesting direction for research.
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