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ABSTRACT
Sparsity is an attribute present in a myriad of natural signals and
systems, occurring either inherently or after a suitable projection.
Such signals with lots of zeros possess minimal degrees of freedom
and are thus attractive from an implementation perspective in
wireless networks. While sparsity has appeared for decades in
various mathematical fields, the emergence of compressed sensing
(CS) – the joint sampling and compression paradigm – in 2006
gave rise to plethora of novel communication designs that can
efficiently exploit sparsity. In this monograph, we review several
CS frameworks where sparsity is exploited to improve the quality
of signal reconstruction/detection while reducing the use of radio
and energy resources by decreasing, e.g., the sampling rate, trans-
mission rate, and number of computations. The first part focuses
on several advanced CS signal reconstruction techniques along
with wireless applications. The second part deals with efficient
data gathering and lossy compression techniques in wireless sen-
sor networks. Finally, the third part addresses CS-driven designs
for spectrum sensing and multi-user detection for cognitive and
wireless communications.
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1
Introduction

Efficient data acquisition and signal reconstruction methods used for various
purposes in wireless communication systems have been under extensive re-
search and development for a while. One overarching design objective is to
improve the quality of reconstruction, classification, detection etc. while reduc-
ing the use of radio and energy resources by decreasing, e.g., the sampling rate,
transmission rate, and number of computations. Due to proliferation of the
number of deployed wireless devices and the amount of data, implementing
advanced signal processing techniques to achieve such objectives becomes of
particular interest for emerging multi-user communication systems.
One fundamental feature of a desired information signal that can provide
a solution to reach the aforementioned goal is signal sparsity. To this end,
the key tool for exploiting sparsity is the modern theory of compressed sens-
ing/compressive sampling (CS). Accordingly, this monograph reviews several
CS techniques to utilize the sparsity of an underlying signal in data gathering,
signal reconstruction and detection tasks in wireless networks. In Section 1,
we first give a general overview of the different communication frameworks
and applications addressed in the monograph. As a continuation, Section 1
elaborates signal sparsity and discusses how sparsity may be present or be-
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Communication Frameworks and Applications 3

come available in the considered frameworks. The main idea of CS is detailed
in Section 1. Finally, the outline of the monograph is given in Section 1.

Communication Frameworks and Applications

Cognitive Radio Communications: It has been recognized that the licensed
radio frequency (RF) spectrum is often severely under-utilized depending
on the time and location of communication, in spite of the evident scarcity
of the spectral resources due to the growing use of wireless devices [105].
Cognitive radios (CRs) aim to mitigate this issue by opportunistically utilizing
the unused licensed spectrum through spectrum sensing and dynamic spectrum
access in multi-user communication systems.
In particular, RF cartography is an instrumental concept for CR tasks [160].
Based on the measurements collected by spatially distributed CR sensors,
RF cartography constructs the maps over the space, time, and frequency,
portraying the RF landscape in which the CR network is deployed. Notable RF
maps that have been proposed include the power spectral density maps, which
acquire the ambient interference power distribution, revealing the crowded
regions that CR transceivers need to avoid [21]; and the channel gain maps,
which capture the channel gains between any two points in space, allowing CR
networks to perform accurate spectrum sensing and aggressive spatial reuse
[161]. By modelling the channel gains as the tomographic accumulations of
an underlying spatial loss field (SLF), the technique captures the attenuation
in the signal strength due to the obstacles in the propagation path.
Multi-User Detection: Multiuser detection (MUD) algorithms play a major
role for mitigating multi-access interference present in code-division multiple
access (CDMA) systems; see e.g., [288] and references therein. These well-
appreciated MUD algorithms simultaneously detect the transmitted symbols of
all active user terminals. Conventional techniques require knowledge of which
terminals are active and exploit no possible user (in)activity. In the design
of practical CDMA systems, one is also interested in saving bandwidth and
power resources. Such savings are possible by reducing the size of the required
spreading gain, which in turn reduces latency and energy consumption. This
may be enabled by a low activity factor (probability of each user being active)
in which case the system can be designed for spreading gains smaller than the
number of candidate users.
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4 Introduction

Sensor Monitoring: In near future, there will be a burgeoning demand for
the deployment of low-power smart sensors, especially to serve the myriad of
diverse internet of things (IoT) applications including environmental, indus-
trial, healthcare, and military monitoring tasks [316, 119, 213]. Accordingly,
wireless sensor networks (WSNs) consisting of battery-powered sensors will
be a key technology in creating the ubiquitous networked world and smart
cities under the IoT framework. IoT opens a new era of intelligent networking,
where collaborative sensors sense their environment with no human interven-
tion, enabling to, e.g., automate an underlying process, improve the system
performance, and reduce the maintenance costs. By 2020, the number of IoT
devices is anticipated to reach hundreds of billions and the IoT market to
become on the order of trillions of dollars, with a major portion on healthcare
applications [119, 213].
In a typical monitoring task, geographically distributed sensors measure a
correlated information source, encode the observations separately, and commu-
nicate the information to a sink for joint reconstruction of the source signals.
As the sensors have limited batteries, which are often non-rechargeable or
irreplaceable, it is crucial to minimize the energy consumption to prolong
the lifespan of a WSN. The main contributors to sensors’ energy consump-
tion are wireless communications [239], and in certain applications, also the
sensing/sampling part [6]. Consequently, it is crucial to minimize the amount
of information (i.e., the number of data packets or bits) that must be com-
municated from each sensor to the sink in order to satisfy given application
requirements. Accordingly, an energy-efficient sensor acquires a small number
of data samples of a physical phenomenon (e.g., temperature, humidity, or
light intensity), and encodes and communicates them at a minimum rate to the
sink to reconstruct the information signal with, e.g., a given fidelity or maxi-
mum allowed delay. This engenders the need for energy-efficient distributed
data gathering techniques that preserve autonomous operation of sensors and
have a simple infrastructure with low battery consumption and computational
complexity.

Signal Sparsity in the Considered Applications

Sparsity is an attribute present in a plethora of natural signals and systems,
occurring either naturally or after projecting them over appropriate bases. A
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Signal Sparsity in the Considered Applications 5

signal is said to be sparse if it has many zero-valued elements or can be repre-
sented by few non-zero coefficients under a proper transformation. Similarly,
a signal is termed compressible, if the energy of transform coefficients is
concentrated in a small set of elements. Focusing on sparse signal structures
is reasonable not only because nature itself is parsimonious but also because
processing and simple models with minimal degrees of freedom are attrac-
tive from an implementation perspective. Whereas sparsity is by default an
attribute defined for a single signal, it can be extended to characterize joint
sparse structures; see, e.g., the regression problems dealing with group sparsity
[314], and joint sparsity models introduced in [19].
Exploitation of sparsity is critical in a wide range of communication tasks.
Regarding the frameworks addressed in this monograph, utilization of sparse
signals has been investigated in the following applications.

• WSNs: Sparse signals are encountered in diverse WSN applications
in, e.g., environmental monitoring [19, 238], source localization [201],
and biomedical sensing [83]. For instance, universal transformations
suitable for revealing the underlying sparsity of many smooth/piecewise
smooth signals include the discrete Fourier, cosine, and wavelet trans-
form (DFT, DCT, DWT), respectively [202, 15, 36, 37]. In particular, the
efficacy of the DWT matrices in sparsifying signals of several natural
phenomena such as temperature, humidity, and light has been especially
reported in, e.g., [197, 37]. Sparsity in the sensed data allows to reduce
the computations of simple sensor devices, and most importantly, to
significantly reduce sensors’ energy consumption for communicating
the data to a fusion center [175, 176, 178]. One particular direction of
great interest is so-called quantized CS [129, 273, 333, 151, 180, 184,
182, 181] – a lossy compression setup where the CS measurements are
converted into finite-rate bit sequences, and the aim is to design efficient
quantization-aware CS reconstruction algorithms and analyze their rate-
distortion performance. Application requirements may demand as low
quantization rate as one bit per measurement sample, referred as 1-bit
CS [152].

• Cellular Networks: Sparsity has been utilized in, e.g., estimation of
wireless multipath channels [71, 275], estimation of parameters of com-
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6 Introduction

munication systems [53, 23, 9, 109], and sparse sphere decoding [277].
As for MUD algorithms, the sparsity arises because the active terminals
are unknown and the activity factor is low in a typical system [322].
Sparsity can be exploited to either relax or judiciously search over sub-
sets of the alphabet of the desired symbol vector so that the resultant
MUD algorithms trade off optimality in detection error performance
with computational complexity. Moreover, source localization based on
the DoA estimation typically involves sparsity in the angular domain
under certain radio propagation features [118, 201, 228].

• CR Applications: Distributed spectrum sensing for CR communica-
tions is a crucial task and has been addressed in, e.g., [20, 10, 212,
261]. In spectrum sensing, the sparsity manifests itself in two forms: 1)
narrow-band nature of transmit power spectral density relative to the
broad range of usable spectrum, and 2) sparsely located active radios in
the operational space [20]. This type of compressive wideband power
spectrum estimation allows to recover an unknown power spectrum of
a wide-sense stationary signal from samples obtained at a sub-Nyquist
rate [10], even if the samples were coarsely quantized sensors’ measure-
ments [212].

Another emergent topic in CR networks is RF cartography. In RF car-
tography, SLF may have a low-rank structure potentially corrupted by
sparse outliers [171]. Such a model is particularly appealing for urban
and indoor propagation scenarios, where regular placement of buildings
and walls renders a scene inherently of low rank, while sparse outliers
can pick up the artifacts that do not conform to the low-rank model. Ear-
lier works on sparsity-leveraging cartography include network anomaly
monitoring in [205].

Applications from other research fields which deal with sparse signals in-
clude variable selection in linear regression models for diabetes [278], image
compression [46], signal decomposition using overcomplete bases [61], and
more.
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The Concept of Compressive Sampling 7

The Concept of Compressive Sampling

Sampling Followed by Compression: The key principle underlying the data
sampling methods and analog-to-digital conversion in modern consumer de-
vices is the Nyquist-Shannon sampling theorem – the celebrated result of the
seminal works by Nyquist [227] and Shannon [259]. The theorem states that
if the sampling rate of a signal is at least twice its maximum frequency com-
ponent, the signal can be perfectly reconstructed. This threshold rate is called
the Nyquist rate. In a resource-limited digital sensor, the acquisition of signal
samples is typically followed by data compression which aims to encode the
information with fewer bits. Consequently, a substantial portion of expensively
acquired data is eventually discarded prior to storage or transmission. Fortu-
nately, if a signal has certain additional features, perfect reconstruction may be
possible even below the Nyquist rate. Namely, the inefficiency caused by the
separate sampling and compression may be alleviated by sub-Nyquist sampling
– an unorthodox paradigm violating the conventional sampling notion.
Compressive Sampling: A feature that enables sub-Nyquist sampling is the
sparsity/compressibility of a signal, discussed in Section 1. While sparsity has
been exploited for a while in numerical linear algebra, statistics, and signal
processing, renewed interest emerged in recent years because sparsity plays an
instrumental role in modern compressive sampling/compressed sensing (CS)
theory and applications [43, 87, 44, 146, 46, 38, 94, 17, 49]. CS is a joint
sampling and compression paradigm which enables a sparse/compressible
length-N signal to be accurately reconstructed from its M < N (random)
linear measurements. This engenders the sub-Nyquist sampling interpretation
of CS [217]: instead of sampling at a rate proportional to the signal bandwidth,
the sampling rate in CS is dictated by the signal’s "information content" [218].
The primary asset of CS is its simple and universal encoding since most
computational work load is shifted to the decoder [94]. As a rough comparison,
computational complexity at the encoder for CS scales as MN (at most for a
dense measurement matrix), whereas for a standard compression method like
fast Fourier transform it scales asN logN [112, Appendix C.1]. While for high-
dimensional signalsMN > N logN , the use of sparse measurements matrices
drastically reduces the computational and memory requirements for CS [28].
The other benefits of CS include robustness to measurement/quantization
noise, resiliency to packet losses, security via pseudorandom projections, and
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8 Introduction

the gradual improvement of reconstruction accuracy from increased number of
measurements [94]. All above benefits are especially beneficial for low-power
sensor applications.
A Historical Note: Prior to the CS era launched in 2006, there has already
been lots of research interest to tackle signal processing tasks involving sparse
signals. This becomes also evident in Table 1 of Section 2 where many pop-
ular present-day CS reconstruction algorithms trace back to early 1990’s.
Indeed, in a diversity of engineering applications, one encounters solving
ill-posed/underdetermined inverse problems, i.e., problems where the number
of available measurements is smaller than the dimension of the signal/model to
be estimated. Luckily, in many such practical situations, the encountered mod-
els have structural constraints similar to sparsity, i.e., they can be described by
only a few degrees of freedom relative to their ambient dimension or as linear
combinations of a few basic building blocks.
One cornerstone of the emerging area of CS is the notion of variable selection
(VS) associated with sparse linear regression [278]. VS is a combinatorially
complex task closely related (but not identical) to the well-known model
order selection problem tackled through Akaike’s information [2], Bayesian
information [258], and risk inflation [111] criteria. A typically convex function
of the model fitting error is penalized with the `0-norm of the unknown vector
which equals the number of nonzero entries, and thus accounts for model
complexity (degrees of freedom). To bypass the non-convexity of the `0-norm,
VS and CS approaches replace it with convex penalty terms (e.g., the `1-norm)
that capture sparsity but also lead to computationally efficient solvers. One
another line of work preceding the CS era is the concept "sampling signals
with finite rate of innovation" introduced in [289], which generalizes the
classic sampling theorem of bandlimited signals with sinc kernels. The rate of
innovation is a number that describes a finite number of degrees of freedom
(i.e., sparsity) per unit of time for certain classes of signals.

Outline of the Monograph

This monograph addresses several CS techniques to utilize sparsity of an un-
derlying signal in data gathering, signal reconstruction and detection tasks in
wireless networks. In this monograph, the "sub-Nyquist feature" of CS refers to
measuring an underlying (continuous-time) analog source via dimensionality
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Outline of the Monograph 9

reducing projections, which can be represented by discrete-time measurements
of form (1) (see also Fig. 1). Another line of work is analog-to-digital compres-
sion, where analog signals are encoded into bits via a combined sub-Nyquist
sampling and quantization process [162]. A hardware implementation of a
sub-Nyquist sampling system was presented in [215], and a unified Xampling
framework was introduced in [216].
This monograph is organized as follows. We first introduce fundamentals
of CS and give an overview about common reconstruction techniques of
sparse signals from compressed measurements in Section 2. After that, the
monograph is split into three parts as follows:

• The first part focuses on several advanced CS signal reconstruction
techniques along with wireless applications. Accordingly, Section 3
develops sparsity-aware recursive algorithms for estimating and tracking
sparse and (possibly time-varying) signals. Section 4 devises regularized
total least-squares algorithms under sparsity constraints for a perturbed
CS signal model, along with applying them to directions-of-arrival
estimation.

• The second part deals with efficient data gathering and lossy compres-
sion techniques in wireless sensor networks. Compressed acquisition of
streaming correlated data in WSNs is presented in Section 5. Section 6
and Section 7 consider CS signal acquisition setups under quantization
of measurements. Accordingly, Section 6 devises an efficient quantized
CS algorithm for distributed source coding of correlated sparse sources
in WSNs. Rate-distortion performance of a quantized CS setup is inves-
tigated in Section 7, including both information theoretic analyses and
the design of several types of practical quantized CS algorithms.

• The third part addresses CS-driven designs for spectrum sensing and
multi-user detection for cognitive and wireless communications. Sec-
tion 8 addresses channel gain cartography for CR networks under a
limited number of available measurements. Section 9 proposes efficient
sparsity-utilizing MUD algorithms in CDMA systems.

Finally, the monograph is concluded with the summary in Section 10.
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2
Fundamentals of Compressed Sensing

Compressed Sensing Basics

The standard CS problem is introduced herein. Let x ∈ RN be a real-valued
vector that can be represented in basis Ψ ∈ RN×N as x = Ψθ, where
θ = [θ1 · · · θN ]T is the transform domain coefficient vector. Vector x is
K-sparse in basis Ψ if θ has at mostK ≤ N non-zero entries, i.e., ‖θ‖0 ≤ K,
where ‖θ‖0 = |supp(θ)|, supp(θ) = {i|θi 6= 0, i = 1, . . . , N} is the support
of θ, and for a discrete set | · | denotes its cardinality. While many natural
signals are not exactly sparse, they are termed compressible, if the energy in
θ is concentrated, i.e., the ordered coefficients |θ(1)| ≥ . . . ≥ |θ(N)| exhibit a
power law decay satisfying |θ(i)| ≤ Cpi−p, i = 1, . . . , N , where p ≥ 1 affects
the rate of decay, and Cp is a constant depending only on p [38, 44, 145, 46,
81]. This signal class includes smooth and piecewise smooth signals, and
images with bounded variations [44, 38].
A CS based sensor acquires M ≤ N linear measurements y ∈ RM of x as

y = Φx = ΦΨθ, (1)

where Φ ∈ RM×N is a fixed (and known) measurement matrix. From the
compression perspective, it is desired that M << N . A CS measurement
setup for N = 9, M = 5, and K = 3 is illustrated in Fig. 1.
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Figure 1: A CS measurement setup for N = 9, M = 5, and K = 3.

For reconstruction, one seeks the sparsest x that is consistent with measure-
ments y. For M ≥ 2K, a measurement matrix Φ exists so that the optimal
solution can be found via a combinatorial (non-deterministic polynomial-time)
hard problem [112, Theorem 2.14]

θ̂ := argmin
θ̃

‖θ̃‖0 such that y = ΦΨθ̃, (2)

resulting in an estimate x̂ = Ψθ̂. Owing to the main result of CS, the sparsity-
promoting `0-term is replaced by its best convex approximation, the `1-norm,
and one solves the basis pursuit problem [45, 38, 46, 87, 44, 88, 16]

θ̂ := argmin
θ̃

‖θ̃‖1 such that y = ΦΨθ̃, (3)

yielding an estimate x̂ = Ψθ̂. Since (3) can be cast as a linear program, it can
be solved via polynomial-complexity solvers [81, 88]. Note that the encoding
(1) is universal in the sense that an appropriate Ψ is selected only in the
decoding stage (3).
Indeed, in the noise-free setup assumed above, CS holds promise to address
problems as fundamental as solving exactly under-determined systems of
linear equations when the unknown vector is sparse [39]. Variants of CS for
the “noisy setup” are rooted in the basis pursuit (BP) approach [61], which
deals with fitting sparse linear representations to perturbed measurements – a
task of major importance for signal compression and feature extraction. The
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12 Fundamentals of Compressed Sensing

Lagrangian form of BP is also popular in statistics for fitting sparse linear
regression models, using the so-termed least-absolute shrinkage and selection
operator (Lasso); see e.g., [278], [144], and references thereof. Least-squares
based variants of Lasso were developed in [7] for a recursive sensing setup,
and in [324] for a perturbed sensing setup.
Two essential properties of Φ and Ψ which play important roles in stable and
accurate CS signal recovery are the restricted isometry property (RIP) of ΦΨ
[39, 49, 93], [100, Sect. 1.4.2] and [112, Ch. 6], and the mutual coherence
between Φ and Ψ [88, 42, 49, 93] and [100, Sect. 1.4.3]. For instance, Φ with
i.i.d. Gaussian or binary entries is highly incoherent with any basis Ψ so that
the reconstruction in (3) is exact with high probability ifM ≥ C0Klog(N/K),
where C0 is a positive constant [17, 49] and [112, Ch. 1].

Compressed Sensing Reconstruction Methods

This section discusses briefly several main classes of the existing CS signal
reconstruction methods. The focus is on methods that are designed to recover
real-valued/analog signals or signals with high-precision numerical represen-
tations; CS methods that are devised to operate on quantized measurements
are discussed in Sections 6 and 7.
The conventional CS signal reconstruction methods are based on optimization
techniques that rely on certain assumptions on the knowledge of the underlying
sparsity model, signal dynamics, sensing setup etc. While the `1-minimization
(3) is admittedly the trademark of CS decoding, there exists a variety of sparse
signal reconstruction algorithms of different complexity and performance.
Table 1 highlights several categories of commonly used existing methods,
albeit with no purpose of serving as an exhaustive list. More algorithms can be
found in, e.g., [100, Sect. 1.6], [112, Sect. 1.3], [51, Sect. 1.3.2], and a recent
review paper [240].
Moreover, instead of sparse signal reconstruction, the principles of CS decod-
ing have also been utilized for support recovery of sparse signals; see, e.g.,
[290, 3, 246]. Formulating a support recovery problem as a multiple hypothesis
testing problem, estimation of a shared support of common sparse signals was
analyzed in [274].
Operating in a Compressed Domain: Besides the CS algorithms discussed
above, there exist also several other approaches and viewpoints to the compres-
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Compressed Sensing Reconstruction Methods 13

sive signal processing tasks, which, similarly to the ideology behind CS, aim
at utilizing sparse structures in an underlying signal to reduce costs related to,
e.g., data transmission, storage, and computations. With no purpose of making
any strict division between CS and its related frameworks, one important
class of compressed domain signal recovery is subspace methods. Matched
subspace detectors to detect subspace signals under subspace interference
and broadband noise were proposed in [255]. The authors in [101] introduced
a framework for robust and efficient recovery of signals lying in a union of
subspaces from a given set of samples. Instead of signal reconstruction, [299]
addressed the problem of subspace recovery, i.e., aiming at identifying the
particular subspace in which the signal lies in. Another class sharing design
objectives with CS is data reduction methods, which are not restricted to
sparse signals per se. Accordingly, a thorough treatment of sparse sensing for
statistical inference is presented in [63], dealing with an optimal design of
deterministic and structured sensing functions to achieve a targeted inference
accuracy using a few data samples of a given (possibly non-sparse) signal. The
authors in [56] introduced a convex optimization framework that incorporates
atomic norms as a means of efficient acquisition of signals consisting of a
few atoms. A data reduction technique, interval censoring, was proposed in
[222], where, by utilizing statistical distribution of sensor data, distributed
estimation of non-sparse sensor signals is possible by receiving measurements
from only a subset of sensors. Alternative methods of estimating a sparse pa-
rameter vector include two hyperparameter-free methods, SPICE and LIKES,
proposed in [270], which can circumvent a laborious search for appropriate
hyper-parameters of conventional sparse signal recovery problems.
This monograph: Owing to the fact that efficient reconstruction of sparse
signals has merits to, e.g., reduce energy consumption and computational
requirements in numerous wireless communication systems, the following two
sections – Section 3 and Section 4 – present advanced, general-purpose CS
based sparse signal reconstruction techniques, along with several interesting
wireless applications. The rest of the sections of the monograph deal with vari-
ous wireless applications of CS and present sophisticated CS data acquisition
and signal processing techniques tailored to each such framework.
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14 Fundamentals of Compressed Sensing

Table 1: Various classes of existing CS reconstruction algorithms.

Class Algorithm

Greedy methods

- Matching pursuit [203]
- Orthogonal matching pursuit [231]
- Iterative hard thresholding [31]
- Subspace pursuit [77]
- Compressive sampling matching pursuit (CoSaMP) [224]

Convex
optimization

- Basis pursuit [61]
- Basis pursuit denoising [61]
- Least absolute shrinkage and selection operator (Lasso) [278]
- The Dantzig selector [47]
- Total variation denoising [252]
- Atomic norm minimization [56]

Weighted-norm
minimization

- Focal underdetermined system solver (FOCUSS) [128]
- Iterative reweighted nonconvex `p-minimization (0 < p < 1) [60]
- Iterative reweighted `1-minimization [48]
- Iteratively reweighted least squares [214]
- Homotopy based reweighted `1-minimization [12]

Bayesian methods

- Sparse Bayesian learning [279, 301, 296]
- Bayesian CS [154]
- Fast Bayesian matching pursuit [257]
- MMSE estimation for CS [99, 235, 281] and [98, Sect. 11.5]

Message-passing
algorithms

- Approximate message-passing [89]
- Bayesian CS via belief propagation [18]
- Generalized approximate message-passing [156]

CS with prior
information

- Kalman filtered CS [284]
- Least squares CS residual [285]
- Modified CS / regularized modified CS [286]
- Regularized modified basis pursuit denoising [195]
- `1-`1-minimization and `1-`2-minimization [221, 321]
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3
Online Adaptive Estimation of Sparse Signals:

Where RLS Meets the `1-Norm

This section presents an advanced recursive signal reconstruction method for
CS. Motivated by the high complexity, increasing memory requirements, and
the lack of tracking capability that batch Lasso estimators face when pro-
cessing observations sequentially, a time-weighted Lasso (TWL) algorithm is
devised. Performance analysis reveals that TWL cannot estimate consistently
the desired signal support without compromising the rate of convergence. This
motivates the development of a time- and norm-weighted Lasso (TNWL)
scheme where the `1-norm weights are obtained from the recursive least-
squares (RLS) algorithm. The resultant algorithm consistently estimates the
support of sparse signals without reducing the convergence rate. To cope with
sparsity-aware recursive real-time processing, adaptive algorithms are also
developed to enable online coordinate descent solvers of TWL and TNWL
that provably converge to the true sparse signal in the time-invariant case. Sim-
ulated tests compare competing alternatives and corroborate the performance
of the devised algorithms in estimating time-invariant signals and tracking
time-varying signals under sparsity constraints.

