e-mail: krzma@itn.liu.se

för BI1, DE1, MK1

2005-02-04 kl. 8.00—10.00

Lösningar för kontrollskrivningen i linjär algebra TNIU 75

1. Naturligtvis löser vi systemet genom Gaussian elimination. Genom att multiplicera den första ekvationen med -2 och addera till den andra samt multiplicera den första med -1 och addera till den tredje får vi:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 - x_4 = 0 \\ -3x_2 + 2x_3 - 2x_4 = 2 \end{cases}$$

Genom att multiplicera den andra ekvationen i det sista systemet med 3 och addera till den tredje får vi

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 - x_4 = 0 \\ 2x_3 - 5x_4 = 2 \end{cases}$$

Ur detta kan vi lätt avläsa systemets lösning. Vi kan välja t.ex. x_4 som parameter: $x_4=t\in\mathbf{R}$ och då får vi: $x_3=1+\frac{5}{2}t,\,x_2=x_4=t,\,x_1=1-x_2-x_3-x_4=-\frac{9}{2}t.$

2. Först och främst måste vi
 konstatera att den sökta matrisen måste vara av typ $2\times 2.$ Ekvationen

$$\left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) X = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

kan lättast lösas om vi multiplicerar den ledvis från vänster med inversen till den vänstra matrisen , dvs. med

$$\left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right)^{-1} = \left(\begin{array}{cc} -4 & 3 \\ \frac{7}{2} & -\frac{5}{2} \end{array}\right).$$

Resultatet blir

$$\left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right)^{-1} \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) X = \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right)^{-1} \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

dvs

$$EX = X = \begin{pmatrix} -4 & 3 \\ \frac{7}{2} & -\frac{5}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}.$$

3. a) Vi måste visa att vektorerna \overrightarrow{f}_1 , \overrightarrow{f}_2 är linjärt oberoende, ty om de är linjärt oberoende så utgör de en bas i \mathbf{R}^2 (de spänner upp \mathbf{R}^2 då). Det syns direkt ty de är ej parallella. Formellt löser vi ekvationen

$$\lambda_1 \overrightarrow{f}_1 + \lambda_2 \overrightarrow{f}_2 = 0$$

med avseende på λ_i . Detta ger att

$$\lambda_1 (2\overrightarrow{e}_1 + \overrightarrow{e}_2) + \lambda_2 (3\overrightarrow{e}_1 + \overrightarrow{e}_2) = (2\lambda_1 + 3\lambda_2) \overrightarrow{e}_1 + (\lambda_1 + \lambda_2) \overrightarrow{e}_2 = \overrightarrow{0},$$

men eftersom vektorerna \overrightarrow{e}_1 , \overrightarrow{e}_2 är linjärt oberoende (de utgör ju en bas) så är den sista ekvationen ekvivalent med

$$\begin{cases} 2\lambda_1 + 3\lambda_2 &= 0\\ \lambda_1 + \lambda_2 &= 0 \end{cases}$$

vilket har enbart trivial lösning $\lambda_1 = \lambda_2 = 0$. Således, vektorerna \overrightarrow{f}_1 , \overrightarrow{f}_2 är linjärt oberoende.

b) Basbytematrisen från basen \mathbf{e} till basen \mathbf{f} är

$$T = \left(\begin{array}{cc} 2 & 3 \\ 1 & 1 \end{array}\right)$$

(koefficienterna av utveckling av \overrightarrow{f}_j i basen **e** utgör *j*-te kolonn i matrisen *T*). Om vektorn \overrightarrow{u} har koordinaterna (x_1, x_2) i basen **e** då har den i basen **f** koordinaterna (y_1, y_2) där

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = T \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} 2 & 3 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right)$$

i.e. sambandet blir: $x_1=2y_1+3y_2$, $x_2=y_1+y_2$, som är lätt att lösa med avseende på y_i : $y_1=-x_1+3x_2$, $y_2=x_1-2x_2$. På köpet får vi T^{-1} (varför?):

$$T^{-1} = \left(\begin{array}{cc} -1 & 3 \\ 1 & -2 \end{array} \right).$$

c) Vektor $\overrightarrow{v}=2\overrightarrow{e}_1-\overrightarrow{e}_2$ har i basen **e** koordinaterna $(x_1,x_2)=(2,-1)$. I den nya basen kommer den alltså ha koordinater

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = T^{-1} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$

(försök att rita situationen). Svaret kan lätt kollas, ty $-5\overrightarrow{f}_1 + 4\overrightarrow{f}_2 = -5(2\overrightarrow{e}_1 + \overrightarrow{e}_2) + 4(3\overrightarrow{e}_1 + \overrightarrow{e}_2) = \cdots = 2\overrightarrow{e}_1 - \overrightarrow{e}_2$.

- 4. a) Se boken.
 - b) Låt $\overrightarrow{w}=(a,b,c)$ blir den sökta vektorn (eller snarare dess representation i den nämnda ON-basen). Eftersom den skall bli ortogonal både mot \overrightarrow{u} och \overrightarrow{v} måste den uppfylla två villkor: $\overrightarrow{u} \cdot \overrightarrow{w} = \overrightarrow{0}$ och $\overrightarrow{v} \cdot \overrightarrow{w} = \overrightarrow{0}$. Dessa leder till följande ekvationssystem för a,b,c:

$$\begin{cases} a+4b+2c = 0 \\ 2a+3b-3c = 0 \end{cases}$$

som har lösningen (Gauss): $a = \frac{18}{5}t$, $b = -\frac{7}{5}t$, c = t. Det betyder att samtliga vektorer (och enbart dessa) som är parallella med vektorn (18, -7, 5) är ortogonala både mot \overrightarrow{u} och \overrightarrow{w} .