16

The version of record is available at: http://dx.doi.org/10.1561/2000000107



Related Works 17

Related Works

Research on CS and variable selection (VS) has concentrated on batch process-
ing, and various algorithms for sparse linear regression are available. Those
include the basis pursuit and Lasso [278, 61], the Dantzig selector [47], and
the `2-norm constrained `1-norm minimizer [44]. CS and VS estimators are
nonlinear functions of the available observations which they process in a batch
form using iterative algorithms.
However, many sparse signals encountered in practice must be estimated
based on noisy observations that become available sequentially in time. For
such cases, batch signal estimators typically incur complexity and memory
requirements that grow as time progresses. In addition, the sparse signal may
vary with time both in its nonzero support, as well as in the values of its
nonzero entries. Due to these reasons, adaptive estimation of sparse signals
has also been considered. Sequential noise-free signal recovery was considered
in [200], and a sparsity-aware least mean-square (LMS) algorithm was pursued
in [138]. Sparsity-aware "RLS-like" algorithms were reported in [8], while
a framework combining Kalman filtering and CS can be found in [284]. For
more discussion on existing works on dynamic and recursive CS, see Section
5.

System Model and Problem Statement

Consider a vector xo ∈ RP which is sparse, meaning that only a few of its
entries xo(p), p = 1, . . . , P , are nonzero. Let Sxo := {p : xo(p) 6= 0} denote
its support, P1 := |Sxo | the number of non-zero entries, and P0 := P − P1.
Sparsity amounts to having P1 � P0. Suppose that such a sparse vector is to
be estimated sequentially in time from scalar observations obeying the linear
regression model

yn := hTnxo + vn, n = 1, . . . , N (4)

where hn ∈ RP is the regression vector at time n, and the additive noise vn is
assumed uncorrelated with hn, white, with mean zero, and variance σ2. The
goal is to develop sequential and adaptive estimators of xo that is a priori
known to be sparse, and perhaps slowly varying with n.
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18 Online Adaptive Estimation of Sparse Signals: RLS Meets `1

The least-squares (LS) criterion is the “workhorse” for linear regression analy-
sis [254, p. 658]. If yN := [y1, . . . , yN ]T and HN := [h1, . . . ,hN ]T , the LS
estimator of xo at time N solves the minimization problem

x̂LS
N := arg min

x∈RP
‖yN −HNx‖22. (5)

If N < P or HN is not full column rank, the problem in (5) does not admit a
unique solution. For such cases, minimizing also the `2-norm of x renders the
LS solver unique, and expressible as x̂LS

N = H†NyN , where † denotes matrix
pseudo-inverse defined as in, e.g., [127, p. 275].
In the sequential context considered herein, LS faces three challenges: i)
increasing memory requirements for storing yN and HN as N grows large;
ii) complexity of order O(P 3) per time instant n to perform the inversion in
H†N ; and iii) lack of capability to track possible variations of xo with n.
These challenges are met by the recursive least-squares (RLS) estimator ob-
tained as [254, Chap. 12]

x̂RLS
N := arg min

x∈RP

N∑
n=1

βN,n(yn − hTnx)2, N = 1, 2, . . . (6)

where the so-called “forgetting factor” βN,n describes one of the following
data windowing choices:

(w1) Infinite window with βN,n = 1. This choice is adopted for time-invariant
signals and, with proper initialization renders RLS equivalent to LS at
complexity O(P 2) per datum.

(w2) Exponentially decaying window with βN,n = βN−n, and 0 � β < 1.
With this choice, RLS downweighs old samples, and can track time-
varying signals.

(w3) Finite window with βN,n = 1 ifN−n ≤M−1 and βN,n = 0 otherwise.
Here, only the most recent M samples are utilized to form x̂RLS

N while
the rest are discarded.

The RLS estimator in (6) can be expressed recursively in terms of x̂RLS
N−1.

Supposing that {hn}Pn=1 are linearly independent, setting βN,n = 1, and
initializing this recursion with the LS solution for N − 1 = P , that is x̂RLS

N−1 =
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x̂LS
P , the RLS coincides with the LS for successive instants N > P , provided

that xo remains invariant [254, p. 740].
For N < P or when {hn}Pn=1 are linearly dependent, the RLS estimator can
be regularized by augmenting the LS cost with a scaled `2-norm of x [254, p.
739]. Specifically, the regularized RLS is

x̂RLS
N := arg min

x∈RP

[ N∑
n=1

βN,n(yn−hTnx)2 + γN‖x‖22
]
, N = 1, 2, . . . (7)

where γN > 0 is a pre-selected decreasing function of N that depends on
the selected window and its effect vanishes for large N . Clearly, for γN = 0
the regularized RLS in (7) reduces to the ordinary one in (6), but both do not
exploit the sparsity present in xo.
Sparse linear regression is a topic of intense research in the last decade and
Lasso is one of the most widely applied sparsity-aware estimators [278, 46].
The Lasso estimator is given by

x̂Lasso
N := arg min

x∈RP

[1
2‖yN −HNx‖22 + λ‖x‖1

]
. (8)

Thanks to the scaled `1-norm, the cost encourages sparse solutions [278]: the
larger the chosen λ is, the more components are shrunk to zero. Interestingly,
the Lasso performs well in sparse problems also when N < P , and the convex
`1-norm regularization which can afford efficient solvers when optimizing
(8) given batch data, performs similarly to its non-convex `0-norm counter-
part [44]. The question that arises is how the `1-norm regularization can be
effectively utilized in adaptive signal processing.
Specifically, given {yn,hn}Nn=1, we wish to develop recursive schemes to
estimate the sparse signal of interest with: i) minimal memory requirements;
ii) tracking capability; and iii) limited complexity.

Adaptive Pseudo-Real Time Lasso

Motivated by (6), a time-weighted Lasso (TWL) approach emerges naturally
to endow the batch Lasso in (8) with ability to handle sequential processing.
Specifically, the proposed TWL estimator is

x̂TWL
N := arg min

x∈RP
JTWL
N (x), N = 1, 2, . . . (9)
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where JTWL
N (x) := 1

2
∑N
n=1 βN,n(yn − hTnx)2 + λN‖x‖1. In addition to

windowing, note that λN is now allowed to vary with N .
Neglecting constant terms, the cost function in (9) can be re-written as

JTWL
N (x) = 1

2xTRNx− xT rN + λN‖x‖1 (10)

where

rN :=
N∑
n=1

βN,nynhn, RN :=
N∑
n=1

βN,nhnhTn . (11)

Due to data windowing, rN and RN can be updated recursively as [cf. (w1)-
(w3)]

(w1) : rN = rN−1 + yNhN , RN = RN−1 + hNhTN (12a)

(w2) : rN = βrN−1 + yNhN , RN = βRN−1 + hNhTN (12b)

(w3) : rN = rN−1 + yNhN − yN−MhN−M , (12c)

RN = RN−1 + hNhTN − hN−MhTN−M . (12d)

Relative to the batch Lasso in (8), any of the TWL updates in (12) offers mem-
ory savings. Clearly, choices (w2) and (w3) allow also the signal of interest to
vary slowly with time. With respect to RLS in (7), the TWL estimator inherits
the properties brought by the `1-norm, namely sparsity awareness and ability
to deal with under-determined systems (N < P ). Summarizing, the attractive
features of TWL are:

i) Reduced memory requirements with respect to batch Lasso.

ii) Improved performance relative to RLS when xo is sparse and time-
invariant;

iii) Enhanced tracking capability when xo is sparse and time-varying, relative
to batch Lasso and RLS for windows of size less than the dimension P
of xo.

Despite these attractive features, the main limitation of TWL is that a convex
program has to be solved per time N . While the RLS cost is differentiable,
and thus amenable to closed-form minimization, JTWL

N (x) is not. However,
initializing the convex program at time N with the solution x̂TWL

N−1 at time
N − 1 provides a “warm start-up,” which speeds up convergence to the
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optimum x̂TWL
N . For these reasons, TWL is a “pseudo-real time” algorithm.

Low-complexity real-time algorithms will be developed in Section 3. But for
now, it is worth checking TWL for consistency.

(In)Consistency of the TWL Estimator

Since the non-zero support of xo is unknown, and sparse vector estimators are
nonlinear functions of the data not expressible in closed form, performance
analysis is distinct from and far more challenging than that of LS estimators.
Consider for simplicity that xo is time-invariant for which (w1) is prudent
to adopt, and suppose that the regressors and noise satisfy these regularity
(ergodicity) conditions:

(r1) limN→∞
1
N

∑N
n=1 hnhTn = R∞ with probability (w.p.) 1, with R∞

positive definite; and

(r2) limN→∞
1
N

∑N
n=1 vnhn = rvh∞ w.p. 1.

If the noise vn and the regressors {hn} are mixing, which is the case for
most stationary processes with vanishing memory in practice, then (r1) and
(r2) are readily met. Since vn in (4) is zero mean and uncorrelated with hn,
the cross-covariance in (r2) vanishes. With rvh∞ = 0, it follows readily from
(4) that r∞ := limN→∞N

−1∑N
n=1 ynhn = R∞xo w.p. 1. Upon dividing

both sides of (10) by N and taking limits, (r1) and (r2) then imply that
limN→∞(1/N)JTWL

N (x) = (1/2)xTR∞x− xT r∞ := J∞(x) w.p. 1, if λN
is chosen to grow slower than N . In this case, as N → ∞ it holds that
x̂TWL
N = arg minx J

TWL
N (x) → arg minx J∞(x) := R−1

∞ r∞ = xo w.p. 1.
This proves the following result.

Proposition 1. For the model in (4) with (r1), (r2), and (w1) in effect, the
TWL estimator is strongly consistent, provided that λN is chosen to satisfy
limN→∞

λN
N = 0.

At this point it is instructive to recall that under the conditions of Proposition
1, the LS estimator x̂LS

N = R−1
N rN also converges w.p. 1 to xo = R−1

∞ r∞,
and is thus strongly consistent [167]. For this reason, to assess performance of
TWL and differentiate it from that of LS it is pertinent to consider sufficiently
large (but preferably finite) N for which the standard sparsity-agnostic LS is
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unable to accurately estimate the zero entries of xo. It is thus of interest to
check whether TWL can estimate jointly the nonzero support and the nonzero
entries of xo consistently for sufficiently large N . To this end, suppose that
the first P1 entries of xo are non-zero; i.e., Sxo := {1, . . . , P1}; and partition
accordingly the R∞ matrix as

R∞ =
(

R11 R10
R01 R00

)
.

Following the definitions in [103], support consistency amounts to having

lim
N→∞

Prob
[
Sx̂N = Sxo

]
= 1 (13)

and
√
N -estimation consistency requires convergence in distribution (→d),

that is √
N(x̂P1

N − xP1
o )→d N (0P1 , σ

2R−1
11 ) (14)

where xP1 denotes the P1×1 vector obtained by extracting the first P1 compo-
nents of x. Properties (13) and (14) are referred to as oracle properties because
a sparsity-aware estimator possessing these properties is asymptotically as
good as if the support Sxo was known in advance [103].
Under (w1), the TWL corresponds to a sequential version of the batch Lasso
estimator. Hence, asymptotic properties of the latter derived in [331, 167]
carry over to the TWL estimator introduced here.

Lemma 1. (See also [331, Prop. 1]). For the model in (4) with
(r1), (r2), and (w1) in effect, if limN→∞

λN√
N

= λ0 ≥ 0, then

limN→∞ Prob
[
Sx̂TWL

N
= Sxo

]
= c(λ0) < 1 with c(λ0) denoting an increas-

ing function of λ0.

In words, Lemma 1 asserts that if λN grows as
√
N , support consistency

cannot be achieved. Since c(λ0) increases with λ0, the hope for the TWL to
satisfy the oracle properties is left for cases wherein λN grows faster than√
N . Unfortunately, the next result discourages this.

Lemma 2. (See also [331, Lemma 3]). For the model in (4) with (r1), (r2),
and (w1) in effect, if limN→∞

λN√
N

= ∞ and limN→∞
λN
N = 0, then

limN→∞
N
λN

(x̂TWL
N − xo) = C, where C is a non-random constant.
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Lemma 2 states that if λN grows faster than
√
N but slower thanN , the rate of

convergence is N
λN

, that is slower than
√
N ; hence,

√
N(x̂TWL

N −xo) diverges.
Combining Lemmas 1 and 2, the following negative result holds for batch
Lasso and thus for TWL.

Proposition 2. For the model in (4) with (r1), (r2), and (w1) in effect, the
TWL estimator can not achieve the oracle properties for any choice of λN .

Before exploring alternatives to TWL that satisfy the oracle properties, one
remark is in order.
Remark 1. If instead of the convex `1-norm the LS cost is regularized with
suitably chosen non-convex functions of x, it is possible to construct sparsity-
aware estimators that asymptotically possess the oracle properties [103]. Of
course, the price paid is inefficient optimization due to non-convexity. These
considerations motivate searching for convex regularizing terms which result
in pseudo real-time Lasso estimators satisfying the oracle properties. Such a
class is developed next using the weighted `1-norm regularization, introduced
in [331, 332] for the batch Lasso.

Time- and Norm-Weighted Lasso

Let u(·) denote the step function, {µN} a positive sequence dependent on the
sample size, and a > 1 a constant tuning parameter. Based on these, define
the weight function wµN (·) : R+ → [0, 1] as

wµN (x) := [aµN − x]+
(a− 1)µN

u (x− µN ) + u (µN − x) (15)

where [α]+ := max(α, 0). UsingwµN , the proposed time- and norm-weighted
Lasso (TNWL) estimator weighs the `1-norm with coefficients depending on
the entries of xRLS

N ; that is,

x̂TNWL
N := arg minx∈RP

[1
2

N∑
n=1

βN,n(yn − hTnx)2

+λN
P∑
p=1

wµN
(
|x̂RLS
N (p)|

)
|x(p)|

]
, N = 1, 2, . . .

(16)

Fig. 2 shows the weight function wµN (x) for µN = 0.2 and a = 3.7. Notice
that while λN in TWL weighs identically all summands |x(p)| in the `1-norm,
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Figure 2: Weight functions for TWL and TNWL estimators.

the TNWL estimator places higher weight to small entries, and lower weight
to entries with large amplitudes. In fact, RLS estimates of size less than µN
are penalized as in TWL, while estimates between µN and aµN are penalized
in a linearly decreasing manner. Finally, RLS estimates larger than aµN are
not penalized at all (cf. Fig. 2).
It is worth recalling at this point that albeit sparsity-agnostic, the RLS estimator
is
√
N -estimation consistent [167], that is

√
N(x̂RLS

N − xo)→d N (0, σ2R−1
∞ ). (17)

Based on (17), it is possible to establish the following result.

Proposition 3. (See also [332, Theorem 4]). For the model in (4), with (r1),
(r2), and (w1) in effect, if limN→∞

λN√
N

= ∞, limN→∞
λN
N = 0 and µN =

λN
N , the TNWL estimator satisfies the oracle properties (13) and (14).

Weighted `1-norm regularization was introduced in [48], [331], and [332] using
different weight functions to effect sparsity and satisfy the oracle properties of
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the batch weighted Lasso estimator. The weight function in (15) corresponds
to the local linear approximation of the smoothly clipped absolute deviation
regularizer introduced by [332]. The difference here is its coupling with RLS
to ensure consistency of the devised adaptive TNWL estimator.
Next, the implications of Propositions 2 and 3 are demonstrated through
simulated tests.

Numerical Examples

Gaussian observations are generated according to (4) with a time-invariant
xo, P = 30, P1 = 3, vn ∼ N (0, σ2), σ2 = 10−1, hn ∼ N

(
0P , 1

P IP
)

and

infinite windowing as in (w1). The penalty scale is set to λN =
√

2σ2N logP
for the TWL (see also [331]), and λN =

√
2σ2N

4
3 logP for TNWL with

µN = λN
N and a = 3.7. The first three entries of xo are chosen equal to

unity, and all other entries are set to zero. Fig. 3 depicts the mean-square
error (MSE), E[‖x̂N − xo‖2], across time for the TWL, TNWL, and RLS
along with what is termed genie-aided (GA) RLS, which knows in advance the
support and performs standard RLS to estimate the non-zero components. The
convex optimization problem per time N is solved using the SeDuMi package
[271] interfaced with Yalmip [193]. Observe that while TWL outperforms
RLS, it is outperformed by TNWL, whose performance approaches that of the
GA-RLS benchmark. Indeed, the TNWL does achieve the oracle properties in
the considered simulation setting.
Next, Gaussian observations are generated according to (4) with a time-varying
xo (henceforth denoted as xn), and parameters P = 30, P1 = 3, vn ∼
N (0, σ2), σ2 = 10−1, and hn ∼ N

(
0P , 1

P IP
)

. A Gauss-Markov model is
assumed for xn; that is, xn(p) = αxn−1(p) + wn(p) with x0(p) ∼ N (0, 1),
α = 0.99, and wn(p) ∼ N

(
0, 1− α2) for p = 1, 2, 3. Without loss of gener-

ality, (w2) is adopted with β = 0.9, and λN =
√

2σ2 logP
√∑N

n=1 β
2(N−n)

for both TWL and TNWL and µN = λN∑N

n=1 β
N−n

. Clearly, in a time-varying

setting these estimators are not expected to achieve the consistency properties
established when xo remains time-invariant. Fig. 4 depicts the squared error
(SE) for a realization of the RLS, GA-RLS, TWL and TNWL. In the consid-
ered setting, TWL and TNWL perform similarly and both outperform RLS
while approaching the performance of the GA-RLS benchmark.
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Figure 3: MSE comparisons of pseudo real-time estimators (time-invariant xo).

Next, Gaussian observations are generated according to (4) with a time-varying
xn, and parameters P = 30, P1 = 3, vn ∼ N (0, σ2), σ2 = 10−2, and hn ∼
N
(
0P , 1

P IP
)

. A Gauss-Markov model is assumed for xn with α = 0.995,
and (w3) windowing is adopted. For brevity, only the regularized RLS in (7)
with constant γN is shown along with the TWL estimators. In Fig. 5, two
window sizes of length M = 15 and M = 30 are simulated. Interestingly,
while RLS with M = 30 outperforms RLS with M = 15, TWL with M = 15
outperforms TWL with M = 30 and achieves the overall best performance.
In fact, TWL performs well even for small window sizes, M < P , when
the signal of interest is sparse. Thus, TWL exhibits better tracking capability
than RLS which requires longer window size, and thus can track signals with
slower variations.

Adaptive Real-Time Lasso

As mentioned earlier, TWL and TNWL estimators are not suitable for real-time
implementation. In this section, online algorithms are developed and analyzed.
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Figure 4: Squared error comparisons of pseudo real-time estimators (time-varying xn with
exponentially decreasing window).

The vector iterates developed in the next subsection provide online solvers
of (9) and (16), admit a closed-form solution per iteration, and are proved
convergent to xo when the unknown vector is time-invariant. For notational
brevity, the algorithms are developed for the TWL estimator but carry over to
TNWL as well.

Online Coordinate Descent

One approach to finding the solution x̂TWL
N in (9) is to run a cyclic coordinate

descent (CCD) algorithm, which in its simplest form entails cyclic iterative
minimization of JTWL

N (x) in (10) with respect to one coordinate per iteration
cycle. Let x(i−1)

N denote the solution at time N and iteration i − 1. The pth
variable at the ith iteration is updated as

x
(i)
N (p) := arg minx JTWL

N ( x(i)
N (1), . . . , x(i)

N (p− 1), x,
x

(i−1)
N (p+ 1), . . . , x(i−1)

N (P ))
(18)
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Figure 5: Squared error comparisons of pseudo real-time estimators (time-varying xn with
finite window).

for p = 1, . . . , P . During the ith cycle each coordinate (here the pth) is
optimized, while the pre-cursor coordinates (those with p′ < p) are kept fixed
to their values at the ith cycle, and the post-cursor coordinates (those with
p′ > p) are kept fixed to their values at the (i− 1)st cycle.
Albeit convex, the cost JTWL

N (x) is non-differentiable. Nonetheless, conver-
gence of the CCD algorithm for Lasso-type problems follows readily using
the results of [280]. In addition to affording effective initialization (with the
all-zero vector), another attractive feature of CCD Lasso solvers is that each
coordinate-wise minimizer is available in closed form. Recent comparative
studies show that CCD exhibits computational complexity similar (if not
lower) than state-of-the-art batch Lasso solvers and is numerically stable [115,
308].
The online coordinate descent (OCD) algorithm introduced next can be viewed
as an adaptive counterpart of CCD Lasso, where a new datum is incorporated
at each iteration; that is, the iteration index (i) in CCD is replaced in OCD by
the time index N . The challenge arises because the cost function changes with

The version of record is available at: http://dx.doi.org/10.1561/2000000107



Adaptive Real-Time Lasso 29

N . The crux of OCD is to update only one variable per datum in the spirit of
e.g., the partial least mean-squares (PLMS) algorithm [198]. Notwithstanding,
PLMS is a sparsity-agnostic first-order algorithm, whereas OCD is sparsity-
cognizant, it capitalizes on second-order statistics similar to RLS, and it is
also provably convergent.
For notational convenience, express the time index as N = kP + p, where
p ∈ {1, . . . , P} corresponds to the only entry of x to be updated at time N ,
and k = dNP e − 1 indexes the number of cycles; that is, how many times the
pth coordinate is updated. Let x̂OCD

N−1 denote the solution of the OCD algorithm
at time N − 1 and x̂OCD

N (q) = x̂OCD
N−1(q) for q 6= p, which amounts to setting

all but the pth coordinate at time N equal to those at time N −1, and selecting
the pth one by minimizing JTWL

N (x); that is,

x̂OCD
N (p) := arg minx JTWL

N ( x̂OCD
N−1(1), . . . , x̂OCD

N−1(p− 1), x,
x̂OCD
N−1(p+ 1), . . . , x̂OCD

N−1(P )). (19)

In the cyclic update (19), the pre-cursor coordinates {x̂OCD
N−1(q), q < p} have

been updated k + 1 times, while the post-cursor entries {x̂OCD
N−1(q), q > p}

have been updated k times.
After isolating from JTWL

N (x) only terms which depend on the pth coordinate
that is currently optimized, recursion (19) can be rewritten as (cf. (9))

x̂OCD
N (p) = arg min

x

[1
2RN (p, p)x2 − rN,px+ λN |x|

]
(20)

rN,p := rN (p)−
∑
q 6=p

RN (p, q)x̂OCD
N−1(q). (21)

Being a scalar optimization problem, it is well known that the minimization
problem in (20) accepts a closed-form solution, namely [115]

x̂OCD
N (p) = sgn(rN,p)

RN (p, p)
[
|rN,p| − λN

]
+. (22)

Equation (22) amounts to a soft-thresholding operation that sets to zero inac-
tive entries, thus facilitating convergence to sparse iterates. The OCD-TWL
scheme is tabulated as Algorithm 1.
Convergence of OCD-TWL is established in Appendix A, and the main result
can be summarized as follows.
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Algorithm 1 OCD-TWL

Initialize with x̂OCD
0 = 0, p = 1, . . . , P

for k = 0, 1, . . . do
for p = 1, . . . , P do

S1. Acquire datum yN , and regressor hN , N = kP + p.
S2. Obtain rN and RN as in (11).
S3. Set x̂OCD

N (q) = x̂OCD
N−1(q) for all q 6= p.

S4. Compute rN,p via (21).
S5. Update x̂OCD

N (p) as in (22).
end for

end for

Proposition 4. For the model in (4) with (r1), (r2), and (w1) in effect, if
limN→∞

λN
N = 0, it holds w.p. 1 that limN→∞ x̂OCD

N = xo.

In words, Proposition 4 asserts that the OCD-TWL estimator is strongly
consistent.

Online Selective Coordinate Descent

The OCD-TWL solver has low complexity but may exhibit slow convergence
since each variable is updated every P observations. But since P1 � P0 due
to sparsity, most of the time OCD-TWL re-sets to zero inactive entries of
xo. On the other hand, updating zero variables cannot be skipped a priori
since new nonzero entries may arise in time-varying scenarios. To address this
dilemma, it is prudent to select which coordinate to update. A related selective
approach has been pursued for batch Lasso in [308], and is extended here to
the following OCD solver.
Let depJ

TWL
N (x̂OSCD

N−1 ) and d−epJ
TWL
N (x̂OSCD

N−1 ) denote the forward and back-
ward directional derivatives w.r.t. x(p) evaluated at x̂OSCD

N−1 , which denotes
the online selective coordinate descent (OSCD) estimate at time N − 1. De-
fine also the vectors d+,d− ∈ RP whose pth entries are depJ

TWL
N (x̂OSCD

N−1 )
and d−epJ

TWL
N (x̂OSCD

N−1 ), respectively. It is not difficult to verify that (see also
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Algorithm 2 OSCD-TWL

Initialize x̂OSCD
0 = 0, p = 1, . . . , P .

for N = 1, 2, . . . do
S1. Acquire datum yN , and regressor hN .
S2. Evaluate d+ and d− as in (23) and (24).
S3. Select p∗ = arg minp{d+(p), d−(p)}Pp=1.
S4. Update x̂OSCD

N (q) = x̂OSCD
N−1 (q) for all q 6= p∗.

S5. Compute rN,p∗ via (21).
S6. Update x̂OSCD

N (p∗) as in (22).
end for

[308])

d+ = RN x̂OSCD
N−1 − rN + λNs+ (23)

d− = rN −RN x̂OSCD
N−1 + λNs− (24)

with s+, s− ∈ RP , s+(p) = 1 if x̂OSCD
N−1 ≥ 0 and s+(p) = −1 otherwise;

while s−(p) = 1 if x̂OSCD
N−1 ≤ 0, and s+(p) = −1 otherwise. After evaluating

(23) and (24), the coordinate with the most negative directional derivative, ei-
ther forward or backward, is updated. The OSCD-TWL scheme is summarized
as Algorithm 2.
Remark 2. A subgradient-based LMS-like is developed in [8] for sparsity-
aware online estimation. However, subgradient methods are first-order algo-
rithms that posses slow convergence. For this reason, the OCD and OSCD
alternatives developed here should be preferred.

Complexity Issues

Recall that the RLS algorithm requires O(P 2) algebraic operations per datum.
On the other hand, the OCD-TWL Algorithm 1 requires rN,p, whose compu-
tational burden is O(P ) given RN and rN . As far as OSCD is concerned, the
selection step requires evaluation of d+ and d− whose computation entails
O(PP1,N ) algebraic operations, where P1,N denotes the number of non-zero
entries of x̂OSCD

N . However, the overall computational burden of the OCD-
TWL algorithm is dominated by the update of RN , which requires O(P 2)
algebraic operations. In this general case, the OCD (OSCD) can be imple-
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Algorithm 3 OCCD-TWL

Initialize x̂OCCD
0 = 0, p = 1, . . . , P

for N = 1, 2, . . . do
S1. Acquire datum yN , and regressor hN .
S2. Obtain rN and RN as in (11).
for p = 1, . . . , P do

S3. Evaluate rN,p = rN (p)−
∑
q 6=pRN (p, q)x̂OCCD

N−1 (q)
S4. Update x̂OCCD

N (p) via (22).
end for

end for

mented cyclically to update each coordinate per datum without affecting the
overall complexity in order to speed up convergence. We summarize the online
cyclic coordinate descent (OCCD) TWL as in Algorithm 3.
An important simplification which appears in problems such as system iden-
tification and beamforming is that regressors are sliding with time; that is
hn := [h(n), h(n− 1), . . . , h(n− P + 1)]T with h0 = 0P . In this case, RN

updates and the RLS estimates incur complexity O(P ) [254, p. 816], [295].
Likewise, OCD-TWL and OSCD-TWL in Algorithms 1 and 2 can be also
implemented with complexity O(P ).
Same conclusions can be drawn for online implementations of the TNWL
through OCD or OSCD. In a nutshell, the devised online algorithms entail
complexity analogous to RLS.

Simulated Tests

The online algorithms developed in Section 3 are simulated here and compared
with the TWL and TNWL algorithms of Section 3 and also with the RLS in
both time-invariant as well as time-varying scenarios.
Gaussian observations are generated according to (4) with a time-invariant
xo, P = 30, P1 = 3, vn ∼ N (0, σ2), σ2 = 10−1, hn ∼ N

(
0P , 1

P IP
)

,
and windowing as in (w1). The first three entries of xo are chosen equal to
unity, and all other entries are set to zero. Fig. 6 depicts the MSE of the OCD-
TWL, OCCD-TWL, OSCD-TWL, and TWL versus time. The scale is set to
λN =

√
2σ2N logP . As expected, the OCD-TWL converges to the TWL
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Figure 6: MSE comparisons of online estimators (time-invariant xo).

which requires the solution of a convex program per time N . Similar results
hold for the OCCD-TWL and OSCD-TWL algorithms that also provide a
means of enhancing the convergence speed.
Fig. 7 depicts the MSE of the OCD-TNWL, OCCD-TNWL, OSCD-TNWL,

and TNWL versus time. The scale is set to λN =
√

2σ2N
4
3 logP with

µN = λN
N and a = 3.7 Also in this case the online algorithms converge to

their pseudo real-time counterparts.
Next, Gaussian observations are generated according to (4) with a time-varying
xn, and parameters P = 30, P1 = 3, vn ∼ N (0, σ2), σ2 = 10−1, and
hn ∼ N

(
0P , 1

P IP
)

. A Gauss-Markov model is assumed for xn with entries
generated according to xn(p) = αxn−1(p) + wn(p) with x0(p) ∼ N (0, 1),
α = 0.99, and wn(p) ∼ N

(
0, 1− α2) for p = 1, 2, 3; (w2) is adopted

with β = 0.9, and scale λN =
√

2σ2 logP
√∑N

n=1 β
2(N−n). Fig. 8 shows

a realization of the squared error (SE) for the OCD-TWL, OCCD-TWL,
OSCD-TWL, TWL, and RLS. The OCD-TWL exhibits performance simi-
lar to that of the RLS. Indeed, updating one coordinate per observation in
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Figure 7: MSE comparisons of online weighted-norm estimators (time-invariant xo).

time-varying settings weakens tracking capabilities [198]. However, the per-
formance OCCD-TWL and OSCD-TWL approaches that of TWL, and both
outperform the RLS algorithm.
Successively, simulated tests are performed to assess performance when the
support of xn changes with time. The setting in this example is identical to
that of Fig. 8, except that here the support of the sparse xn also undergoes step
changes. Specifically, at N = 125 the third entry of xn starts decreasing, and
after N = 150 the same entry is set to zero. In addition, at N = 125 the fourth
entry becomes nonzero. Fig. 9 and 10 depict, respectively, the true variations
of xn(3) and xn(4) across time, along with their estimates obtained using the
RLS, the OCCD-TWL, and the OCCD-TNWL with µN = λN∑N

n=1 β
N−n

and

a = 3.7. Observe that the developed sparsity-aware algorithms can set to zero
inactive entries while RLS estimates are not sparse and yield a nonzero value
even if the true entry is zero. Moreover, after a few instants from the changing
support points, the developed algorithms are able to track entries that become
nonzero, and are further able to set to zero entries that disappear.
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Figure 8: Squared error comparisons of online estimators (time-varying xn with exponentially
decreasing window).

Finally, the developed algorithms are tested for identifying the sparse, finite
impulse response of a discrete-time, linear system using input and noisy output
data satisfying the input-output relationship

yn =
P−1∑
p=0

hpxn−p + vn = xTnho + vn, n = 1, . . . , N (25)

where ho := [h0, . . . , hP−1]T collects the unknown impulse response coeffi-
cients, xn := [xn, . . . , xn−P+1]T denotes the given input data (the regressor
vector in (4)), and yn the output at time n. As the system order maybe un-
known, a large known upper bound P is selected. Since many entries of ho
maybe zero or negligible, the impulse response is sparse. In addition, nonzero
entries may exhibit slow time variations, which gives rise to a time-varying
impulse response hn. To assess performance of the introduced algorithms, a
system with P = 128 and P1 = 6 nonzero entries at unknown locations is
simulated. The input sequence is assumed zero-mean, white, Gaussian, with
unit variance, and vn ∼ N (0, σ2) with σ2 = 10−2. RLS, OSCD-TWL, and
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Figure 9: Trajectory of a varying entry of the true signal vector and its estimates across time
(tracking of a disappearing entry).

OSCD-TNWL are tested along with the GA-RLS for an exponential window
with β = 0.95. Since the regressors here are shift-invariant, all algorithms
incur computational burden that scales linearly with P . The impulse response
is generated according to a first-order Gauss-Markov process with α = 0.999.
The tuning parameters of the OSCD-TWL and OSCD-TNWL have been cho-
sen as in Fig. 9. Fig. 11 depicts the MSE (averaged over 100 realizations)
across time. It is clear that both OSCD-TWL and OSCD-TNWL outperform
the RLS. In particular, the gain of the OSCD-TNWL is more than one order
of magnitude.

Conclusions

In this section, recursive algorithms were developed for estimation of (possibly
time-varying) sparse signals based on observations that obey a linear regression
model, and become available sequentially in time. The presented TWL and
TNWL algorithms can be viewed as `1-norm regularized versions of the
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Figure 10: Trajectory of a varying entry of the true signal vector and its estimates across time
(tracking of an emerging entry).

RLS. Simulations illustrated that TWL outperforms the sparsity-agnostic RLS
scheme when estimating time-invariant and slowly-varying sparse signals.
Moreover, the presented algorithms exhibit enhanced tracking capability with
respect to RLS especially for short observation windows. Performance analysis
revealed that TWL estimates cannot simultaneously recover the signal support
and maintain convergence of RLS. This prompted the development of TNWL,
which for proper selection of design parameters can achieve oracle consistency
properties for time-invariant sparse signals. However, TWL and TNWL require
solving a convex problem per time step, and may be less desirable for real-
time applications. To overcome this limitation, low-complexity sparsity-aware
online schemes were also developed. The crux of these schemes is a novel
optimization algorithm that implements the basic coordinate descent iteration
online. Albeit simple, the resulting OCD-TWL (OCD-TNWL) algorithm was
proved convergent when the sparse signal is time invariant. At complexity
comparable to OCD-TWL (OCD-TNWL) but with improved convergence
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Figure 11: MSE comparison of adaptive algorithms for estimating a sparse, linear, time-varying
impulse response.

speed, online selective variants choose the best coordinate to optimize and
exhibit performance similar to the pseudo real-time TWL (TNWL).
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4
Sparsity-Cognizant Total Least-Squares for

Perturbed Compressive Sampling

In line with Section 3, this section mainly focuses on devising sophisticated
signal reconstruction techniques for CS, while also applying the methods to
wireless applications to assess their performance. The considered framework
rests on the observation that solving linear regression problems based on the
total least-squares (TLS) criterion has well-documented merits in various
applications, where perturbations appear both in the data vector as well as in
the regression matrix. However, conventional TLS approaches do not account
for sparsity possibly present in the unknown vector of regression coefficients.
On the other hand, sparsity is the key attribute exploited by modern CS and
VS approaches to linear regression, which include noise in the data, but do not
account for perturbations in the regression matrix. This section fills this gap by
formulating and solving (regularized) TLS optimization problems under spar-
sity constraints. Near-optimum and reduced-complexity suboptimum sparse
(S-) TLS algorithms are developed to address the perturbed CS (and the related
dictionary learning) challenge, when there is a mismatch between the true and
adopted bases over which the unknown vector is sparse. The developed S-TLS
schemes also allow for perturbations in the regression matrix of the Lasso, and
endow TLS approaches with ability to cope with sparse, under-determined
“errors-in-variables” models. Interesting generalizations can further exploit

39
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prior knowledge on the perturbations to obtain novel weighted and structured
S-TLS solvers. Analysis and simulations demonstrate the practical impact
of S-TLS in calibrating the mismatch effects of contemporary grid-based ap-
proaches to cognitive radio sensing, and robust direction-of-arrival estimation
using antenna arrays.

Related Works

Traditional CS, basis pursuit (BP), and Lasso-based approaches do not account
for perturbations present in the matrix of equations, which in the BP (respec-
tively Lasso) parlance is referred to as the representation basis or dictionary
(correspondingly regression) matrix. Such perturbations appear when there
is a mismatch between the adopted basis matrix and the actual but unknown
one – a performance-critical issue in, e.g., sparsity-exploiting approaches to
localization, time delay, and Doppler estimation in communications, radar, and
sonar applications [117], [201], [228], [23], [9]. Performance analysis of CS
and BP approaches for the partially-perturbed linear model with perturbations
only in the basis matrix, as well as for the fully-perturbed one with perturba-
tions present also in the measurements, was pursued in [148], [64], and [55].
However, devising a systematic approach to reconstruct sparse vectors under
either type of perturbed models was left open.
Interestingly, for non-sparse over-determined linear systems, such an approach
is available within the framework of TLS – the basic generalization of LS
tailored for fitting fully-perturbed linear models [283]. TLS and its variants
involving regularization with the `2-norm of the unknown vector [76], have
found widespread applications in diverse areas, including system identification
with errors-in-variables (EIV), retrieval of spatial and temporal harmonics,
reconstruction of medical images, and forecasting of financial data [209]. TLS
was also utilized by [70] for dictionary learning, but the problem reduces to
an over-determined linear system with a non-sparse unknown vector. Unfortu-
nately, TLS approaches, with or without aforementioned regularization terms,
cannot yield consistent estimators when the linear model is under-determined,
nor they account for sparsity present in the unknown vector of regression
coefficients.
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System Model and Problem Statement

Consider the under-determined linear system of equations, y = Cθo, where
the unknown n × 1 vector θo is to be recovered from the given m × 1 data
vector y and the m × n matrix C. With m < n and no further assumption,
only approximations of θo are possible using the minimum-norm solution;
or, the least-squares (LS) regularized by the `2-norm, which solves in closed
form the quadratic problem: minθ ‖y − Cθ‖22 + γ‖θ‖22 for some chosen
γ > 0. Suppose instead that over a known basis matrix B, the unknown vector
satisfies θo = Bxo with xo being sparse, meaning that:
(as0) The n×1 vector xo contains more than n−m zero elements at unknown
entries.
Under (as0) and certain conditions on the matrix A := CB, compressive
sampling (CS) theory asserts that exact recovery of xo can be guaranteed by
solving the nonconvex, combinatorially complex problem: minx ‖x‖0 subject
to (s.to) y = Ax. More interestingly, the same assertion holds with quantifi-
able chances if one relaxes the `0- via the `1-norm, and solves efficiently the
convex problem: minx ‖x‖1 s.to y = Ax [61, 17, 39].
Suppose now that due to data perturbations the available vector y adheres
only approximately to the linear model Axo. The `1-norm based formulation
accounting for the said perturbations is known as basis pursuit (BP) [61],
and the corresponding convex problem written in its Lagrangian form is:
minx ‖y − Ax‖22 + λ1‖x‖1, where λ1 > 0 is a sparsity-tuning parameter.
(For large λ1, the solution is driven toward the all-zero vector; whereas for
small λ1 it tends to the LS solution.) This form of BP coincides with the
Lasso approach developed for variable selection in linear regression problems
[144, 278]. For uniformity with related problems, the BP/Lasso solvers can be
equivalently written as

{x̂Lasso, êLasso} := arg min
x,e
‖e‖22 + λ1‖x‖1 (26a)

s. to y + e = Ax . (26b)

Two interesting questions arise at this point: i) How is the performance of CS
and BP/Lasso based reconstruction affected if perturbations appear also in A?
and ii) How can sparse vectors be efficiently reconstructed from over- and
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especially under-determined linear regression models while accounting for
perturbations present in y and/or A?
In the context of CS, perturbations in A can be due to disturbances in the
compressing matrix C, in the basis matrix B, or in both. Those in C can be
due to non-idealities in the analog implementation of CS; while those in B can
also emerge because of mismatch between the adopted basis B and the actual
one, which being unknown, is modeled as B + EB . This mismatch emerges
with grid-based approaches to localization, time delay, and spatio-temporal
frequency or Doppler estimation [9, 20, 23, 54, 117, 118]. In these applications,
the entries of θo have e.g., a sparse discrete-time Fourier transform with peaks
off the frequency grid {2πk/n}n−1

k=0 , but the postulated B is the fast Fourier
transform (FFT) matrix built from this canonical grid. In this case, the actual
linear relationship is θo = (B + EB)xo with xo sparse. Bounds on the
CS reconstruction error under basis mismatch are provided in [64]; see also
[55], where the mismatch-induced error was reduced by increasing the grid
density. Performance of BP/Lasso approaches for the under-determined, fully-
perturbed (in both y and A) linear model was analyzed in [148] by bounding
the reconstruction error, and comparing it against its counterpart derived for
the partially-perturbed (only in y) model derived in [39]. Collectively, [64]
and [148] address the performance question i), but provide no algorithms to
address the open research issue ii).
The overarching theme of the considered approach is to address this issue
by developing a sparse total least-squares (S-TLS) framework. Without ex-
ploiting sparsity, TLS has well-documented impact in applications as broad as
linear prediction, system identification with errors-in-variables (EIV), spectral
analysis, image reconstruction, speech, and audio processing, to name a few;
see [283] and references therein. For over-determined models with unknown
vectors xo not abiding with (as0), TLS estimates are given by{

x̂TLS , ÊTLS , êTLS
}

:= arg min
x,E,e

‖[E e]‖2F (27a)

s. to y + e = (A + E)x. (27b)

To cope with ill-conditioned matrices A, an extra constraint bounding ‖Γx‖2
is typically added in (27) to obtain different regularized TLS estimates de-
pending on the choice of matrix Γ [76, 22].
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The distinct objective of S-TLS relative to (regularized) TLS is twofold:
account for sparsity as per (as0), and develop S-TLS solvers especially for
under-determined, fully-perturbed linear models. To accomplish these goals,
one must solve the S-TLS problem formulated (for λ > 0) as [cf. (26), (27)]{

x̂S−TLS , ÊS−TLS , êS−TLS
}

:= arg min
x,e,E

‖[E e]‖2F + λ‖x‖1

s. to y + e = (A + E)x .

(28a)

(28b)

The main goal is to develop efficient algorithms attaining at least the local and
hopefully the global optimum of (28) – a challenging task since presence of
the product Ex reveals that the problem is generally nonconvex. Similar to
LS, BP, Lasso, and TLS, it is also worth stressing that the S-TLS estimates
sought in (28) are universal in the sense that perturbations in y and A can be
random or deterministic with or without a priori known structure.
But if prior knowledge is available on the perturbations, can weighted and
structured S-TLS problems be formulated and solved? Can the scope of S-
TLS be generalized (e.g., to recover a sparse matrix Xo using A and a data
matrix Y), and thus have impact in classical applications such as calibration of
antenna arrays, or contemporary ones, such as cognitive radio sensing? Can S-
TLS estimates be (e.g., Bayes) optimal if additional modeling assumptions are
invoked? These questions will be addressed in the ensuing sections, starting
from the last one.

MAP Optimality of S-TLS for EIV Models

Consider the EIV model with perturbed input (A) and perturbed output (y)
obeying the relationship

y = Aoxo + (−ey) , A = Ao + (−EA) (29)

where the notation of the model perturbations ey and EA stresses their differ-
ence with e and E, which are variables selected to yield the optimal S-TLS
fit in (28). In a system identification setting, ey and EA are random perturba-
tions giving rise to noisy output/input data y/A, based on which the task is to
estimate the system vector xo (comprising e.g., impulse response or pole-zero
parameters), and possibly the inaccessible input matrix Ao. To assess statisti-
cal optimality of the resultant estimators, collect the model perturbations in a
column-vector form as vec([EA ey]), and further assume that:
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(as1) Perturbations of the EIV model in (29) are independent identically
distributed (i.i.d.), Gaussian r.v.s, i.e., vec([EA ey]) ∼ N (0, I), independent
from Ao and xo. Entries of xo are zero-mean, i.i.d., according to a common
Laplace distribution. In addition, either (a) the entries of xo have common
Laplacian parameter 2/λ, and are independent from Ao, which has i.i.d.
entries drawn from a zero-mean uniform (i.e., non-informative) prior pdf; or,
(b) the common Laplacian parameter of xo entries is 2(σ2+1)/(λσ2), and Ao

conditioned on xo has i.i.d. rows with pdfN (0, σ2[I− (1 + ‖xo‖22)−1xoxTo ]).
Note that the heavy-tailed Laplacian prior on xo under (as1) is in par with the
“non-probabilistic” sparsity attribute in (as0). It has been used to establish that
the Lasso estimator in (26) is optimal, in the maximum a posteriori (MAP)
sense, when EA ≡ 0 [278]. If on the other hand, xo is viewed as non-sparse,
deterministic and Ao as deterministic or as adhering to (as1b), it is known that
the TLS estimator in (27) is optimum in the maximum likelihood (ML) sense
for the EIV model in (29); see [209] and [225].
Aiming to establish optimality of S-TLS under (as1), it is useful to re-cast
(28) as described in the following lemma. (This lemma will be used also in
developing S-TLS solvers in Section 4.)
Lemma 1: The constrained S-TLS formulation in (28) is equivalent to two
unconstrained (also nonconvex) optimization problems: (a) one involving x
and E variables, namely{

x̂S−TLS , ÊS−TLS
}

= arg min
x,E

[
‖y− (A + E)x‖22 + ‖E‖2F + λ‖x‖1

]
(30)

and (b) one of fractional form involving only the variable x, expressed as

x̂S−TLS := arg min
x
‖y−Ax‖22
1 + ‖x‖22

+ λ‖x‖1. (31)

Proof: To establish the equivalence of (30) with (28), simply eliminate e by
substituting the constraint (28b) into the cost function of (28a). For (31), let
v := vec([E e]), and re-write the cost in (28a) as ‖[E e]‖2F = ‖v‖22; and
the constraint (28b) as y − Ax = G(x)v, where G(x) := I ⊗ [xT ,−1].
With x fixed, the `1-norm can be dropped from (28a), and the reformulated
optimization becomes: minv ‖v‖22 s. to y−Ax = G(x)v. But the latter is a
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minimum-norm LS problem, admitting the closed-form solution

v(x) = GT (x)[G(x)GT (x)]−1(y−Ax)
= (1 + ‖x‖22)−1GT (x)(y−Ax) (32)

where the second equality holds because G(x)GT (x) = ‖[xT ,−1]‖22I =
(1 + ‖x‖22)I. Substituting (32) back into the cost ‖v‖22, yields readily the
fractional form in (31), which depends solely on x.
Using Lemma 1, it is possible to establish MAP optimality of the S-TLS
estimator as follows.
Proposition 1: (MAP optimality). Under (as1), the S-TLS estimator in (28)
is MAP optimal for the EIV model in (29). Specifically, (30) is MAP optimal
for estimating both xo and Ao under (as1a), while (31) is MAP optimal for
estimating only xo under (as1b).
Proof: Given y and A, the MAP approach to estimating both xo and Ao

in (29) amounts to maximizing with respect to (wrt) x and E the logarithm
of the posterior pdf denoted as ln p[xo = x,Ao = A + E|y,A]. Recalling
that xo and Ao are independent under (as1a), Bayes’ rule implies that this
is equivalent to: minx,E−{ln p[y,A|xo = x,Ao = A + E] + ln p[xo =
x]+ ln p[Ao = A+E]}, where the summands correspond to the (conditional)
log-likelihood and the log-prior pdfs, respectively. The log-prior associated
with the Laplacian pdf of xo is given by

ln p[xo = x] = ln
n∏
ν=1

[(λ/4) exp(−λ|xν |/2)]

= −(λ/2)
n∑
ν=1
|xν |+ n ln(λ/4) (33)

while the log-prior associated with the uniform pdf of Ao is constant under
(as1a), and thus does not affect the MAP criterion. Conditioning the log-
likelihood on xo and Ao, implies that the only sources of randomness in the
data [y A] are the EIV model perturbations, which under (as1) are independent,
standardized Gaussian; thus, the conditional log-likelihood is ln p[y,A|xo =
x,Ao = A + E] = ln[ey = y− (A + E)x] + ln p[EA = E]. After omitting
terms not dependent on the variables x and E, the latter shows that the log-
likelihood contributes to the MAP criterion two quadratic terms (sum of two
Gaussian exponents): (1/2){‖y− (A + E)x‖22 + ‖E‖}2F }. Upon combining
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these quadratic terms with the `1-norm coming from the sum in (33), the
log-posterior pdf boils down to the form minimized in (30), which per Lemma
1 is equivalent to (28), and thus establishes MAP optimality of S-TLS under
(as1a).
Proceeding to prove optimality under (as1b), given again the data y and A,
consider the MAP approach now to estimate only xo in (29), treating Ao

as a nuisance parameter matrix that satisfies (as1b). MAP here amounts to
maximizing (wrt x only) the criterion ln p[xo = x|y,A]; and Bayes’ rule
leads to the equivalent problem minx−{ln p[y,A|xo = x] + ln p[xo = x]}.
But conditioned on xo, (as1b) dictates that Ao and [EA ey] are zero-mean
Gaussian and independent. Thus, linearity of the EIV model (29) implies that
y and A are zero-mean jointly Gaussian in the conditional log-likelihood.
Since rows of Ao and [EA ey] are (conditionally) i.i.d. under (as1b), the rows
of matrix [A y] are independent. In addition, the ρth-row of [A y] denoted as
[aTρ yρ], has inverse (conditional) covariance matrix

E
[[

aρ
yρ

]
[aTρ yρ]

∣∣∣∣∣xo = x
]−1

=
[

(σ2 + 1)I− σ2xxT /
(
1 + ‖x‖22

)
σ2x/

(
1 + ‖x‖22

)
σ2xT /

(
1 + ‖x‖22

)
1 + σ2‖x‖22/

(
1 + ‖x‖22

) ]−1

= 1
σ2 + 1

{
I + σ2

1 + ‖x‖22

[
x
−1

]
[xT − 1]

}
(34)

with determinant 1/(σ2 + 1)n not a function of x. After omitting such terms
not dependent on x, and using the independence among rows and their inverse
covariance in (34), the conditional log-likelihood boils down to the fractional
form σ2

2(σ2+1)‖y−Ax‖22/
(
1 + ‖x‖22

)
. Since the Laplacian parameter under

(as1b) equals 2(σ2 + 1)/(λσ2), the log-prior in (33) changes accordingly; and
together with the fractional form of the log-likelihood reduces the negative log-
posterior to the cost in (31). This establishes MAP optimality of the equivalent
S-TLS in (28) for estimating only xo in (29), under (as1b).
Proposition 1 will be generalized in Section 4 to account for structured and
correlated perturbations with known covariance matrix. But before pursuing
these generalizations, S-TLS solvers of the problem in (28) are in order.
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S-TLS Solvers

Two iterative algorithms are developed in this section to solve the S-TLS
problem in (28), which was equivalently re-formulated as in (30) and (31).
The first algorithm can approach the global optimum but is computationally
demanding; while the second one guarantees convergence to a local optimum
but is computationally efficient. Thus, in addition to being attractive on its
own, the second algorithm can serve as initialization to speed up convergence
(and thus, reduce computational burden) of the first one. To appreciate the
challenge and the associated performance-complexity trade-offs in developing
algorithms for optimizing S-TLS criteria, it is useful to recall that all S-TLS
problems are nonconvex; hence, unlike ordinary TLS that can be globally
optimized (e.g., via SVD [209]), no efficient convex optimization solver is
available with guaranteed convergence to the global optimum of (28), (30), or
(31).

Bisection-Based ε-Optimal Algorithm

Viewing the cost in (31) as a Lagrangian function, allows casting this uncon-
strained minimization problem as a constrained one. Indeed, sufficiency of
the Lagrange multiplier theory implies that [29, Sec. 3.3.4]: using the solution
x̂S−TLS of (31) for a given multiplier λ > 0 and letting µ := ‖x̂S−TLS‖1, the
pertinent constraint is X1(µ) := {x ∈ Rn : ‖x‖1 ≤ µ}; and the equivalent
constrained minimization problem is [cf. (31)]

x̂S−TLS := arg min
x∈X1(µ)

f(x) , f(x) := ‖y−Ax‖22
1 + ‖x‖22

. (35)

There is no need to solve (31) in order to specify µ, because a cross-validation
scheme can be implemented to specify µ in the stand-alone problem (35),
along the lines used by e.g., [232] to determine λ in (31). The remainder of
this subsection will thus develop an iterative scheme converging to the global
optimum of (35), bearing in mind that this equivalently solves (31), (30) and
(28) too.
From a high-level view, the presented scheme comprises an outer iteration
loop based on the bisection method [82], and an inner iteration loop that relies
on a variant of the branch-and-bound (BB) method [150]. A related approach
was pursued in [22] to solve the clairvoyant TLS problem (27) under `2-norm
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regularization constraints. The challenging difference with the S-TLS here
is precisely the non-differentiable `1-norm constraint in X1(µ). The outer
iteration “squeezes” the minimum cost f(x) in (35) between successively
shrinking lower and upper bounds expressible through a parameter a. Per
outer iteration, these bounds are obtained via inner iterations equivalently min-
imizing a surrogate quadratic function g(x, a), which does not have fractional
form, and is thus more convenient to optimize than f(x).
Given an upper bound a on f(x), the link between f(x) and g(x, a) follows
if ones notes that

0 ≤ a? := min
x∈X1(µ)

f(x) = min
x∈X1(µ)

‖y−Ax‖22
1 + ‖x‖22

≤ a (36)

is equivalent to

g?(a) := min
x∈X1(µ)

g(x, a) = min
x∈X1(µ)

{
‖y−Ax‖22 − a(1 + ‖x‖22)

}
≤ 0.

(37)

Suppose that after outer iteration i the optimum a? in (36) belongs to a known
interval Ii := [li, ui]. Suppose further that the inner loop yields the global
optimum in (37) for a = (li +ui)/2, and consider evaluating the sign of g?(a)
at this middle point a = (li + ui)/2 of the interval Ii. If g?((li + ui)/2) > 0,
the equivalence between (37) and (36) implies that a? > (li + ui)/2 > li; and
hence, a? ∈ Ii+1 := [(li+ui)/2, ui], which yields a reduced-size interval Ii+1
by shrinking Ii from the left. On the other hand, if g?((li + ui)/2) < 0, the
said equivalence will imply that a? ∈ Ii+1 := [li, (li + ui)/2], which shrinks
the Ii interval from the right. This successive shrinkage through bisection
explains how the outer iteration converges to the global optimum of (35).
What is left before asserting rigorously this convergence, is to develop the inner
iteration which ensures that the global optimum in (37) can be approached for
any given a specified by the outer bisection-based iteration. To appreciate the
difficulty here note that the Hessian of g(x, a) is given by H := 2(ATA−aI).
Clearly, H is not guaranteed to be positive or negative definite since a is
positive. As a result, the cost g(x, a) in (37) bypasses the fractional form of
f(x) but it is still an indefinite quadratic, and hence nonconvex. Nonetheless,
the quadratic form of g(x, a) allows adapting the BB iteration of [150], which
can yield a feasible and δ-optimum solution x?g satisfying: a) x?g ∈ X1(µ); and
b) g?(a) ≤ g(x?g, a) ≤ g?(a) + δ, where δ denotes a pre-specified margin.
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In the present context, the BB algorithm finds successive upper and lower
bounds of the function

g?box(a) := min
x∈X1(µ),xL≤x≤xU

g(x, a) (38)

where the constraint xL ≤ x ≤ xU represents a box that shrinks as iterations
progress. Upon converting the constraints of (38) to linear ones, upper bounds
U on the function g?box(a) in (38) can be readily obtained via suboptimum
solvers of the constrained optimization of the indefinite quadratic cost g(x, a);
see e.g., [29, Chp. 2]. Lower bounds on g?box(a) can be obtained by minimiz-
ing a convex function gL(x, a), which under-approximates g(x, a) over the
interval xL ≤ x ≤ xU . This convex approximant is given by

gL(x, a) = g(x, a) + (x− xL)TD(x− xU ) (39)

where D is a diagonal positive semi-definite matrix chosen to ensure that
gL(x, a) is convex, and stays as close as possible below g(x, a). Such a matrix
D can be found by minimizing the maximum distance between gL(x, a) and
g(x, a), and comes out as the solution of the following minimization problem:

min
D

(xU − xL)TD(xU − xL) s. to H + 2D � 0 (40)

where the constraint on the Hessian ensures that gL(x, a) remains convex.
Since (40) is a semi-definite program, it can be solved efficiently using avail-
able convex optimization software; e.g., the interior point optimization rou-
tine in SeDuMi [271]. Having selected D as in (40), minx∈X1(µ),xL≤x≤xU
gL(x, a) is a convex problem (quadratic cost under linear constraints); thus,
similar to the upper bound U , the lower bound L on g?box(a) can be obtained
efficiently.
The detailed inner loop (BB scheme) is tabulated as Algorithm 4-a. It amounts
to successively splitting the initial box −µ1 ≤ x ≤ µ1, which is the smallest
one containing X1(µ). Per inner iteration i, variable U keeps track of the
upper bound on g?box(a), which at the end outputs to the outer loop the nearest
estimate of g?(a). Concurrently, the lower bound L on g?box(a) determines
whether the current box needs to be further split, or discarded, if the difference
U − L is smaller than the pre-selected margin δ. This iterative splitting leads
to a decreasing U and a tighter L, both of which prevent further splitting.
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Algorithm 4-a (BB): Input y, A, a, and δ. Output a δ-optimal solution x?g of
(37)

Set xL = −µ1, xU = µ1, Ω := {(xL,xU ,−∞}, and initialize with
U =∞.
repeat

Let (xL,xU , c) be one triplet of Ω with the smallest c; and set Ω =
Ω\(xL,xU , c).
Solve (38) locally to obtain x̂?g.
if g(x̂?g, a) < U then

Set U = g(x̂?g, a) and x?g = x̂?g. {update the minimum}
end if
Minimize globally the convex gL(x, a) in (39) with the optimum D in
(40), to obtain x̌?g and L := gL(x̌?g, a).
if U − L > δ {need to split} then

Find i = arg maxn([xU ]n − [xL]n).
Set xL,1 (xU,1) and xL,2 (xU,2) equal to xL (xU ) except for the i-th
entry. {split the maximum separation}
Set [xL,1]i = [xL]i, [xU,1]i = ([xU ]i − [xL]i)/2, [xL,2]i = ([xU ]i −
[xL]i)/2, and [xU,2]i = [xU ]i.
Augment the set of unsolved boxes Ω =
Ω
⋃
{(xL,1,xU,1,L), (xL,2,xU,2,L)}.

end if
until Ω = ∅

Recapitulating, the outer bisection-based iteration tabulated as Algorithm 4-b
calls Algorithm 4-a to find a feasible δ-optimal solution x?g to evaluate the sign
of g?(a) in (37). Since x?g is not the exact global minimum of (37), positivity of
g(x?g, a) does not necessarily imply g?(a) > 0. But x?g is δ-optimal, meaning
that g?(a) ≥ g(x?g, a)− δ; thus, g(x?g, a) > δ, in which case the lower bound
li+1 is updated to (li +ui)/2; otherwise, if g(x?g, a) ∈ (0, δ), then li+1 should
be set to (li + ui)/2− δ.
As far as convergence is concerned, the following result can be established.
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Algorithm 4-b (Bisection): Input y, A, and tolerances ε and δ. Output an
ε-optimal solution x?ε to (35)

1: Set l0 = 0, u0 = ‖y‖22, iteration index i = 0, and initialize the achievable
cost fm = u0 with x?ε = 0n×1.

2: repeat
3: Let a = (li + ui)/2 and call Algorithm 4-a to find a feasible δ-optimal

solution x?g to (37).
4: Calculate fg = f(x?g), and update the iteration i = i+ 1.
5: if fg < fm then
6: Set fm = fg and x?ε = x?g. {update the minimum}
7: end if
8: if g(x?g, a) ≤ 0 then
9: Update ui = a and li = li−1.

10: else if g(x?g, a) ≥ δ then
11: Update li = a and ui = ui−1.
12: else
13: Update li = a− δ and ui = ui−1.
14: end if
15: Set ui = min(ui, fg).
16: until ui − li ≤ ε

Proposition 2: (ε-optimal convergence) After at most
⌈
ln
(

u0
ε−2δ

)
/ ln(2)

⌉
iterations, Algorithm 4-b outputs an ε-optimal solution x?ε to (35); that is,

x?ε ∈ X1(µ), and a? ≤ f(x?ε) ≤ a? + ε. (41)

Proof: Upon updating the lower and upper bounds, it holds per outer iteration
i ≥ 1 that ui − li ≤ 1

2(ui−1 − li−1) + δ; and by induction, ui − li ≤(
1
2

)i
u0 + 2δ, when l0 = 0. The latter implies that if the number of iterations

i ≥
⌈
ln
(

u0
ε−2δ

)
/ ln(2)

⌉
, the distance ui − li ≤ ε is satisfied.

Since per outer iteration Algorithm 4-a outputs x?g ∈ X1(µ), it holds that
the updated x?ε is also feasible. Further, the bisection process guarantees
that li ≤ a? ≤ f(x?ε) ≤ ui per iteration i. Since Algorithm 4-b ends with
ui − li ≤ ε, the inequality in (41) follows readily.
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Proposition 2 quantifies the number of outer iterations needed by the bisection-
based Algorithm 4-b to approach within ε the global optimum of (35). In
addition, the inner (BB) iterations bounding g?box(a) are expected to be fast
converging because the box function in (38) is tailored for the box constraints
induced by the `1-norm regularization. Nonetheless, similar to all BB algo-
rithms, the complexity of Algorithm 4-a does not have guaranteed polynomial
complexity on average. The latter necessitates as few calls of Algorithm 4-a,
which means as few outer iterations. Proposition 2 reveals that critical to
this end is the initial upper bound u0 (Algorithm 4-b simply initializes with
u0 = f(0)).
This motivates the efficient suboptimal S-TLS solver of the next subsection,
which is of paramount importance not only on its own, but also for initializing
the ε-optimal algorithm.

Alternating Descent Sub-Optimal Algorithm

The starting point for a computationally efficient S-TLS solver is the formu-
lation in (30). Given E, the cost in (30) has the form of the Lasso problem
in (26); while given x, it reduces to a quadratic form, which admits closed-
form solution wrt E. These observations suggest an iterative block coordinate
descent algorithm yielding successive estimates of x with E fixed, and alter-
nately of E with x fixed. Specifically, with the iterate E(i) given per iteration
i ≥ 0, the iterate x(i) is obtained by solving the Lasso-like convex problem
as [cf. (26)]

x(i) = arg min
x
‖y− [A + E(i)]x‖22 + λ‖x‖1 . (42)

With x(i) available, E(i+ 1) for the ensuing iteration is found as

E(i+ 1) = arg min
E
‖y−Ax(i)−Ex(i)‖22 + ‖E‖2F . (43)

By setting the first-order derivative of the cost wrt E equal to zero, the optimal
solution to the quadratic problem (43) is obtained in closed form as

E(i+ 1) = (1 + ‖x(i)‖22)−1[y−Ax(i)]xT (i). (44)

The iterations are initialized at i = 0 by setting E(0) = 0m×n. Substituting
the latter into (42), yields x(0) = x̂Lasso in (26). That this is a good initial
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estimate is corroborated by the result in [148], which shows that even with
perturbations present in both A and y, the CS (and thus Lasso) estimators yield
accurate reconstruction. In view of the fact that the block coordinate descent
iterations ensure that the cost in (30) is non-increasing, the final estimates
upon convergence will be at least as accurate.
The block coordinate descent algorithm is provably convergent to a stationary
point of the S-TLS cost in (30), and thus to its equivalent forms in (28), (31)
and (35), as asserted in the following proposition.
Proposition 3: (Convergence of alternating descent) Given arbitrary initial-
ization, the iterates {E(i),x(i)} given by (42) and (44) converge monotoni-
cally at least to a stationary point of the S-TLS problem (28).
Proof: The argument relies on the basic convergence result in [280]. The
alternating descent algorithm specified by (42) and (44) is a special case of the
block coordinate descent method using the cyclic rule for minimizing the cost
in (30). The first two summands of this cost are differentiable wrt the optimiza-
tion variables, while the non-differential third term (`1-norm regularization) is
separable in the entries of x. Hence, the three summands satisfy the assump-
tions (B1)–(B3) and (C2) in [280]. Convergence of the iterates {E(i),x(i)}
to a coordinate minimum point of the cost thus follows by appealing to [280,
Thm. 5.1]. Moreover, the first summand is Gâteaux-differentiable over its
domain which is open. Hence, the cost in (30) is regular at each coordinate’s
minimum point, and every coordinate’s minimum point becomes a stationary
point; see [280, Lemma 3.1]. Monotonicity of the convergence follows simply
because the cost per iteration may either reduce or maintain its value.
Proposition 3 solidifies the merits of the alternating descent S-TLS solver.
Simulated tests will further demonstrate that the local optimum guaranteed
by this computationally efficient scheme is very close to the global optimum
attained by the more complex scheme of the previous subsection.
Since estimating E is simple using the closed form in (43), it is useful at
this point to explore modifications, extensions and tailored solvers for the
problem in (42) by adapting to the present setup existing results from the
Lasso literature dealing with problem (26). From the plethora of available
options to solve (42), it is worth mentioning two computationally efficient
ones: the least-angle regression (LARS), and the coordinate descent (CD); see
e.g., [144]. LARS provides the entire “solution path” of (42) for all λ > 0 at
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complexity comparable to LS. On the other hand, if a single “best” value of λ
is fixed using the cross-validation scheme [232], then CD is the state-of-the-art
choice for solving (42).
CD in the present context cycles between iterates E(i), and scalar iterates of
the x(i) entries. Suppose that the ν-th entry xν(i) is to be found. Precursor
entries {x1(i), . . . , xν−1(i)} have been already obtained in the i-th iteration,
and postcursor entries {xν+1(i− 1), . . . , xn(i− 1)} are also available from
the previous (i − 1)-st iteration along with E(i) obtained in closed form as
in (44). If αν(i) denotes the ν-th column of [A + E(i)], the effect of these
known entries can be removed from y by forming

eν(i) := y−
ν−1∑
j=1

αj(i)xj(i)−
n∑

j=ν+1
αj(i)xj(i− 1) . (45)

Using (45), the vector optimization problem in (42) reduces to the following
scalar one with xν(i) as unknown: xν(i) = arg minxν [‖eν(i)−αν(i)xν‖22 +
λ|xν |]. This scalar Lasso problem is known to admit a closed-form solution
expressed in terms of a soft thresholding operator (see e.g., [144])

xν(i) = sign
(
eTν (i)αν(i)

) [ |eTν (i)αν(i)|
‖αν(i)‖22

− λ

2‖αν(i)‖22

]
+
, ν = 1, . . . , n

(46)
where sign(·) denotes the sign operator, and [χ]+ := χ, if χ > 0, and zero
otherwise.
Cycling through the closed forms (44)-(46) explains why CD here is faster
than, and thus preferable over general-purpose convex optimization solvers
of (42). Another factor contributing to its speed is the sparsity of x(i), which
implies that starting up with the all-zero vector, namely x(−1) = 0n×1, offers
initialization close to a stationary point of the cost in (30). Convergence to this
stationary point is guaranteed by using the results in [280], along the lines of
Proposition 3. Note also that larger values of λ in (46) force more entries of
x(i) to be shrunk to zero, which corroborates the role of λ as a sparsity-tuning
parameter. The CD based S-TLS solver is tabulated as Algorithm 5.
Remark 1: (Regularization options for S-TLS) Lasso estimators are known
to be biased, but modifications are available to remedy bias effects. One such
modification is the weighted Lasso, which replaces the `1-norm in (28) by its
weighted version, namely

∑n
ν=1wν |xν |, where the weights {wν} are chosen
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Algorithm 5 (CD): Input y, A, and coefficient λ. Output the iterates E(i) and
x(i) upon convergence.

Initialize with E(0) = 0m×n and x(−1) = 0n×1
for i = 0, 1, . . . do

for ν = 1, . . . , n do
Compute the residual eν(i) as in (45).
Update the scalar xν(i) via (46).

end for
Update the iterate E(i+ 1) as in (44).

end for

using the LS solution [331]. An alternative popular choice is to replace the
`1-norm with concave regularization terms [103], such as

∑n
ν=1 log(xν + δ1),

where δ1 is a small positive constant introduced to avoid numerical instability.
In addition to mitigating bias effects, concave regularization terms provide
tighter approximations to the `0-(pseudo)norm, and although they render the
cost in (28) nonconvex, they are known to converge very fast to an improved
estimate of x, when initialized with the Lasso solution [103].
Remark 2: (Group Lasso and Matrix S-TLS) When groups {xg}Gg=1 of x
entries are a priori known to be zero or nonzero (as a group), the `1-norm
in (28) must be replaced by the sum of `2-norms, namely

∑G
g=1 ‖xg‖2. The

resulting group S-TLS estimate can be obtained using the group-Lasso solver
[144]. In the present context, this is further useful if one considers the matrix
counterpart of the S-TLS problem in (28), which in its unconstrained form
can be written as [cf. (30)]{

X̂S−TLS , ÊS−TLS
}

= arg min
X,E

[
‖Y− (A + E)X‖2F+

‖E‖2F + λ
n∑
ν=1
‖xTν ‖2

] (47)

where xTν denotes the ν-th row of the n × L unknown matrix X, which is
sparse in the sense that a number of its rows are zero, and has to be estimated
using an m× L data matrix Y along with the regression matrix A, both with
perturbations present. Problem (47) can be solved using block coordinate
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descent cycling between iterates E(i) and rows xTν (i) as opposed to scalar
entries as in (46).

Weighted and Structured S-TLS

Apart from the optimality links established in Proposition 1 under (as1), the
S-TLS criteria in (28), (30), and (31) make no assumption on the perturbations
[E e]. In this sense, the S-TLS solvers of the previous section find universal
applicability. However, one expects that exploiting prior information on [E e],
can only lead to improved performance. Thinking for instance along the
lines of weighted LS, one is motivated to weight ‖E‖2F and ‖e‖22 in (30) by
the inverse covariance matrix of E and e, respectively, whenever those are
known and are not both equal to I. As a second motivating example, normal
equations, involved in e.g., linear prediction, entail structure in E and e that
capture sample estimation errors present in the matrix [Ay], which is Toeplitz.
Prompted by these examples, this section is about broadening the scope of
S-TLS with weighted and structured forms capitalizing on prior information
available about the matrix [E e]. To this end, it is prudent to quantify first the
notion of structure.

Definition 1. Them×(n+1) data matrix [Ay](p) has structure characterized
by an np × 1 parameter vector p, if and only if there is a mapping such that
p ∈ Rnp → [A y](p) := S(p) ∈ Rm×(n+1).

Definition 1 is general enough to encompass any (even unstructured) matrix
[A y](p), by simply letting p := vec([A y]) ∈ Rm(n+1) comprise all entries
of [A y]. However, it becomes more relevant when np � m(n + 1), the
case in which p characterizes [A y] parsimoniously. Application examples
are abundant: structure in Toeplitz and Hankel matrices encountered with
system identification, deconvolution, and linear prediction; as well as in cir-
culant and Vandermonde matrices showing up in spatio-temporal harmonic
retrieval problems [209]. Structured matrices A and sparse vectors xo emerge
also in contemporary CS gridding-based applications e.g., for spectral analy-
sis and estimation of time-varying channels, where rows of the FFT matrix
are selected at random. (This last setting appears when training orthogonal
frequency-division multiplexing (OFDM) input symbols are used to estimate
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communication links exhibiting variations due to mobility-induced Doppler
effects [23].)
Consider now re-casting the S-TLS criteria in terms of p, and its asso-
ciated perturbation vector denoted by ε ∈ Rnp . The Frobenius norm in
the cost of (28a) is mapped to the `2-norm of ε; and to allow for weight-
ing the structured perturbation vector using a symmetric positive definite
matrix W ∈ Rnp×np , the weighted counterpart of ‖[E e]‖2F becomes
εTWε. With regards to the constraint, recall first from Definition 1 that
S(p) = [A y], which implies S(p + ε) = [A + E y + e]; hence, re-writing

(28b) as [A + E y + e]
[
xT ,−1

]T
= 0, yields the structured constraint as

S(p + ε)
[
xT ,−1

]T
= 0. Putting things together, leads to the combined

weighted-structured S-TLS version of (28) as

min
x,ε

εTWε+ λ‖x‖1 (48a)

s. to S(p + ε)
[

x
−1

]
= 0 (48b)

which clearly subsumes the structure-only form as a special case corresponding
to W = I.
To confine the structure quantified in Definition 1, two conditions will be
imposed, which are commonly adopted by TLS approaches [209], and are
satisfied by most applications mentioned so far.
(as2) The structure mapping in Definition 1 is separable, meaning that with
p = [(pA)T (py)T ]T , where pA ∈ RnA and py ∈ Rny , it holds that S(p) :=
[A y](p) = [A(pA) y(py)]. In addition, the separable structure mapping is
linear (more precisely affine), if and only if the S(p) matrix is composed of
known structural elements, namely “matrix atoms” S0, {SAk }

nA
k=1 and “vector

atoms” {syk}
ny
k=1, so that

S(p) = S0 +
[
nA∑
k=1

pAk SAk
ny∑
k=1

pyks
y
k

]
(49)

where pAk (pyk) denotes the k-th entry of pA(py).
Similar to Definition 1, (49) is general enough to encompass even unstructured
matrices S(p) := [A y], by setting S0 = 0, p := vec([A y]) ∈ Rm(n+1),
np := nA + ny = mn + m, and selecting the m vector atoms (mn matrix
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atoms) as the canonical vectors (matrices), each with one entry equal to 1 and
all others equal to 0. Again, interesting structures are those with nA � mn

and/or ny � m. (Consider for instance a circulant m × n matrix A, which
can be represented as in (49) using nA = m matrix atoms.)
Separability and linearity will turn out to simplify the constraint in (48b) for
some given matrix atoms and vector atoms collected for notational brevity in
the matrices

SA := [SA1 · · ·SAnA ] and Sy := [sy1 · · · syny ] ∈ Rm×ny . (50)

Indeed, linearity in (as2) allows one to write S(p + ε) = S(p) + S(ε), and
the constraint (48b) as: S(ε)[xT ,−1]T = −S(p)[xT ,−1]T = y−Ax; while
separability implies that

S(ε)
[
xT ,−1

]T
=
[
nA∑
k=1

εAk SAk
ny∑
k=1

εyks
y
k

] [
xT ,−1

]T
= SA(I⊗ x)εA − Syεy,

where the definitions ε := [(εA)T (εy)T ]T and (50) were used in the last
equality along with the identity

∑nA
k=1 ε

A
k SAk x = SA(I⊗ x)εA. In a nutshell,

(48b) under (as2) becomes SA(I⊗ x)εA − Syεy = y−Ax, in which εA is
decoupled from εy.
Therefore, the weighted and structured (WS)S-TLS problem in (48) reduces
to [cf. (28)]

min
x,εA,εy

[
εA

εy

]T
W
[
εA

εy

]
+ λ‖x‖1

s. to [SA(I⊗ x) − Sy]
[
εA

εy

]
= y−Ax

(51a)

(51b)

or in a more compact form as: minx,ε {εTW ε+ λ‖x‖1} s.t. G(x)ε = r(x),
after defining

G(x) := [SA(I⊗ x) Sy] and r(x) := y−Ax . (52)

Comparing (28) with (51) allows one to draw apparent analogies: both involve
three sets of optimization variables, and both are nonconvex because two of
these sets enter the corresponding constraints in a bilinear fashion [cf. product
of E with x in (28b), and εA with x in (51b)].
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Building on these analogies, the following lemma shows how to formulate
WSS-TLS criteria, paralleling those of Lemma 1, where one or two sets of
variables were eliminated to obtain efficient, provably convergent solvers, and
establish statistical optimality links within the EIV model in (29).
Lemma 2: The constrained WSS-TLS form in (48) is equivalent to two
unconstrained nonconvex optimization problems: (a) one involving x and εA

variables, namely

{x̂, ε̂A}WSS−TLS = arg min
x,εA

[
εA

(Sy)†
[
SA(I⊗ x)εA − r(x)

] ]T W

×
[

εA

(Sy)†[SA(I⊗ x)εA − r(x)]

]
+ λ‖x‖1 (53)

where Sy is assumed full rank and square1, i.e., m = ny in (52); and also (b)
one involving only the variable x, expressed using the definitions in (52), as

x̂WSS−TLS = arg min
x

{
rT (x)

[
G(x) W−1 GT (x)

]†
r(x) + λ‖x‖1

}
.

(54)

Proof: Constraint (51b) can be solved uniquely for εy to obtain εy =
(Sy)†[SA(I⊗ x)εA − (y −Ax)]. Plug the latter with the definition of r(x)
from (52) into the quadratic form in (51a) to recognize that (51) is equivalent
to the unconstrained form in (53) with the εy variable eliminated.
To arrive at (54), suppose that x is given and view the compact form of (51)
(after ignoring λ‖x‖1) as the following weighted minimum-norm LS problem:
minx,ε{εTWε+λ‖x‖1} s.to G(x)ε = r(x). Solving the latter in closed form

expresses ε in terms of x as: ε(x) = W−1GT (x)
[
G(x)W−1GT (x)

]†
r(x).

Substitute now ε(x) back into the cost, and reinstate λ‖x‖1, to obtain (54).
The formulation in (53) suggests directly an iterative WSS-TLS solver based
on the block coordinate descent method. Specifically, suppose that the estimate

1Tall Sy matrices with full column rank can be handled too for block diagonal weight
matrices W typically adopted with separable structures; see also [323]. This explains why
the pseudo-inverse of Sy is used in this section instead of its inverse; but exposition of the
proof simplifies considerably for the square case. Note also that the full rank assumption is not
practically restrictive because data matrices perturbed by noise of absolutely continuous pdf
have full rank almost surely.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



60 Sparsity-Cognizant TLS for Perturbed CS

εA(i) of εA is available at iteration i. Substituting εA(i) into (53), allows
estimating x as

x(i)=arg min
x

[
εA(i)

(Sy)†
[
SA(I⊗ x)εA(i)−r(x)

] ]TW
×
[

εA(i)
(Sy)†

[
SA(I⊗ x)εA(i)−r(x)

]]+λ‖x‖1. (55)

Since r(x) is linear in x [cf. (52)], the cost in (55) is convex (quadratic
regularized by the `1-norm as in the Lasso cost in (26)); thus, it can be
minimized efficiently. Likewise, given x(i) the perturbation vector for the
ensuing iteration can be found in closed form since the pertinent cost is
quadratic; that is,

εA(i+ 1) = arg min
εA

[
εA

(Sy)†
[
SA(I⊗ x(i))εA − r(x(i))

] ]T

×W
[

εA

(Sy)†
[
SA(I⊗ x(i))εA − r(x(i))

] ] . (56)

To express εA(i + 1) compactly, partition W in accordance with p =
[(pA)T , (py)T ]T ; i.e., let

W =
[

WAA WAy

WT
Ay Wyy

]
. (57)

Using (57), and equating to zero the gradient (wrt εA) of the cost in (56),
yields the closed form

εA(i+ 1) =
{
Š(x(i))WŠT (x(i))

}†
Š(x(i))

[
WT

Ay, WT
yy

]T
(Sy)†r(x(i))

(58)

where Š(x(i)) :=
[
I,
[
(Sy)†SA(I⊗ x(i))

]T ]
.

Initialized with εA(0) = 0nA×1, the algorithm cycles between iterations (55)
and (58). Mimicking the steps of Proposition 3, it is easy to show that these
iterations are convergent as asserted in the following.
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Proposition 4: (Convergence). The iterates in (55) and (58) converge mono-
tonically at least to a stationary point of the cost in (48), provided that Sy in
(52) has full column rank.
As with the solver of Section 4, CD is also applicable to the WSS-TLS solver,
by cycling between εA(i) and scalar iterates of the x(i) entries. To update
the ν-th entry xν(i), suppose precursor entries {x1(i), . . . , xν−1(i)} have
been already obtained in the i-th iteration, and postcursor entries {xν+1(i−
1), . . . , xn(i − 1)} are also available from the previous (i − 1)-st iteration
along with εA(i), found in closed form as in (58). Letting αν(i) denote the
ν-th column of

[
(Sy)†

(
A +

∑
k=1 ε

A
k SAk

)]
, the effect of these known entries

can be removed from y by forming [cf. (45)]

eν(i) := (Sy)†y−
ν−1∑
j=1

αj(i)xj(i)−
n∑

j=ν+1
αj(i)xj(i− 1) . (59)

Using (59), the vector optimization problem in (55) now reduces to the fol-
lowing scalar one with xν(i) as unknown: xν(i) = arg minxν{‖αν(i)xν −
eν(i)‖2Wyy

+ 2[εA(i)]T WAyαν(i)xν + λ|xν |}, where ‖ · ‖Wyy denotes the
`2-norm weighted by Wyy. The solution of this scalar Lasso problem can be
expressed using the same soft-thresholding form as in (46), and is given by

xν(i) = sign
([

eν(i)Wyy − εA(i)WT
Ay

]T
αν(i)

)

×


∣∣∣∣[eν(i)Wyy − εA(i)WT

Ay

]T
αν(i)

∣∣∣∣
‖αν(i)‖2Wyy

− λ

2‖αν(i)‖2Wyy


+

. (60)

This block CD algorithm enjoys fast convergence (at least) to a stationary point,
thanks both to the simplicity of (60), and the sparsity of x(i), as explained in
Section IV-B.
The WSS-TLS criterion in (53) is also useful to establish its statistical op-
timality under a structured EIV model, with output-input data obeying the
relationships

y = A(pAo )xo + (−Syεy) , A = A(pAo ) +
(
−

nA∑
k=1

εA,kSAk

)
(61)

where perturbation vectors εA and εy play the role of EA and ey in (29),
and differ from the optimization variables εA and εy in (51). Unknown are
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the vector xo, and the inaccessible input matrix A(pAo ), characterized by the
vector pAo . The model in (61) obeys the following structured counterpart of
(as1a).
(as1′) Perturbations in (61) are jointly Gaussian, i.e., [εA εy] ∼ N (0,W−1),
as well as independent from pAo and xo. Vector xo has i.i.d. entries with the
same prior as in (as1a); and it is independent from pAo , which has i.i.d. entries
drawn from a zero-mean uniform (i.e., non-informative) prior pdf.
The following optimality claim holds for the WSS-TLS estimator in (53),
assured to be equivalent to the solution of problem (51) by Lemma 2.
Proposition 5: (MAP optimality of WSS-TLS). Under (as1′) and (as2), the
equivalent WSS-TLS problem in (53) yields the MAP optimal estimator of xo
and pA in the structured EIV model (61).
Proof: The proof follows the lines used in proving the MAP optimality
of (30) under (as1a) in Proposition 1. The log-prior pdf of xo contains an
`1-norm term as in (33), while the uniform prior on pAo is constant un-
der (as1′). Furthermore, given the structure mapping [A y] = S(p), the
conditional log-likelihood here can be expressed in terms of x and εA, as
ln p[y,A|xo = x,pAo = pA + εA] = ln p

[
εA = εA, εy = −(Sy)†[y−

(A +
∑nA
k=1 ε

A
k SAk )x] = (Sy)†[SA(I⊗ x)εA − r(x)]

]
. After omitting terms

not dependent on x and εA, the conditional log-likelihood under the joint
Gaussian distribution in (as1′) boils down to half of the quadratic cost in
(53). Combining the latter with ‖x‖1 from the log-prior pdf, it follows that
maximizing the log-posterior pdf amounts to minimizing the unconstrained
sum of the two, which establishes MAP optimality of the WSS-TLS estimator
in (53).

S-TLS Applications

In this section, the practical impact of accounting for perturbations present
in the data matrix [A y] will be demonstrated via two sensing applications
involving reconstruction of sparse vectors. In both, the perturbation EA comes
from inaccurate modeling of the underlying actual matrix Ao, while ey is due
to measurement noise.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



S-TLS Applications 63

Cognitive Radio Sensing

Consider Ns sources located at unknown positions, each transmitting an RF
signal with power spectral density (PSD) Φs(f) that is well approximated by
a basis expansion model: Φs(f) =

∑Nb
ν=1 xsνbν(f), where {bν(f)}Nbν=1 are

known (e.g., rectangular) basis functions, and {xsν}Nss=1 are unknown power
coefficients. As source positions are also unknown, a Cartesian grid of known
points {lg}

Ng
g=1 is adopted to describe candidate locations that transmitting

radios could be positioned [54, 20]; see also Fig. 12.
The task is to estimate the locations and powers of active sources based on PSD
samples measured at Nr cognitive radios (CRs) at known locations {`r}Nrr=1.
Per frequency fk, these samples obey the model

Φ̂r(fk) =
Ng∑
g=1

γgrΦg(fk) + σ2
r + er(fk)

=

 Ng∑
g=1

Nb∑
ν=1

γgrbν(fk)

xgν + σ2
r + er(fk)

= aTr (fk)xo + er(fk) (62)

where the PSD Φg(f) is nonzero only if a transmitting source is present at lg;
γgr represents the channel gain from the candidate source at lg to the CR at `r
that is assumed to follow a known pathloss function of the distance ||lg − `r||;
σ2
r denotes the known noise variance at receiver r; theNbNg×1 vector ar(fk)

collects products γgrbν(fk); vector xo contains the NbNg unknown power
coefficients xgν ; and er(fk) captures the error between the true, Φr(fk), and
estimated, Φ̂r(fk), PSDs.
Estimated PSD samples at K frequencies from all Nr receivers are first com-
pensated by subtracting the corresponding noise variances, and subsequently
collected to form the data vector y of length m = KNr. Noise terms −er(fk)
are similarly collected to build the perturbation vector εy. Likewise, row vec-
tors aTr (fk) of length n = NbNg are concatenated to form the m× n matrix
A. The latter is perturbed (relative to the inaccessible Ao) by a matrix EA,
which accounts for the mismatch between grid location vectors, {lg}

Ng
g=1, and

those of the actual sources, {κs}Nss=1. To specify EA, let εsgr := γsr − γgr for
the source at κs closest to lg, and substitute γgr = γsr − εsgr into the double
sum inside the square brackets of (62). This allows writing A = Ao − EA,
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Figure 12: Grid topology with Ng = 25 candidate locations, Ns = 1 transmitting source, and
Nr = 4 receiving CRs.

where EA is affine structured with coefficients {εsgr} and matrix atoms formed
by {bν(fk)}. All in all, the setup fits nicely the structured EIV model in (61).
Together with {εsgr}, the support of xo estimates the locations of sources,
and the nonzero entries of xo their transmit powers. Remarkably, this grid-
based approach reduces localization – traditionally a nonlinear estimation
task – to a linear one, by increasing the problem dimensionality (Ng �
Ns). What is more, xo is sparse for two reasons: a) relative to the swath of
available bandwidth, the transmitted PSDs are narrowband; hence, the number
of nonzero xgνs is small relative to Nb; and (b) the number of actual sources
(Ns) is much smaller than the number of grid points (Ng) that is chosen large
enough to localize sources with sufficiently high resolution. Existing sparsity-
exploiting approaches to CR sensing rely on BP/Lasso, and do not take into
account the mismatch arising due to griding [54, 20]. Simulations in Section 4
will demonstrate that sensing accuracy improves considerably if one accounts
for grid-induced errors through the EIV model, and compensates for them via
the devised WSS-TLS estimators.
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DoA Estimation via Sparse Linear Regression

The setup here is the classical one in sensor array processing: plane waves
from Ns far-field, narrowband sources impinge on a uniformly-spaced linear
array (ULA) of Nr (possibly uncalibrated) antenna elements. Based on as few
Nr × 1 vectors of spatial samples collected across the ULA per time instant
t (snapshot), the task is to localize sources by estimating their directions-
of-arrival (DoA) denoted as {ϑs}Nss=1. High-resolution, (weighted) subspace-
based DoA estimators are nonlinear, and rely on the sample covariance matrix
of these spatio-temporal samples, which requires a relatively large number of
snapshots for reliable estimation especially when the array is not calibrated;
see e.g., [153]. This has prompted recent DoA estimators based on sparse
linear regression, which rely on a uniform polar grid of Ng points describing
candidate DoAs {θg}

Ng
g=1 [118, 201, 228]. Similar to the CR sensing problem,

the g-th entry xg of the Ng × 1 unknown vector of regression coefficients,
xo,t, is nonzero and equal to the transmit-source signal power, if a source is
impinging at angle θg, and zero otherwise.
The Nr × 1 array response vector to a candidate source at DoA θg is a(θg) =
[1 e−jαg · · · e−jαg(Nr−1)]T , where αg := 2πd sin(θg) denotes the phase shift
relative to the source signal wavelength between neighboring ULA elements
separated by distance d. The per-snapshot received data vector yt of length
m = Nr obeys the EIV model: yt = (A + EA) xo,t + (−ey,t), where −ey,t
represents the additive noise across the array elements; the m × n matrix
A := [a(θ1) · · · a(θNg)] denotes the grid angle scanning matrix of n = Ng

columns; and EA represents perturbations arising because DoAs from actual
sources do not necessarily lie on the postulated grid points. Matrix EA can
also account for gain, phase, and position errors of antenna elements when the
array is uncalibrated.
To demonstrate how a structured S-TLS approach applies to the DoA estima-
tion problem at hand, consider for simplicity one source from direction ϑs,
whose nearest grid angle is θg; and let εsg := ϑs − θg be the corresponding
error that vanishes as the grid density grows large. For small εsg, the actual
source-array phase shift αs := 2πd sin(θg+εsg) can be safely approximated as
2πd[sin(θg) cos(εsg) + cos(θg) sin(εsg)] ≈ 2πd[sin(θg) + εsg cos(θg)]; or, more
compactly as αs ≈ αg+εgβg, where βg := 2πd cos(θg). As a result, using the
approximation exp(−jαs) ≈ exp[−j(αg+εsgβg)] ≈ (1−jεsgβg) exp(−jαg),
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the actual array response vector can be approximated as a linear function of
εsg; thus, it be expressed as

a(ϑs) = a(θg) + εsgiφ(θg)
φ(θg) :=

[
0 − jβge−jαg , . . . ,−jβg(Nr − 1)e−jαg(Nr−1)

]T
.

(63)

With columns obeying (63), the actual array manifold is modeled as Ao =
A + EA, where the perturbation matrix is structured as EA =

∑Ng
g=1 ε

s
gSAg ,

with theNr×Ng matrix SAg having all zero entries, except for the g-th column
that equals φ(θg). With such an array manifold and Sy = I, the grid-based
DoA setup matches precisely the structured EIV model in (61). The simulated
tests in the ensuing section will illustrate, among other things, the merits of
employing WSS-TLS solvers to estimate xo,t and εsg based on data collected
by possibly antenna arrays. But before this, a final remark is in order.
Remark 3: (Relationships with [117] and [201]) Although EA is not explic-
itly included in the model of existing grid-based approaches, this mismatch
has been mitigated either by iteratively refining the grid around the region
where sources are present [201], or, by invoking the minimum description
length (MDL) test to estimate the number of actual sources Ns, followed by
spatial interpolation to estimate their DoAs [117]. These remedies require
post-processing the initial estimates obtained by sparse linear regression. In
contrast, the proposed structured S-TLS based approach jointly estimates the
nonzero support of xo,t along with grid-induced perturbations. This allows
for direct compensation of the angle errors to obtain high-resolution DoA
estimates in a single step, and in certain cases, without requiring multiple
snapshots. Of course, multiple snapshots are expected to improve estimation
performance using the matrix S-TLS solver mentioned in Remark 2.

Simulated Tests

Four simulated tests are presented in this section to illustrate the merits of the
S-TLS approach, starting from the algorithms of Section 4.
Test Case 1: (Optimum vs. suboptimum S-TLS) The EIV model in (29) is
simulated here with a 6 × 10 matrix A, whose entries are i.i.d. Gaussian
having variance 1/6, so that the expected `2-norm of each column equals
1. The entries of EA and ey are also i.i.d. Gaussian with variance 0.0025/6
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Figure 13: Attained f(x) for variable tolerance values ε by the global Algorithm 4-b, compared
to the alternating descent local algorithm, and the genie-aided global solver.

corresponding to entry-wise signal-to-noise ratio (SNR) of 26dB. Vector xo
has only nonzero elements in the two first entries: xo,1 = −1.3 and xo,2 = 5.
Algorithm 1 is tested with µ = 5 against Algorithm 5 implemented with
different values of λ to obtain a solution satisfying ‖x̂S−TLS‖1 = µ. For
variable tolerance values ε in Algorithm 4-b, the attained minimum cost f(x)
in (36) is plotted in Fig. 13. To serve as a benchmark, a genie-aided globally
optimum scheme is also tested with the support of x known and equal to that
of xo. Specifically, the genie-aided scheme minimizes f(x) over all points
with `1-norm equal to µ, and all entries being 0 except for the first two. Using
the equivalence between (36) and (37), the genie-aided scheme per iteration
amounts to minimizing a scalar quadratic program under linear constrains,
which is solved efficiently using the interior-point optimization routine in
[271].
Fig. 13 shows that as ε becomes smaller, the minimum achieved value f(x)
decreases monotonically, and drops sharply to the global minimum attained
by the genie-aided bisection scheme. Interestingly, the alternating descent
algorithm that guarantees convergence to a stationary point, exhibits perfor-
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mance comparable to the global algorithm. For this reason, only the alternating
descent algorithm is used in all subsequent tests. Next, S-TLS estimates are
compared with those obtained via BP/Lasso and (regularized) TLS in the con-
text of the CR sensing and array processing applications outlined in Section
4.
Test Case 2: (S-TLS vs. Lasso vs. TLS) The setup here is also based on the
EIV model (29), with A of size 20 × 40 having i.i.d. Gaussian entries; and
xo having 5 nonzero i.i.d. standardized Gaussian entries. All other parameters
are as in Test Case 1 adapted to the different problem size here. By averaging
results over 200 Monte Carlo runs, the S-TLS solution is compared against the
Lasso one for 20 values of λ (uniformly spaced in log-scale), based on the `2,
`1, and `0 errors of the estimated vectors relative to xo. (The `0 error equals
the percentage of entries for which the support of the two vectors is different.)
Fig. 14 corroborates the improvement of S-TLS over Lasso, especially in
the `0 norm. Fig. 14(c) further demonstrates that over a range of moderate λ
values, S-TLS consistently outperforms Lasso in recovering the true support
of xo. For high λ’s, both estimates come close to the all-zero vector, so that
the `0 errors become approximately the same, even though the `2 and `1 errors
are smaller for Lasso. However, for both error norms S-TLS has a slight edge
over moderate values of λ.
Receiver operating characteristic (ROC) curves are plotted in Fig. 14(d) to
illustrate the merits of S-TLS and Lasso over (regularized) TLS in recovering
the correct support. The “best” λ for the S-TLS and Lasso algorithms is
chosen using cross-validation [232]. As TLS cannot be applied to under-
determined systems, a 40× 40 matrix A is selected. Since TLS and LS under
an `2-norm constraint ‖x‖2 ≤ µ are known to be equivalent when µ is small
[76], the regularized TLS is tested using the function lsqi for regularized
LS from [143]. The probability of correct detection, Pd, is calculated as the
probability of identifying correctly the support over nonzero entries of xo, and
the probability of false alarms, Pfa, as that of incorrectly deciding zero entries
to be nonzero. The ROC curves in Fig. 14(d) demonstrate the advantage of
Lasso, and more clearly that of S-TLS, in recovering the correct support.
Test Case 3: (CR Spectrum Sensing) This simulation is performed with refer-
ence to the CR network in the region [0 1]× [0 1] in Fig. 12. The setup includes
Nr = 4 CRs deployed to estimate the power and location of a single source
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Figure 14: Comparison between S-TLS and Lasso in terms of: (a) `2-norm, (b) `1-norm, and
(c) `0-norm of the estimation errors; (d) Probability of detection versus probability of false
alarms for the TLS, `2 regularized (R-)TLS, S-TLS and Lasso algorithms.

with position vector [0.4 0.6], located at the center of four neighboring grid
points. The CRs scanK = 128 frequencies from 15MHz to 30MHz, and adopt
the basis expansion model in Section 4-A with Nb = 16 rectangular bν(f)
functions, each of bandwidth 1MHz. The actual source only transmits over
the ν = 6-th band. The channel gains are exponentially decaying in distances
with exponent −1/2. The received data are generated using the transmit PSD
described earlier, a regular Rayleigh fading channel with 6 taps, and additive
white Gaussian receiver noise at SNR=0dB. Receive-PSDs are obtained using
exponentially weighted periodograms (with weight 0.99) averaged over 1,000
coherence blocks; see also [20] for more details of a related simulation. The
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WSS-TLS approach is used to account for perturbations εsgr in the channel
gains. A diagonal matrix W is used with each diagonal entry equal to σ̂−2

ε

(inversely proportional to the average of sample variances of εsgr).
With λ chosen as in [61], both Lasso and WSS-TLS identify the active
frequency band correctly (only the entries {xg6}16

g=1 were estimated as
nonzero). However, Lasso identifies four transmitting sources at positions
[0.3(0.5) 0.5(0.7)], the four grid points closest to [0.4 0.6]. WSS-TLS returns
only one source at position [0.5 0.5], along with the estimated ε̂sgr that yields
γ̂sr = ε̂sgr + γgr. Concatenate the latter to form γ̂s of length Nr = 4 � m.
Using a refined grid of 25 points uniformly spaced over the “zoom-in” region
[0.3 0.7] × [0.3 0.7] centered at [0.5 0.5], correlation coefficients between
γ̂s and those of each candidate point are evaluated. The source position is
estimated as the point with maximum correlation coefficient, which for WSS-
TLS occurs at the true location [0.4 0.6]. To illustrate graphically the two
alternatives, the estimated maps of the spatial PSDs at the 6th frequency band
are plotted in Fig. 15(a) using the Lasso, and in Fig. 15(b) using WSS-TLS.
The marked point indicates the actual source location [0.4 0.6] in both maps.
Unlike Lasso, the WSS-TLS identifies correctly the true position of the source.
Test Case 4: (DoA Estimation) The setup here entails a ULA consisting of
Nr = 8 antenna elements with inter-element spacing d = 1/2, and a grid
of Ng = 90 scanning angles from −90◦ to 90◦ wrt the array boresight. Two
sources (Ns = 2) of unit amplitude impinge from angles ϑs = 1◦ and −9◦,
both 1◦ off their nearest grid DoAs. As in the single-snapshot test in [201], the
SNR is set to 20dB. The variance of εsg in (63) is obtained from the uniform
distribution in [−1◦, 1◦]. Selecting λ according to the noise level as in [201],
Lasso returns four nonzero entries, two around each source at ϑs ± 1◦; while
WSS-TLS gives two nonzero θg estimates at −10◦ (g = 40) and 0◦ (g = 45),
along with perturbation estimates ε̂s40 and ε̂s45. Using the latter, the DoAs are
estimated as ϑ̂s := θ̂g + ε̂sg for g = 40, 45. The angle spectra using Lasso, and
WSS-TLS with estimated ϑ̂s, are compared in Fig. 16(a). The two black arrows
depict the actual source angles, and benchmark the true angular spectrum.
To further illustrate the merits of WSS-TLS in estimating correctly the closest
grid point and subsequently each DoA, the sample variance of a DoA estimate
is plotted versus SNR in Fig. 16(b) using Monte Carlo runs, each with a
single source randomly placed over [−1◦, 1◦]. Both WSS-TLS and Lasso are
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Figure 15: Comparison between PSD maps estimated by (a) Lasso, and (b) WSS-TLS for the
CR network in Fig. 12.

post-processed by interpolating peaks in the obtained spectra from two nearest
grid points, linearly weighted by the estimated amplitudes as in [118]. Both
curves confirm that WSS-TLS outperforms the Lasso. More interestingly,
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Figure 16: (a) Angular spectra estimated using Lasso and WSS-TLS as compared to the
actual transmission pattern; (b) Comparison of angle estimation variances of Lasso, WSS-TLS,
without and with interpolation.

the two WSS-TLS curves almost coincide, which further corroborates that
WSS-TLS manages in a single step to identify correctly the support of xo,t
without requiring post processing.
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Conclusions

An innovative approach was proposed to account for sparsity in estimating
coefficient vectors of fully-perturbed linear regression models. This approach
enriches TLS criteria that have been traditionally used to fit such models with
the ability to handle under-determined linear systems. The presented S-TLS
framework also enables sparsity-exploiting approaches (CS, BP, and Lasso) to
cope with perturbations present not only in the data but also in the regression
matrix.
Near-optimum and reduced-complexity suboptimum solvers with global and
local convergence guarantees were also developed to optimize the gener-
ally nonconvex S-TLS criteria. They rely on bisection, branch-and-bound,
or coordinate descent iterations, and have universal applicability regardless
of whether perturbations are modeled as deterministic or random. Valuable
generalizations were also provided when prior information is available on the
deterministic structure or statistics of the associated (augmented) data matrix.
Under specific statistical models with errors-in-variables, the resultant (gener-
ally weighted and structured) S-TLS estimators were proved to be optimal in
the MAP sense. Simulated tests corroborated the analytical claims, compared
competing alternatives, and demonstrated the practical impact of the presented
S-TLS framework to grid-based sparsity-exploiting approaches for cognitive
radio sensing, and direction-of-arrival estimation with possibly uncalibrated
antenna arrays.
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5
Compressed Acquisition of Correlated

Streaming Sensor Data

This section focuses on distributed sequential compressed acquisition and
progressive reconstruction of spatially and temporally correlated sensor data
streams in WSNs through CS. A sliding window based recursive CS data
collection method is devised. The method uses `2-regularization and iterative
reweighted `1-minimization (IRW-`1) [48] as the key techniques to incorpo-
rate prior signal information from preceding decoding instants to improve
reconstruction accuracy while reducing the necessary communications. As
main benefits, the method enjoys a low decoding delay, allows progressive
refinement of past readings, and can trade off between the CS recovery perfor-
mance and decoding complexity. The simulation results demonstrate that the
proposed method achieves superior performance compared to the baseline CS
methods.

Related Works

Exploiting Signal Correlation via CS

CS is an efficient means to reduce energy consumption of gathering sparse cor-
related signals in WSNs [94, 145, 186]. Particular attention is needed regarding
the structure of a measurement matrix Φ; besides affecting the reconstruction

75
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performance (see Section 2), it dictates the measurement collection structure
for y = Φx, thereby influencing the sensors’ energy expenditure. Different
CS data collection techniques classified based on the utilization of signal
correlation are reviewed next.
Spatial Correlation: Compressive wireless sensing, where phase-coherent
analog projections are sent from each sensor to a fusion center through mul-
tiple access channels, was introduced in [14]. Luo et al. [197] proposed a
measurement matrix design to collect spatially (i.e., inter-signal) correlated
data so that the nodes distant from a sink send original data, while the rest
linearly combine their measurements along multi-hop routing. The minimum
spanning tree based routing of the measurements was addressed in [309].
These in-network aggregation methods are highly topology-dependent and are
mostly suitable for large-scale WSNs. This can be circumvented by spatial
sub-sampling where the measurements are collected only from a (random)
subset of sensors at each sampling instant [238, 104]. Sub-sampling via sleep-
ing modes in distributed local signal recovery was proposed in [190], and
sub-sampling combined with weighing each sensor’s transmissions based on
the harvested energy in [313].
Temporal Correlation: If the N readings in x possess temporal (i.e., intra-
signal) correlations, each sensor may communicate only M < N measure-
ments y = Φx to the sink for CS decoding [186]. Such an in-node technique
is localized and network-independent, but it causes an inevitable decoding
delay in the sensors’ readings. The combination of CS and random linear
network coding to efficiently acquire temporally correlated vital signals was
addressed in [170].
Joint Spatio-Temporal Correlation: Besides operating in a single dimension
at a time, CS has been used to acquire multi-dimensional correlated signals.
There are two main classes. The first one is distributed CS [19, 95] – a unified
decentralized CS framework where intra-signal and inter-signal dependencies
are exploited via joint sparsity models (JSMs). The second is Kronecker CS
(KCS) [93] which exploits general correlation structures by combining the
(possibly distinct) sparsifying bases of each signal dimension into a single basis
matrix [93, 248]. Distributed CS and KCS applied to various WSN signals
have been empirically shown to outperform single-dimensional CS approaches
in terms of compression performance and sensors’ energy expenditure [37].
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Dynamic CS Framework

Despite the excellence of distributed CS and KCS for distributed data acqui-
sition, their block-wise processing neglects the inherent dynamic nature of
sensor data streams. One remedy is dynamic CS where temporally correlated
sparse signals are measured and decoded sequentially [13, 114, 284, 285, 286,
195, 318, 287]. Such streaming processing enables continually incorporating
prior signal knowledge into the CS decoding to improve reconstruction accu-
racy. This also enables a reduction in the data block size during reconstruction,
thus circumventing the complexity issues involved in distributed CS and KCS.
See also Section 3 for more discussion on recursive CS frameworks.
Modified CS Reconstruction: The works in [284, 285, 286, 195] assume
slowly varying signal supports and transform domain coefficients, and de-
veloped modified CS reconstruction algorithms that add regularization terms
and constraints to incorporate partial support knowledge or/and signal value
estimates from the previous decoding instant to improve the reconstruction
performance. The works [114, 12, 13, 296] employed sliding window pro-
cessing to exploit successively decoded overlapping signal portions either to
improve the reconstruction fidelity or to speed up the iterative signal recovery.
The reconstruction accuracy and stability over time of such recursive algo-
rithms are affected for example by temporal signal characteristics, algorithm
initialization, and intermittent signal information updates [286, 318]. For other
applications on recursive CS, see, e.g., [200, 291, 67].
Weighted-Norm Minimization: The intrinsic prior information in dynamic
CS can also be utilized via the iterative reweighted `1-minimization (IRW-`1)
[48, 223, 302, 159, 312, 12, 13]. The core idea of the IRW-`1 is to suppress the
magnitude dependency of the `1-norm so that the reweighted `1-minimization
becomes closer to the sparsity-optimal `0-minimization [48]. The IRW-`1 alter-
nates between solving a weighted `1-minimization problem and updating the
weights based on the current solution [48]. While the IRW-`1 has mainly been
applied for single finite-length signals, the work in [13] adapts the technique
to a recursive CS framework. In such a setup, the estimates from the preceding
decoding window can be sophisticatedly used for weight initialization. Other
variants aiming at improving the performance of conventional `1-minimization
include iteratively reweighted least squares [214, 52, 302], and non-convex
`p-minimization for 0 < p < 1 [59, 60].
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System Model

Consider a multi-hop single-sink data gathering WSN which consists of a set of
battery-powered sensors N = {1, . . . , N}, capable of transmitting, receiving,
and relaying data. The sensors are deployed in an event area to periodically
monitor a physical phenomenon (e.g., light intensity, wind speed, temperature,
humidity etc.) at a pre-defined rate and to disseminate the acquired information
to the sink. For each sensing period, the sink is responsible for obtaining an
accurate reconstruction of the monitored field, i.e., it recovers the readings of
all N sensors.

Source Model

The sensor observations are assumed to encompass both spatial and temporal
correlations, accounting for various typical environmental sensing applications
in densely deployed WSNs [5, 197]. The prevailing physical phenomenon in
the monitoring field is generated by a set of independent, randomly located,
time-varying sources S = {1, . . . , S}. These sources could be, e.g., server
racks representing heat sources during data center temperature monitoring,
or lamps corresponding to light sources in an automated illumination control
system. A data gathering WSN with N = 8 and S = 5 is illustrated in Fig. 17.
The impact of each source s ∈ S on the sensors’ readings is modeled through
time-invariant, real-valued influence functions hns ∈ R, n ∈ N . Let xn(t)
and βs(t) denote the reading of sensor n ∈ N and the magnitude of source
s ∈ S at time instant t, respectively. The sources are assumed to affect the
sensor observations collectively. Thus, a sensor reading xn(t) is given by the
superposition of the influences from all sources as [190]

xn(t) =
∑
s∈S hnsβs(t) = hT

nβ(t), n ∈ N , t = 1, 2, . . . , (64)

where vector β(t) = [β1(t) · · · βS(t)]T consists of the source magnitudes at
time instant t, and hn = [hn1 · · · hnS ]T is the aggregate influence vector on
sensor n ∈ N .
According to (64), the spatial and temporal correlation properties of the sen-
sors’ readings are separately characterized by the types of influence functions
and the stochastic properties of the source magnitude sequences, respectively.
Without a loss of generality, a common class of distance-dependent influences
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Figure 17: A data gathering WSN with spatially and temporally correlated sensor data streams
for N = 8 and S = 5.

[24, 5, 330] of the form hns(dns) is used, where dns is the distance between
sensor n ∈ N and source s ∈ S. Moreover, it is assumed that the evolution
of source sequences {βs(1), βs(2), . . .}, s ∈ S, is piecewise smooth. This
family of models covers a general WSN monitoring framework, where the
readings of the sensors close to each other encompass a high degree of spatial
correlation and where occasional abrupt changes can occur on top of slow
temporal variations in the underlying phenomenon. In fact, the data recorded
from monitoring the temperature, humidity, and solar radiation in real WSN
test beds have been reported to encounter high degrees of temporal correlation
with slow magnitude variations [196, 197, 330, 238].

Energy Consumption Model

Since the wireless data transmissions are one of the most energy-demanding
operations for a sensor, the amount of communications needed to report the
observed readings (64) to the sink should be minimized. For assessing the
energy consumption of wireless access, we use a customary approach of CS
data gathering works [238]: the transmit power usage of a sensor is quantified
in proportion to the number of transmitted measurements (this will become
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more clear in Section 5). Although this model does not take into account the
details of the physical layer (i.e., coding, modulation, channel capacity), the
data link layer (i.e., medium access control), and the network layer (i.e., data
routing and forwarding schemes), the number of transmitted data units serves
as a legitimate quantity for the sensors’ energy consumption.

Sequential CS of Correlated Sensor Data Streams

In this section, we present a sequential CS framework for delivering jointly
correlated sensor data streams, i.e., the observed sensor readings xn(t) of (64),
to the sink with an aim of minimizing the necessary number of transmitted
data units. The sensors’ readings are periodically delivered to the sink in the
form of measurements, which are used to sequentially reconstruct portions of
the sensor data streams via sliding window processing while exploiting the
joint compressibility using Kronecker sparsifying bases. The method produces
estimates for the current sensors’ readings without an additional decoding
delay and flexibly implements trade-offs between the CS recovery performance
and decoding complexity via the window size.

Sliding Data Window

Let X(t) ∈ RN×W denote a data window at time instant t with a window
size2 W ≥ 1. The matrix X(t), t ≥W , consists of W consecutive readings
of all N sensors at time instants {t−W + 1, . . . , t} as

X(t) =


x1(t−W + 1) · · · x1(t)

...
. . .

...
xN (t−W + 1) · · · xN (t)

 , (65)

where xn(t) is the reading of sensor n ∈ N at time instant t given in (64).
Let vector xT

n(t) = [xn(t−W + 1) · · · xn(t)] denote the nth row of X(t),
containing the readings of sensor n at time instants {t−W + 1, . . . , t}. Simi-
larly, let vector x(t) = [x1(t) · · · xN (t)]T denote the columns of X(t), each
of which contains the sensors’ readings at a time instant t. Accordingly, X(t)

2A fixed window length W is assumed for clarity; using a varying window size over the
time slots could be beneficial in certain applications.
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can be expressed as

X(t) = [x(t−W + 1) · · · x(t)] = [x1(t) · · · xN (t)]T . (66)

The sliding window structure with respect to the sensor data streams is illus-
trated in Fig. 18(a).

Exploiting Joint Spatio-Temporal Correlation

Recall that according to the sensor data model defined in Section 5, each data
window X(t) in (65) encompasses both a spatial and temporal correlation. We
assume that there exists a basis ΨS ∈ RN×N for the spatial domain in which
each column of X(t) has a compressible representation, i.e., x(t) = ΨSθS(t),
where vector θS(t) ∈ RN contains the spatial transform coefficients at slot t.
Accordingly, X(t) can be written as

X(t) = [x(t−W + 1) · · · x(t)]
= ΨS [θS(t−W + 1) · · · θS(t)]
= ΨSΘS(t),

(67)

where ΘS(t) , [θS(t−W + 1) · · · θS(t)]. Similarly, there exists a temporal
domain basis ΨT ∈ RW×W in which each row of X(t) has a compressible
representation, i.e., xn(t) = ΨTθT,n(t), where vector θT,n(t) ∈ RW con-
tains the temporal transform coefficients of sensor n. Hence, X(t) can be
expressed as

XT(t) =[x1(t) · · · xN (t)]
= ΨT [θT,1(t) · · · θT,N (t)]
= ΨTΘT(t),

(68)

where ΘT(t) , [θT,1(t) · · · θT,N (t)].
Kronecker sparsifying bases can succinctly combine the individual sparsifying
bases of each signal dimension into a single transformation matrix [92, 93].
Thus, by merging the transformations in (67) and (68), X(t) can be represented
as

x(t) = vec (X(t))= vec
(
ΨSZ(t)ΨT

T
)

= (ΨT⊗ΨS)vec (Z(t))
= Ψz(t),

(69)

where x(t) = [xT(t−W + 1) · · · xT(t)]T ∈ RNW is the vector-reshaped
data window, the operator vec(A) stacks the columns of matrix
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A = [a1 · · · aN ] into the vector form a = [aT
1 · · · aT

N ]T, Z(t) ∈ RN×W is
a matrix of the joint transform coefficients for X(t), ⊗ denotes the Kronecker
product, Ψ = (ΨT⊗ΨS) ∈ RNW×NW is the Kronecker sparsifying basis,
and z(t) = vec (Z(t)) ∈ RNW is the joint transform coefficient vector. In
summary, X(t) has a 2D-separable transform Z(t) = Ψ−1

S X(t)Ψ−T
T , where

Ψ−1
S operates on the columns of X(t) and Ψ−T

T on its rows [248].
Data-independent bases ΨS and ΨT are considered in this work. Such univer-
sal transformations are suitable for revealing the underlying sparsity of many
smooth/piecewise smooth signals and include the discrete Fourier, cosine, and
wavelet transform (DFT, DCT, DWT), respectively [202, 15, 36, 37]. The
efficacy of the DWT matrices in sparsifying signals of various natural phe-
nomena (e.g., temperature, humidity, and light intensity) has been reported in,
e.g., [197, 37]. Other transformations include data-dependent basis learning
via principal component analysis (PCA) [210, 238], and topology-dependent
diffusion and graph wavelets [145].

CS Encoding and Decoding

Next, we present the CS encoding and decoding processes in the data gathering
framework.

CS Encoding

We consider a CS encoding procedure, where at each time instant t ≥ 1,
the measurements are taken with respect to the current sensors’ readings
x(t). Accordingly, the sink acquires M(t) linear compressive measurements
y(t) = [y1(t) · · · y

M(t)(t)]
T ∈ RM(t) as

y(t) = Φ(t)x(t), t ≥ 1, (70)

where Φ(t) ∈ RM(t)×N , M(t) ≤ N , is the measurement matrix for time in-
stant t. According to (70), the measurement ensemble with respect to each
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Figure 18: A block diagram to illustrate the sliding window processing with respect to (a) the
sensor data streams, and (b) measurement ensembles.

data window X(t) has a block-diagonal structure3 as
y(t−W + 1)

...
y(t)

 =


Φ(t−W + 1) · · · 0

...
. . .

...
0 · · · Φ(t)



x(t−W + 1)

...
x(t)

 .

(71)
3For a line of work with overlapping measurement systems, see, e.g., [114, 13].
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By forming the concatenated measurement vector

y(t) =
[
yT(t−W + 1) · · · yT(t)

]T
∈ R

∑t

τ=t−W+1 M(τ)

and the corresponding measurement matrix Φ(t) =
diag (Φ(t−W + 1), . . . ,Φ(t))∈ R

∑t

τ=t−W+1 M(τ)×NW , the measure-
ment ensemble in (71) can be compactly written as

y(t) = Φ(t)x(t). (72)

Note that the measurement matrices Φ(t) ∈ RM(t)×N , t = 1, 2, . . . , are in
general unique, i.e., they can have different structures and varying numbers of
measurements M(t). Measurement ensembles with respect to successive data
windows are depicted in Fig. 18(b).

Delivery of Measurements

As the structure of each Φ(t) dictates how the measurements in (70) are
delivered to the sink, each Φ(t) has a great impact on the sensors’ energy
expenditure via the required wireless transmissions across the WSN [4]. Hence,
to achieve efficient and viable measurement acquisition scheme for (70), the
following sparse binary matrix Φ(t) ∈ BM(t)×N is used [210, 238]: all its
entries are zeros, except for a single "1" in each row, and at most a single ”1” in
each column. Consequentially, at each data gathering period t, the sink receives
M(t) readings from a random subset of sensors, denoted by N (t) ⊆ N ,
|N (t)| = M(t), i.e., the set of reading values becomes {xn(t)|n ∈ N (t)}.
This scheme has been empirically shown to greatly lower communication costs
in data gathering WSNs, while allowing fast and efficient implementation of
matrix multiplications in the CS decoding [204, 37].
The considered sub-sampling type Φ(t), and consequently Φ(t), fall into the
class of binary sparse measurement matrices [292, 28, 27, 173, 172, 237, 84,
37, 204], which are capable of achieving CS recovery performance comparable
to that of dense ones. The performance is affected by the mutual coherence
between Φ(t) and Ψ, and by the RIP-p property – a weaker form of the RIP
introduced in [27]. Analyses and empirical studies on the mutual coherence
between binary sparse measurement matrices and different sparsifying bases
can be found in, e.g., [237, 204, 84]. Intuitively, as the projections via the sub-
sampling Φ(t) become highly localized, successful CS decoding necessitates
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that the energy of the readings (64) is sufficiently dispersed across the sensors,
i.e., Ψ is dense [173, 172, 84]. Fortunately, this is the case in typical WSN
applications where the correlated data has a compressible representation under
a transformation like DCT or DWT.
Furthermore, since the underlying physical phenomena may be geographically
localized in WSNs, the measurements (70) should have a sufficient spatial
distribution/resolution to capture enough signal information for successful
CS recovery. This can be achieved by a distributed random sampling scheme
[238], where at each time instant t, each sensor n ∈ N independently decides
to transmit its reading xn(t) (along with a time stamp t and node index n)
with the probability4 ptx

t ∈ [0, 1]. Consequently, for each t, on average ptx
t N

sensors communicate the readings to the sink. The scheme is desirable in
WSNs because the routing becomes simple and topology-independent with
a low communication overhead. Moreover, it can be realized with standard
multi-hop routing protocols, including asynchronous individual transmissions
and packet aggregation techniques [94, 238]. A sensor may also switch into a
sleep mode, if during a data gathering round t, the sensor does not belong to
N (t) and does not act as a relaying node for multi-hop packet forwarding.

CS Decoding

By exploiting the joint spatio-temporal compressibility (69), each data window
X(t) can be recovered from measurements (72) by solving the `1-minimization
problem (cf. (3))

ẑ(t) := argmin
z̃
‖z̃‖1 such that y(t) = Φ(t)Ψz̃, (73)

where ẑ(t) is an estimate of z(t) so that an estimate of x(t) is
x̂(t) = Ψẑ(t). Reshaping the decoded data window x̂(t) gives X̂(t) =
[x̂(t−W + 1) · · · x̂(t)], where x̂(t) = [x̂1(t) · · · x̂N (t)]T contains the es-
timates of the sensors’ readings xn(t) of (64).
Each decoding instant (73) produces estimates for the current sensors’ read-
ings5 and the W − 1 previous ones. Note that for W = 1, (73) reduces to

4The classic CS sampling process relies on non-adaptive incoherent measurements, i.e.,
each measurement has an equal priority [94]. For a line of work on CS with adaptive measure-
ments, see, e.g., [147].

5We assume a slotted sliding window processing, i.e., at each time slot t, x(t) is referred
to as the current sensors’ readings which are reconstructed by (73) within the same slot.
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reconstructing each x(t) separately from measurements (70) by utilizing only
the spatial domain compressibility (67), i.e., solving

θ̂S(t) := argmin
θ̃S

‖θ̃S‖1 such that y(t) = Φ(t)ΨSθ̃S, (74)

and reconstructing x̂(t) = ΨSθ̂S(t).

Remark 5.1. The encoding/decoding in (73) without streaming processing
constitutes a Kronecker CS (KCS) scheme [93]: a single data window X(t)
is reconstructed from the associated measurement ensemble by treating X(t)
as a finite-length signal. In general, a large W is preferable for the KCS as it
allows to utilize the temporal domain compressibility of X(t) over a longer
interval improving the signal recovery performance. However, this induces
two prominent drawbacks: 1) involving W consecutive sensors’ readings in
the encoding induces a decoding delay proportional to W prior to obtaining
estimates for all the involved readings, and 2) the decoding complexity of (73)
can grow excessively high.

Progressive CS Signal Reconstruction With Prior Information

This section presents the development of a sequential CS method. Differ-
ently from the KCS that processes the data in non-overlapping blocks, the
proposed method treats the sensor data as continuous-time streams. This phi-
losophy is inspired by the fact that at each time instant t ≥W , (73) utilizes
the measurements and joint compressibility associated with the current sensor
reading vector x(t), and the W − 1 past ones x(t−W + 1), . . . ,x(t− 1).
The streaming processing mitigates the disadvantages of the KCS by 1) elim-
inating the decoding delay to obtain the current sensors’ readings, and 2)
allowing a trade-off between the decoding complexity and the CS recovery
performance by adjusting W . These benefits are illustrated by the numerical
results in Section 5.

Modified CS Reconstruction Problem

For window sizes W > 1, the sensors’ readings x(t) reappear in the W con-
secutive data windows X(t), . . . ,X(t+W − 1) (see (66) and Fig. 18(a)).
Hence, as x(t) is involved in the W successive measurement vectors
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y(t), . . . ,y(t+W − 1) by (71), it will be decoded W times via (73). Due
to this, a recursive CS recovery method is derived by modifying (73) so that,
at each time instant t ≥W , it utilizes the previously decoded estimates of
x(t−W + 1), . . . ,x(t− 1) to facilitate the reconstruction of the current sen-
sors’ readings x(t). Moreover, this improves the reconstruction accuracy of
the past readings x(t−W + 1), . . . ,x(t− 1). As demonstrated in Section 5,
the developed method substantially reduces the amount of necessary sensor
communications. Albeit beyond the scope of this work, the overlapping sig-
nal portions could further be utilized to develop iterative warm-start based
recovery algorithms with fast convergence [114, 12, 13, 296].

Decoder Buffer

Let XB(t) ∈ RN×(W−1) denote the firstW − 1 columns of data window X(t)
(See Fig. 18(a)). Thus, at time instant t ≥W , it consists of theW − 1 previous
sensors’ readings, i.e., XB(t) = [x(t−W + 1) · · · x(t− 1)]. Accordingly,
let X̂(t−1)

B (t) ∈ RN×(W−1) denote a decoder buffer at time instant t, which
consists of the estimates of XB(t) obtained at the previous instant t− 1, i.e.,

X̂(t−1)
B (t) =

[
x̂(t−1)(t−W + 1) · · · x̂(t−1)(t− 1)

]
, (75)

where each vector x̂(t−1)(t− d) =
[
x̂

(t−1)
1 (t− d) · · · x̂(t−1)

N (t− d)
]T,

d = 1, . . . ,W − 1, contains the estimates of x(t− d) obtained at the
decoding instant t− 1, i.e., x̂(t−1)

n (t− d) denotes the estimate of sensor
reading xn(t− d) of (64) obtained at decoding instant t− 1. In other words,
the last column of X̂(t−1)

B (t) stores the estimates of the preceding sensors’
readings, whereas its first column contains the estimates of the most outdated
ones.

Problem Formulation

Recall that the CS decoding problems (73) at consecutive time instants
t− 1 and t reconstruct the data windows X(t− 1) = [x(t−W ) XB(t)] and
X(t) = [XB(t) x(t)], respectively. Owing to the fact that they share the com-
mon signal part XB(t) (see Fig. 18(a)), the recovery problem (73) is next mod-
ified such that, at each time instant t ≥W , it utilizes the previous estimate of
XB(t), i.e., the decoder buffer X̂(t−1)

B (t) in (75), to reconstruct X(t). To this
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end, the objective function of (73) will be augmented with a regularization term
which induces an additional penalty in relation to

∥∥∥X̂(t)
B (t)− X̂(t−1)

B (t)
∥∥∥

F
,

i.e., the deviation between the estimates of XB(t) obtained at the consecutive
decoding instants t and t− 1.
Let Ψ′T ∈ R(W−1)×W denote the matrix consisting of the first W − 1 rows of
temporal domain basis ΨT in (68), i.e., Ψ′T = [ψT,1 · · · ψT,(W−1)]T, where
ψT,i = [ψT,i1 · · · ψT,iW ]T is the ith row of ΨT, i = 1, . . . ,W − 1. Then, let
us form a matrix Ψ′ ∈ RN(W−1)×NW as

Ψ′ = Ψ′T ⊗ΨS
= [ψ1 · · · ψN(W−1)]T,

(76)

which extracts the first N(W − 1) rows of Kronecker sparsifying ba-
sis Ψ in (69), where ψi = [ψi1 · · · ψi(NW )]T is the ith row of Ψ,
i = 1, . . . , N(W − 1) (See Appendix B for more details).
Regularization: Using Ψ′ in (76) and X̂(t−1)

B (t) in (75), the following regular-
ization term is added in the objective function of (73):

γB
∥∥∥Ψ′z̃− vec

(
X̂(t−1)

B (t)
)∥∥∥

2
, (77)

where γB ≥ 0 is a non-negative regularization weight parameter, and
z̃ ∈ RNW are the optimization variables. The first term in (77), which,
according to (76) is equal to Ψ′z̃ = [ψ1 · · · ψN(W−1)]Tz̃, carries the
following logic: by solving (73) with added regularization (77), the
term Ψ′z̃ constitutes an estimate of vec (XB(t)) at time instant t, i.e.,
Ψ′z̃ , vec

(
X̂(t)

B (t)
)

. Therefore, the regularization term can be interpreted as

γB
∥∥∥vec

(
X̂(t)

B (t)
)
− vec

(
X̂(t−1)

B (t)
)∥∥∥

2
, i.e., it assigns a cost for the deviation

between the consecutive estimates of XB(t). The weight parameter γB con-
trols the emphasis between the regularization term and the sparsity-promoting
`1-norm term.
IRW-`1: In addition to the `2-regularization, the iterative reweighted `1-
minimization (IRW-`1) algorithm [48] is adapted to problem (73). Accordingly,
at each decoding instant t, the IRW-`1 alternates between solving a weighted
`1-minimization problem, and updating the weights based on the obtained
solution [48]. Specifically, ‖z̃‖1 in (73) is replaced with

∥∥∥G(k)(t)z̃
∥∥∥

1
, where

G(k)(t) = diag
(
g

(k)
1 (t), . . . , g(k)

NW (t)
)

is a diagonal weight matrix at decod-

ing instant t and iteration k with positive weights g(k)
i (t) > 0, i = 1, . . . , NW .
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By combining the IRW-`1 with the `2-regularization term (77), at each de-
coding instant t ≥W and iteration k, the decoder first solves a modified CS
recovery problem

ẑ(k)(t) :=argmin
z̃

{∥∥∥G(k)(t)z̃
∥∥∥

1
+ γB

∥∥∥Ψ′z̃− x̂(t−1)
B (t)

∥∥∥
2

}
such that y(t) = Φ(t)Ψz̃

(78)

to obtain an estimate of z(t) (See (69)), where x̂(t−1)
B (t) = vec

(
X̂(t−1)

B (t)
)

is
the vector-reshaped decoder buffer of (75). Then, the decoder uses the obtained

estimate vector ẑ(k)(t) =
[
ẑ

(k)
1 (t) · · · ẑ(k)

NW (t)
]T

to update the weights as [48]

g
(k+1)
i (t) :=

(∣∣∣ẑ(k)
i (t)

∣∣∣+ ε0
)−1

, i = 1, . . . , NW, (79)

where ε0 > 0 is a small positive stability parameter. In practice, the two itera-
tion steps (78) and (79) of the IRW-`1 are alternated until either the weights
have converged (e.g., when

∥∥∥G(k+1)(t)−G(k)(t)
∥∥∥

F

/∥∥∥G(k)(t)
∥∥∥

F
≤ εG with

a pre-defined tolerance εG > 0), or until a maximum number of iterations kmax
is reached. Typically, most of the gain is achieved in the first few iterations of
the IRW-`1 [48].
Prior to describing the complete algorithm in Section 5, the two modifications
– the `2-regularization term (77) and the IRW-`1 – which differentiate problem
(78) from (73) are separately elaborated. In particular, an effective weight ini-
tialization strategy for the IRW-`1 is proposed. Note that for G(k)(t) = INW
and γB = 0, the problem (78) is equivalent to (73).

The `2-Regularization Term

Recall that γB
∥∥∥Ψ′z̃− vec

(
X̂(t−1)

B (t)
)∥∥∥

2
adds regularization to the variations

in the estimates X̂(t)
B (t) and X̂(t−1)

B (t) obtained at the successive decoding
instants. In other words, at time t, the regularization induces an extra cost for
the inconsistency of the new estimate X̂(t)

B (t) compared to the previous one
X̂(t−1)

B (t). Due to the characteristics of the `2-norm, the regularization assigns
very small weights to small residuals in

∥∥∥vec
(
X̂(t)

B (t)
)
− vec

(
X̂(t−1)

B (t)
)∥∥∥

2
,

i.e., in
(∑N

n=1
∑t−1
τ=t−W+1

(
x̂

(t)
n (τ)− x̂(t−1)

n (τ)
)2
)1/2

[34, Ch. 6]. Corre-

spondingly, it has a low incentive to make small deviations even smaller, and,
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thus, the `2-regularization allows Ψ′z̃ = x̂(t)
B (t) to slightly differ from the pre-

vious estimate x̂(t−1)
B (t). Thus, besides facilitating the recovery of the current

sensors’ readings x(t), the `2-regularization allows the algorithm to refine the
previous estimates x̂(t−W + 1), . . . , x̂(t− 1) through the sliding window
processing. This is also supported by the empirical findings in Section 5.

The IRW-`1

The weighted `1-norm is motivated by the imbalance between the `0- and
`1-penalty: while the `0-term sets an equal penalty for each non-zero coeffi-
cient, the `1-norm penalizes them linearly in proportion to their magnitudes
[48]. Therefore, although the `1-minimization most likely identifies the lo-
cations of large entries in z(t), the magnitudes – especially those of small
elements – can remain inaccurate. As a remedy, the reweighting (79) com-
pensates for the magnitude dependency of the `1-norm: it assigns a weight
g

(k)
i (t) inversely proportionally to the corresponding (expected) coefficient

magnitude |zi| so that the terms in the objective of (78) become roughly
equalized as

∣∣∣g(k)
i (t)z̃i

∣∣∣ ≈ 1, i = 1, . . . , NW . Hence, in the course of itera-
tions, the weighted `1-minimization starts to resemble the sparsity-optimal
`0-minimization, thereby improving the CS decoding accuracy [48].
Weight Initialization: Obviously, the CS recovery performance of the recur-
sive IRW-`1 depends on the initial point, because all successive iterations for
k ≥ 2 implicitly rely on that solution [48]. An intuitive strategy also found
to work well in practice is to use G(1)(t) = INW (i.e., the `1-minimization)
[48]. With no prior signal information, this is a reasonable choice, as the `1-
minimization has the best theoretically established recovery threshold amongst
polynomial-complexity decoding algorithms for sparse signals [312]. However,
the decoding problems (78) at consecutive instants t− 1 and t reconstruct
the estimates for X(t− 1) = [x(t−W ) XB(t)] and X(t) = [XB(t) x(t)],
respectively. Thus, because the data windows share the overlapping block
of temporally (and spatially) correlated sensors’ readings XB(t), the cor-
responding joint transform coefficients z(t− 1) = Ψ−1vec (X(t− 1)) and
z(t) = Ψ−1vec (X(t)) can be expected to be close to each other. This sup-
plementary information will be used in the following weight initialization to
improve the reconstruction of the sensor data streams.
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By the above reasonings, the weights at decoding instant t > W are initialized
with the final weights used in the previous instant t− 16. Let κt denote
the last iteration k taken for the IRW-`1 at decoding instant t. Accordingly,

ẑ(κt)(t) =
[
ẑ

(κt)
1 (t) · · · ẑ(κt)

NW (t)
]T

are the final variables obtained for (78) at

decoding instant t; G(κt)(t) is the corresponding weight matrix. Hence, instead
of confining to the `1-minimization (G(1)(t) := INW ) in the first iteration,
the weight matrix is set as G(1)(t) := G(κt−1)(t− 1) at each t > W , i.e., the
initial weights become

g
(1)
i (t) :=

(∣∣∣ẑ(κt−1−1)
i (t− 1)

∣∣∣+ ε0
)−1

, i = 1, . . . , NW . (80)

The compression gains brought by the weight initialization are numerically
demonstrated in Section 5.

Algorithm Summary

The presented sequential compressed data acquisition method with pro-
gressive CS signal recovery based on the `2-norm regularization and the
IRW-`1 (termed Seq-Prog-CS) is described in Algorithm 6. The main op-
erations are summarized as follows. At each time slot t ≥W , the sink
gathers the measurements (70) by acquiring the readings from a subset
of the sensors (Step I.). Then, the decoder solves the modified CS re-
covery problem (78) via the IRW-`1, resulting in an estimate of X(t) as
X̂(t)(t) =

[
x̂(t)(t−W + 1) · · · x̂(t)(t)

]
(Step II.). Once reconstructed, its

W − 1 last columns
[
x̂(t)(t−W + 2) · · · x̂(t)(t)

]
are used to form the

decoder buffer X̂(t)
B (t+ 1) in (75) for the next instant t+ 1 (Step III.).

Then, X̂(t)(t) is used to update the estimates of x(t−W + 1), . . . ,x(t) as
{x̂(t−W + 1), . . . , x̂(t)} ←

{
x̂(t)(t−W + 1) · · · x̂(t)(t)

}
, i.e., the esti-

mates of the sensor data streams are gradually refined based on the most
recently obtained estimates (Step IV.). Finally, the sliding window is advanced
by one step (Step V.), and the procedure is repeated.
At the starting phase, estimates of x(1), . . . ,x(W − 1) are required to form
the decoder buffer X̂(t−1)

B (t) and initialize the IRW-`1. These can be attained

6The authors of [13] propose to initialize the weights based on the signal estimate from the
previous instant along with the available measurements, albeit mainly to speed up the iterative
solution process.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



92 Compressed Acquisition of Correlated Streaming Sensor Data

Algorithm 6 Sequential compressed data acquisition with progressive CS
signal reconstruction (Seq-Prog-CS)

Parameters: Mt, W , kmax, γB, ε0 and εG.
Initializations: (i) Set t = W ; (ii) obtain

[
x̂(1) · · · x̂(t− 1)

]
to form

X̂(t−1)
B (t); (iii) set κt−1 = 1 and G(1)(t− 1) = INW .

I. Measurements
Deliver the measurements y(t) = Φ(t)x(t) in (70) to the sink.
II. Progressive signal reconstruction
a) Construct y(t) =

[
yT(t−W + 1) · · · yT(t)

]T
.

b) Set k = 1, and initialize G(k)(t) according to (80).
c) Run the IRW-`1 to obtain ẑ(κt)(t) and G(κt)(t):
repeat

1) Solve (78) to obtain ẑ(k)(t) =
[
ẑ

(k)
1 (t) · · · ẑ(k)

NW (t)
]T

.

2) Set weight matrix G(k+1)(t) according to (79).
3) Set κt = k and k = k + 1.

until
∥∥G(k)(t)−G(k−1)(t)

∥∥
F
/∥∥G(k−1)(t)

∥∥
F ≤ εG or k > kmax.

d) Reconstruct the estimate for X(t) as vec
(
X̂(t)(t)

)
= Ψẑ(κt)(t), and

reshape it as X̂(t)(t) =
[
x̂(t)(t−W + 1) · · · x̂(t)(t)

]
.

III. Decoder buffer update
Set the decoder buffer in (75) as
X̂(t)

B (t+ 1) =
[
x̂(t)(t−W + 2) · · · x̂(t)(t)

]
.

IV. Estimate update
Set {x̂(t−W + 1), . . . , x̂(t)} ←

{
x̂(t)(t−W + 1) · · · x̂(t)(t)

}
.

V. Sliding window advance step
Set t = t+ 1, and go to Step I.

for example via (73). As there is no prior signal information available, it may
be necessary to use more measurements compared to the subsequent steps
t ≥W [286]. In general, due to the recursive decoding, all preceding estimates
from time slots {. . . , t− 2, t− 1} implicitly affect the recovery performance
at the time slot t. Thus, inaccurate estimates may induce error propagation.
The stability over time can be improved via intermittently requesting for
more measurements from the sensors (up to M(t) = N ), and consequently, to
provide more reliable prior information for the sliding window processing.
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Simulation Results

Numerical experiments are presented to illustrate the performance of the
devised Seq-Prog-CS method in terms of achievable energy savings and signal
reconstruction accuracy as compared to several baseline CS methods.

Simulation Setup

Consider WSN topologies with N = 9, N = 16, and N = 25. The sensors
monitor a phenomenon over T sampling instants, resulting in a matrix of the
sensors’ readings as X = [x(1) · · · x(T )] ∈ RN×T . The sensors are deployed
in an observation field of size 100

√
N×100

√
N units as follows: the field is

divided into a
√
N×
√
N -grid of square areas, where each 100×100 square

is randomly deployed with one sensor according to a uniform distribution.
The sensors use a shortest path tree to route their data to the sink, which is
located at the center of a WSN. Two sensors n and j are able to communicate
if dnj ≤ 100

√
5, n, j ∈ N , n 6= j, guaranteeing a connected WSN.

Generation of WSN Data

Each WSN consists of S =
√
N independent, randomly located sources. Spa-

tially and temporally correlated sensor data X is generated as follows.
Spatial Correlation: A power exponential correlation model
[24, 5, 330] is used to model the influence functions in (64):
hns(dns) = exp

{
− (dns/ρ1)ρ2

}
, where parameters ρ1 > 0 and ρ2 ∈ [0, 2]

adjust the correlation decay rate and geometrical properties of the field,
respectively [24].
Temporal Correlation: Temporally correlated, piecewise smooth source se-
quences βs ∈ RT , s ∈ S, in (64), are generated as follows.
A. Smooth part: For each s ∈ S, a sequence λs = [λs(1) · · · λs(T )]T is cre-
ated according to a Gauss-Markov process as

λs(t) = αs [λs(t− 1)− µs] + (1− αs)ςs(t) + µs, t = 2, . . . , T , (81)

where αs ∈ [0, 1] is a correlation parameter, ςs(t) ∼ N (0, σ2
ς ) is the inno-

vation component, and µs is the mean component [326, 327, 241]. Thus,
for αs = 1, λs remains constant, whereas for αs = 0, it behaves as an un-
correlated Gaussian random process. In order to create smoothly evolving
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sequences, each λs is low-pass filtered by applying the T -point DFT as
fdft,s = Fdftλs, where Fdft ∈ CT×T is the DFT-matrix, and fdft,s ∈ CT is
the vector of the DFT-coefficients. Each fdft,s is used to form a vector
f̃dft,s ∈ CT by preserving ηlpf ∈ [1, T/2] lowest frequency components of
fdft,s, while setting the rest to zero. Finally, taking the T -point inverse DFT, a
low-pass version of λs is obtained as λ̃s = F−1

dft f̃dft,s. The parameters are set
as αs = 0.9, λs(1) ∼ N (0, σ2

λ) and µs = λs(1), ∀s ∈ S, σ2
λ = σ2

ς = 1, and
ηlpf = d0.3(T/2)e, where d·e denotes rounding up to the nearest integer.
B. Abrupt changes: Let χs = [χs(1) · · · χs(T )]T, s ∈ S, be a Markov chain
sequence given by the state transition matrix Pmc ∈ R|Qs|×|Qs| and the state
space Qs = {qs1, . . . , qs|Qs|} [185]. A (k, l)th entry of Pmc, pmc

kl , gives the
probability of changing the state from qsk ∈ Qs to qsl ∈ Qs. The parameters
are set as pmc

kl = P1 , (1− P0)/(|Qs| − 1), ∀k 6= l, where P0 = pmc
kk . Thus,

for P0 = 1, χs remains constant, whereas for P0 = 0, the state changes at
every step. We set |Qs| = 10 and qsk ∼ N (0, 1), ∀s ∈ S, k = 1, . . . , |Qs|.
Finally, by forming

βs = λ̃s + χs, s ∈ S, (82)

the resulting source sequences of form (64) are piecewise smooth; the smooth-
ness and the degree of temporal correlation are adjusted by ηlpf ∈ [1, T/2]
and αs ∈ [0, 1], and the number of unpredictable changes by P0 ∈ [0, 1]. It is
worth emphasizing that owing to the used influence functions hns(dns) and
the generated source magnitude sequences βs, s ∈ S , the sensor data streams
of (64) are only compressible (i.e., not exactly sparse) in both the spatial and
temporal domain.

Spatial Domain Transform

2D-DCT is applied to X to obtain a compressible spatial domain repre-
sentation of each x(t), t = 1, . . . , T . Firstly, each x(t) is reorganized into
a matrix X(t) ∈ R

√
N×
√
N , whose (n, j)th entry contains the reading of

the sensor at the (n, j)th square of the
√
N×
√
N -grid, n, j = 1, . . . ,

√
N .

Similarly to (69), X(t) can be expressed as X(t) = F−1
dctΘS(t)F−T

dct, i.e.,
x(t) = vec (X(t)) = ΨSθS(t), where F−1

dct ∈ R
√
N×
√
N is the inverse of a

DCT-matrix, ΘS(t) ∈ R
√
N×
√
N contains the DCT-coefficients in a matrix
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form, ΨS = (F−1
dct⊗F−1

dct) is the (Kronecker) sparsifying basis for the spatial
domain, and θS(t) = vec (ΘS(t)) ∈ RN .

Performance Metrics

The performance of Seq-Prog-CS method is evaluated in terms of the data
transportation costs and signal reconstruction accuracy. The total cost of deliv-
ering the necessary amount of data to the sink to reconstruct X is measured
via a normalized communication cost [238]

C =
∑T
t=1

∑N
n=1EnIn(t)∑T

t=1
∑N
n=1En

, (83)

whereEn denotes the number of hops from sensor n ∈ N to the sink, and In(t)
is an indicator function with In(t) = 1, if n ∈ N (t), and In(t) = 0 otherwise.
Thus, En captures the impact of multi-hop routing on the energy expenditure
of sensor n, and In(t) indicates whether the sensor transmits its reading at
slot t. By the normalization, C compares the total number of transmitted data
units, xn(t), for a CS method to that of the multi-hop forwarding of all NT
readings. Assuming a unit cost for transmitting each sensor reading xn(t),
C < 1 means that a CS method decreases the sensor communications7.
For a given C, the CS reconstruction error is measured as

ξcs =

∥∥∥vec(X̂)− vec(X)
∥∥∥

2
‖vec(X)‖2

, (84)

where X̂ denotes the estimate of X.

CS Methods

The Seq-Prog-CS method is compared against three baseline CS methods:

1. KCS (Kron-CS) that splits X into Bkcs consecutive non-overlapping
blocks8 as X = [X[1] · · · X[Bkcs]], where X[l] ∈ RN×(T/Bkcs),
l = 1, . . . , Bkcs, and reconstructs them separately via (73) with
W := T/Bkcs.

7While C neglects the effects of the packet transmission protocol, overhead, and channel
access etc., it assesses the main factors contributing to the sensors’ energy consumption.

8In order to restrain the decoding complexity in the KCS, the reconstruction of X is
partitioned into smaller blocks.
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2. Spatial CS (Spat-CS) that reconstructs each x(t), t = 1, . . . , T , sepa-
rately via (74).

3. A dynamic version of the regularized modified-CS (Reg-Mod-CS) pro-
posed in [286], which utilizes the support and estimate knowledge
recursively from the preceding decoding instant.

For the ease of comparison, the same randomly generated Φ(t) with
M(t) = M is used for each CS method at each time instant t, guarantee-
ing equal C in (83) for all methods. For given N and W , empirically tuned
and fixed regularization weight parameters γB in Seq-Prog-CS and γreg in
Reg-Mod-CS are used, i.e., they are not specifically fine-tuned for each net-
work realization. The estimates for the first W sensors’ readings in the
Seq-Prog-CS and Reg-Mod-CS methods are reconstructed via (73). To il-
lustrate the gradual estimate refinement, the Seq-Prog-CS method is reported
in respect to 1) the first estimates obtained for each x(t), and 2) the esti-
mates after decoded W times, which are marked with the superscripts (·)(t)

and (·)(t+W−1), respectively. The Seq-Prog-CS(t) is also included without
the `2-regularization and the IRW-`1 (Seq-CS), which reconstructs each X(t)
non-recursively (yet with streaming processing) via (73). For the IRW-`1,
the parameters are set as kmax = 5, ε0 = 1×10−1, and εG = 1×10−3. For
Reg-Mod-CS, b = 99.5 is used in the support detection [286, Sect. V].
The optimization problems were solved using `1-MAGIC [41] and CVX [130].
The DWT-matrices were generated with the Wavelab toolbox [90].

Performance of the Proposed Method

Influence of Window Size

The influence of window size W on the CS recovery performance of the
Seq-Prog-CS method is investigated in the setup with N = 16, T = 512, and
Bkcs = 8. The spatial correlation is set by ρ1 = 1×102 and ρ2 = 2, and the
temporal by P0 = 1.0 (smooth signals). The DCT-matrix is used for Ψ−1

T . In
order to highlight the impact of W , we ran Seq-CS instead of Seq-Prog-CS.
Fig. 19 shows the average CS recovery error ξcs against communica-
tion cost C for the Spat-CS, Kron-CS, and Seq-CS for window sizes
W = {4, 8, 16, 32, 64}. Because the Spat-CS neglects compressibility in the
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Figure 19: Reconstruction performance of the Seq-CS method with varying window sizes W
against the Spat-CS and Kron-CS methods for N = 16, T = 512, Bkcs = 8, and P0 = 1.0
(smooth signals).

temporal domain, its performance is inferior to all other methods. In fact,
utilizing also the compressibility in the temporal domain significantly reduces
the necessary sensor communications: the Seq-CS method with W = 16 ob-
tained reconstruction accuracy of around ξcs = 0.04 while requiring only a
half of the sensors’ readings to be communicated to the sink. The figure also
visualizes the trade-off between the decoding complexity and the CS recovery
performance for Seq-CS: when W increases, the joint correlation structure
of the sensor data is more efficiently utilized, and the performance gradually
approaches that of the Kron-CS method, yet at the cost of increased decoding
complexity. Recall, however, that by means of the sliding window processing,
the Seq-CS method obtains the estimates for the current sensors’ readings with
no extra delay as opposed to the block-wise Kron-CS approach, for which the
delay is proportional to T/Bkcs = 64.

Different Network Sizes

To illustrate the performance and scalability of the Seq-Prog-CS method for
various network sizes, consider setups with N = 9, N = 16, and N = 25,

The version of record is available at: http://dx.doi.org/10.1561/2000000107



98 Compressed Acquisition of Correlated Streaming Sensor Data

where the other parameters are T = 256, Bkcs = 4, ρ1 = 5×102, ρ2 = 2, and
P0 = 0.97. The matrix Ψ−1

T is set as the Daubechies-4 DWT-matrix. Fig. 20
presents the resulting average CS recovery error ξcs versus communication
cost C for each CS method.
In line with Fig. 19, by exploiting the spatio-temporal correlation in Seq-CS,
Seq-Prog-CS, Reg-Mod-CS, and Kron-CS, the methods significantly reduce
the sensors’ communication costs compared to the Spat-CS method. More-
over, the benefits of utilizing prior information in the CS decoding are
clearly visible: the Seq-Prog-CS method substantially improves the CS re-
covery performance compared to the Seq-CS method, especially for small
numbers of measurements M (i.e., low values of C). Substantial improve-
ments are also achieved by the other recursive CS method, Reg-Mod-CS,
although it has lower accuracy than Seq-Prog-CS for all N . Interestingly,
the performance of Seq-Prog-CS(t) with W = 4 almost matches that of
Kron-CS, and with W = 8 and W = 16, Seq-Prog-CS(t) even outperforms
the Kron-CS method. In summary, the proposed method is able to period-
ically reconstruct estimates for the current sensors’ readings with notably
reduced sensor communications. Recall that as compared to Kron-CS, the
decoding complexity of the Seq-Prog-CS method is lower by a factor of
W/(T/Bkcs) = {1/16, 1/8, 1/4} for W = {4, 8, 16}, respectively. Finally,
as shown by the Seq-Prog-CS(t+W−1) curves, Seq-Prog-CS also substantially
improves the reconstruction accuracy of the past sensors’ readings via the
progressive decoding.

Influence of Prior Information

Next, the impact of incorporating different types of prior signal information
in the decoding process of the Seq-Prog-CS method is examined in the case
with N = 16, T = 256, Bkcs = 4, and W = 8. Particularly, the influences
of the IRW-`1 (i.e., kmax > 1), the `2-regularization (i.e., γB > 0), and the
weight initialization (Ginit) of (80) (i.e., G(1)(t) := G(κt−1)(t− 1) as op-
posed to G(1)(t) := INW ) are studied by running the following six variants
of Seq-Prog-CS:

• Seq-CS, which excludes both the IRW-`1 and `2-reg
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Figure 20: The CS reconstruction performance of the Spat-CS, Kron-CS, Reg-Mod-CS,
Seq-Prog-CS(t) (solid line), and Seq-Prog-CS(t+W−1) (dashed line) methods for various
window sizes W with T = 256 and Bkcs = 4 for (a) N = 9, (b) N = 16, and (c) N = 25.

• The proposed method in Algorithm 6, which incorporates all three forms
of prior knowledge, termed Seq-Prog-CS [IRW-`1+`2-reg+Ginit]
(γB = 10)
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• Seq-Prog-CS [IRW-`1]

• Seq-Prog-CS [IRW-`1+Ginit]

• Seq-Prog-CS [`2-reg] (γB = 3)

• Seq-Prog-CS [IRW-`1+`2-reg] (γB = 10)

The correlation is adjusted by ρ1 = 5×102, ρ2 = 2, and P0 = 0.97, and the
Daubechies-8 DWT-matrix is used for Ψ−1

T .
Figs. 21(a) and (b) depict the resulting average CS recovery error ξcs ver-
sus the communication cost C for the above methods in comparison to the
Seq-Prog-CS(t) and Seq-Prog-CS(t+W−1) methods, respectively. Fig. 21 high-
lights the significance of an appropriate starting point for the IRW-`1: using
the `1-minimization as the initial step, [IRW-`1] can only slightly improve
the CS performance from that of the Seq-CS method. However, with the
proposed weight initialization (80), Seq-Prog-CS(t)[IRW-`1+Ginit] outper-
forms both [`2-reg] and [IRW-`1+`2-reg]. Because the proposed method with
[IRW-`1+`2-reg+Ginit] incorporates all three forms of prior signal knowl-
edge, it indisputably yields the best CS reconstruction accuracy amongst all
the methods.

Influence of Spatial and Temporal Correlation

The CS methods were also tested under different signal characteristics by vary-
ing the parameters adjusting the spatial (ρ1) and temporal (P0 and αs) correla-
tion properties of the sensor data streams. We considered the case withN = 16,
M = 6, T = 256, Bkcs = 4, W = 8, and ρ2 = 2. The Daubechies-4 DWT-
matrix was used for Ψ−1

T for P0 < 1.0, and the DCT-matrix for P0 = 1.0.
Table 2 reports the average error ξcs for the CS methods under various sig-
nal statistics. Obviously, as the temporal correlation degrades, i.e., the pa-
rameters P0 or/and αs decrease, the performance of the Kron-CS, Seq-CS,
and Seq-Prog-CS methods relying on temporal compressibility gradually de-
creases. Nevertheless, the reconstruction by the Seq-Prog-CS method is more
resilient to the degraded correlation; in most of the cases, it clearly outper-
forms all the other methods while producing estimates with an accuracy of
ξcs < 0.07. The only exception is Kron-CS with highly correlated smooth sig-
nals (the first column), where Kron-CS logically makes the most of processing
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Figure 21: The CS reconstruction performance with different types of prior signal information
used in the signal recovery with N = 16, T = 256, Bkcs = 4, and W = 8 in terms of (a)
Seq-Prog-CS(t), and (b) Seq-Prog-CS(t+W−1).

large batches of size T/Bkcs = 64. As a final remark, no method was capable
of producing accurate estimates for signals with very poor spatial correlation
(the last column).

Conclusions

This section addressed the framework of distributed compressed acquisition
and progressive reconstruction of spatially and temporally correlated sensor
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Table 2: CS reconstruction performance (ξcs × 100 [%]) with different parameters for spa-
tial (ρ1) and temporal (P0, αs) correlation with N = 16, T = 256, Bkcs = 4, W = 8, and
M = 6.

ρ1 5×102 1×103 1×102

P0 1.0 0.97 0.97 0.97 0.90 0.80 0.80 0.7 0.97 0.97
αs 0.95 0.90 0.70 0.50 0.90 0.90 0.5 0.4 0.90 0.90
Spat-CS 17.7 23.4 22.9 22.6 21.9 21.2 21.1 20.7 12.5 93.2

Seq-CS 1.46 6.72 7.57 8.19 9.27 11.0 11.1 11.9 2.04 38.7

SeqProgCS(t) 0.392 4.12 4.21 4.44 5.36 6.06 6.05 6.51 1.13 35.5

SeqProgCS(t+W−1)0.281 2.57 3.02 3.28 3.70 4.64 4.65 5.13 0.809 21.8

Kron-CS 0.188 5.17 6.17 6.99 7.92 9.76 10.1 11.1 1.60 27.4

data streams in multi-hop WSNs. A sequential CS method relying on sliding
window processing summarized in Algorithm 6 was devised. By means of the
Kronecker sparsifying basis, `2-regularization, and adaption of the IRW-`1,
the proposed method efficiently utilizes the spatio-temporal signal correla-
tion and the estimates from the successive sliding windows to improve the
signal recovery performance. The simulation results illustrated the benefits
of utilizing the joint signal dependencies and prior information in the CS
recovery: by adjusting the window size, the proposed method achieved higher
reconstruction accuracy with a smaller number of required transmissions, and
with less decoding delay and complexity compared to several baseline CS
methods.
Owing to the high compression performance demonstrated by the numerical
experiments, the presented method has great potential to prolong the lifetime
of battery-powered sensors in various monitoring applications. Furthermore,
the ability to trade off between the performance and complexity via the window
size makes the algorithm versatile for applications with different requirements
for, e.g., computation power and reconstruction fidelity. Thanks to the innate
properties of the CS, the method benefits of the simple, decentralized and
universal encoding strategy at the sensors, whereas the acquisition of the
global correlation structure and the implementation of a computationally
demanding decoding algorithm is shifted to the sink/fusion center. In summary,
the presented method is a competent candidate for streaming-type compression
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applications when striving for high signal reconstruction accuracy in a cost-
effective manner.
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6
Distributed Source Coding via Quantized

Compressed Sensing

This section addresses lossy distributed source coding (DSC) for acquiring
correlated sparse sources using CS in WSNs. Accordingly, noisy compressive
measurements are separately encoded at a finite rate by each sensor, followed
by joint reconstruction of the sources at the decoder. The main distinction from
Section 5 is that the framework now involves quantization of compressive
measurements, which is a practical necessity for finite-rate data communica-
tions/storage. We present a distributed complexity-constrained variable-rate
quantized CS method that minimizes a weighted sum between the mean square
error signal reconstruction distortion and the average encoding rate.
One key objective is to restrain the encoding complexity of each sensor while
targeting to high distortion-rate performance. To this end, we pre-quantize the
encoder inputs, i.e., the compressive measurements, via vector quantization
at each sensor. Differently from the prior works [265, 266], pre-quantization
eliminates the need of reconstructing exponentially complex estimates at
each sensor. It is worth noting that while the use of VQ is in favor of good
compression, it limits the proposed method to setups with moderate signal
dimensions. Hence, techniques to lower the encoding complexity will also be
discussed.

104
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In particular, each encoder is modeled as a quantizer followed by a lossless
entropy encoder. In this work, variable-rate coding is incorporated via rate
measures of particular entropy bounds. We confine to a two-sensor system and
present the algorithm design methodology along with practical training algo-
rithms and complexity analysis. Simulation results illustrate that the proposed
method achieves superior compression performance compared to several base-
line methods and lends itself to versatile setups with different performance
requirements.

Related Works

Distributed Joint Estimation and Compression

Owing to the decentralized network structure of a WSN, the compression of
sensor signals calls for DSC [233, 311, 91], commonly known as Slepian-
Wolf (SW) coding [268]. In a DSC setup, multiple sensors separately measure,
encode, and communicate one or multiple (correlated) sources to a decoder.
Since typical sensor signals are analog/continuous-valued, quantization [135]
is inevitable, i.e., the compression becomes lossy [26]. Furthermore, as encod-
ing at each CS based sensor relies only on indirect observations of a source, the
setup necessitates remote source coding [85]. Thus, the compression in a dis-
tributed CS setup under quantization of measurements extends to distributed
joint estimation and compression [310].
Vector quantization (VQ) [133] is a practical compression method capable
to achieve performance arbitrary close to the theoretical optimum [136]. VQ
operates in a symbol-by-symbol fashion by mapping a single observation
sample into a digital output at a time. The inevitable loss from a finite VQ
dimension can be compensated for by using variable-length coding [149,
329] and [74, Ch. 5], where the main idea is to assign shorter codewords to
more frequent symbols to minimize the average transmission rate. In a lossy
compression context, such entropy coding can be incorporated via entropy-
constrained VQ (ECVQ) design [66], which models the encoder as a VQ
followed by a lossless entropy encoder for the index sequence. Entropy coding
under uniform quantization has been studied in, e.g., [125, 328]. In practice,
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VQs/ECVQs can be optimized by the Linde-Buzo-Gray (LBG) algorithm
[188], descending from the iterative Lloyd algorithm9 [211, 192].

Distributed Quantized CS

While the early era of CS exclusively addressed real-valued signals, the in-
evitable conversion of measurements into bit sequences initiated quantized
CS (QCS) [129, 273, 333, 151]. The overarching idea behind QCS algo-
rithms is to accommodate the non-linear impact of CS and quantization in
the encoder/decoder to ameliorate the signal recovery performance under
discretized measurements. The works in [273, 157, 263] devised optimized
scalar quantizers (SQs) for a standard CS reconstruction algorithm, whereas
quantization-aware CS decoding algorithms for a fixed SQ based encoder
were developed in [333, 78, 151, 68, 32]. While the methods outperform
the plain quantization-unaware versions, they are suboptimal for minimizing
the mean square error (MSE) of the signal reconstruction distortion because
they 1) optimize only either the encoder or decoder, 2) use SQ instead of
VQ, and/or 3) minimize the measurement quantization distortion, which due
to the non-linearities does not in general minimize the signal reconstruction
distortion [262, Sect. 3.2.3] and [78].
As a countermeasure, joint optimization of VQ based encoder-decoder pair(s)
to minimize signal reconstruction MSE in QCS setups was first proposed in
[265, 266, 264, 262]. Shirazinia et al. [265] derived necessary conditions for
an MSE-optimal fixed-rate single-sensor QCS system for acquiring a sparse
source over noisy channels. This was extended to distributed joint estimation
and compression of two correlated sparse sources in [264, 266]. However,
the enhanced compression entails high encoding complexity; a sensor has
to reconstruct a minimum mean square error (MMSE) estimate – a task of
exponential complexity [99, 235, 281] – impeding the practical implementation
of the methods.

9As mentioned in the "Author’s Note 1981" section of [192], nearly all Lloyd’s results
were already presented in an unpublished Bell Labs manuscript in 1957.
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Figure 22: Distributed variable-rate quantized CS acquisition of correlated sparse sources with
complexity-constrained encoders.

System Model

Consider a distributed QCS system consisting of two CS based sensors and
one sink, as depicted in Fig. 22. In the DSC approach, each sensor acquires
noisy compressive measurements of its source, converts them into finite-rate
bit sequences via separate encoding (i.e., without inter-sensor collaboration),
and communicates the messages to the sink for joint decoding of both sources.
We focus merely on the source coding, and, thus, the transmissions from
each sensor to the sink are assumed to be error-free. Note that the presented
alternating optimization framework, in which one system block is optimized
while keeping the others fixed, can readily be extended to a general multi-
sensor system, although the computational and memory requirements rapidly
grow intolerably high.

CS Signal Acquisition

The correlated sources X1
10 and X2 are given by JSM-2 model [19, 95] as

Xl = X̄ + X′l, l = 1, 2, (85)

10In this section, with slight abuse of notation, we use capital bold letters (e.g., X) to refer
to random vectors, and small bold letters to refer to their corresponding realizations (e.g.,
X = x).
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where the common component X̄ and innovation component X′l are real-
valued length-N random vectors where both are K-sparse and share the
same random (unknown) support, i.e., the set of indices of non-zero com-
ponents. Consequently, each real-valued length-N source random vector Xl is
K-sparse, i.e., for each realization ‖xl‖0 ≤ K ≤ N , l = 1, 2. The vectors X̄,
X′1, and X′2 are assumed to be independent of each other. JSM-2 signals are
encountered, e.g., in a group of sensors monitoring an audio source or spec-
trum occupancy [19]. Various common sparse signals have also been studied
under compressive support recovery and signal reconstruction problems with
multiple measurement vectors in a variety of monitoring applications [72, 300,
325].
Let Ts ⊆ {1, . . . , N} be an index set representing the sth sparsity pattern with
|Ts| = K, s = 1, . . . ,

(N
K

)
. The

(N
K

)
index sets are different, i.e., Ts \ Ts′ 6= ∅,

∀s′ 6= s = 1, . . . ,
(N
K

)
. Each support Ts is associated with the a priori proba-

bility p(Ts) ∈ [0, 1] with
∑(NK)
s=1 p(Ts) = 1.

Each sensor measures the source Xl through a fixed (and known) measurement
matrix Φl ∈ RMl×N as

Yl = ΦlXl + Wl, l = 1, 2, (86)

where Yl is the length-Ml measurement random vector, and
Wl ∼ N (0, σ2

WIMl
) is the measurement noise random vector. The

structure of each Φl, l = 1, 2, has a significant impact on the CS signal
recovery performance; see Section 2 for the discussions on the RIP and the
coherence of Φl. Nonetheless, no restrictive assumptions of Φ1 and Φ2 are
needed in the derivations.
Whereas CS typically assumes K ≤Ml ≤ N , the presented design is not
restricted to any particular range for Ml. In fact, while Ml ≤ N complies
with the fundamental CS theory, over-sampling (i.e., Ml > N ) may be useful
in QCS setups. Namely, given a quantization bit resolution of an analog-
to-digital converter (ADC), over-sampling is a practical – and often cost-
effective – means to improve the reconstruction accuracy [151]. It is also worth
emphasizing that because (86) models the physics of the sensing process, the
encoder at each CS based sensor l = 1, 2 has no access to Xl, but only to Yl.
Consequently, the compression scheme falls under remote source coding [85].
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Measurement Space Pre-Quantization

Prior to the actual (desirably low-rate) source encoding, the input of the en-
coding system at each sensor l = 1, 2, i.e., the measurement random vector
Yl in (86), is discretized with a VQ. Each pre-quantizer11 PQl is a key block
to restrain the encoding complexity of a sensor while providing high com-
pression performance. As a by-product, this also simplifies the optimization
design by converting the optimization over continuous random variables into
optimization over discrete ones. Thus, it facilitates offline training by allowing
pre-computation of several required quantities. Next, we present a general
description of each pre-quantizer, whereas their optimization is deferred until
Section 6.
Let Vl , {1, . . . , |Vl|} be a set of cell indices vl ∈ Vl with pre-
quantization rate R̄l = log2|Vl| bits/vector Yl for sensor l = 1, 2. Let
Gl , {gl,1, . . . ,gl,|Vl|} be a pre-quantization codebook consisting of code-
points gl,vl ∈ RMl . Each pre-quantizer PQl is a |Vl|-level VQ that partitions
the Ml-dimensional measurement vector space determined by (86) into cells
Sl,1, . . . ,Sl,|Vl|, i.e., Sl,vl ∩ Sl,v′l = ∅, vl 6= v′l ∈ Vl, and

⋃|Vl|
vl=1 Sl,vl = RMl .

Thus, PQl is a lossy mapping

PQl : RMl → Vl, l = 1, 2, (87)

i.e., for a given measurement realization, it assigns a cell index as
PQl(yl) = vl ∈ Vl, if yl ∈ Sl,vl .

Remark 6.1. The codepoints gl,1, . . . ,gl,|Vl| are intermediate quantities for
the actual encoding at El. That is, their main purpose is to determine to which
cell Sl,vl each realization yl, l = 1, 2, belongs. This will become more clear
in the encoding rule defined in Section 6. In conclusion, the quantized version
of random vector Yl is never reconstructed in the system.

Encoding and Decoding

The outputs of each PQl, i.e., the cell indices vl ∈ Vl, are fed to encoder El
at each sensor l = 1, 2. We follow a customary approach and model El as
the concatenation of a (lossy) quantizer and a lossless entropy encoder [108,

11Pre-quantization has also a pragmatic aspect: prior to source encoding, the sensor inputs
are necessarily discretized with an ADC in any digital sensor.
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244]. Accordingly, each sensor encodes the cell indices into message indices,
and further, into binary source codewords. The sink uses the received pairs of
codewords to jointly reconstruct estimates of X1 and X2. The next subsections
describe the distributed quantizer blocks; the treatment of entropy coding is
presented in Section 6.

Separate Encoders

Let Il , {1, . . . , |Il|} be a set of message indices il ∈ Il for sensor l = 1, 2.
LetHl , {hl,1, . . . ,hl,|Hl|}, |Hl| = |Il|, be a source codebook consisting of
binary codewords. Each encoder is a composite mapping El : αl ◦ πl as

El : Vl → Il → Hl, l = 1, 2. (88)

While the number of pre-quantization cells |Vl| is not restricted in the design,
|Il| < |Vl| is used for all practical purposes.
The first mapping πl : Vl → Il, termed the message index mapping,
maps each cell index vl ∈ Vl into a message index il ∈ Il, i.e.,
πl = {πl(1), . . . , πl(|Vl|)}, where πl(vl) ∈ Il. Given πl, each il ∈ Il is as-
sociated with a set of cell indices mapped to itself, i.e., the inverse image
π−1
l (il) = {vl ∈ Vl|πl(vl) = il}. Note that for |Il| < |Vl|, πl is a many-to-

one mapping, i.e., it performs lossy compression of the cell index Vl. This
accounts for the prefix "pre" for PQl, as each sensor has a concatenation
of two quantizers: the VQ of PQl and the message index mapping πl in El.
Interconnections between the indices of PQl and El are illustrated in Fig. 23.
Note that the pre-quantization allows assigning non-contiguous cells to the
same message index, which is conducive to compression performance.
For a given entropy code, the second mapping αl : Il → Hl is a one-to-one
lossless mapping from the set of message indices to binary source codewords
hl,il ∈ Hl, i.e., αl(il) = hl,il , il ∈ Il. Fixed-to-variable-length coding is as-
sumed, i.e., each index il ∈ Il is mapped to one codeword at a time, whereas
the binary representations of hl,il ∈ Hl have, in general, different lengths.
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Figure 23: The relationships between the cell indices of PQl and message indices of El for
|Vl| = 8 and |Il| = 4, l = 1, 2. Note that the message index Il = 3 is assigned no cell index
vl ∈ Vl.

Joint Decoder

The joint decoder comprises of two composite mappings
D : {β1 ◦ α−1

1 , β2 ◦ α−1
2 } as

D : (H1 ×H2)→ (I1 × I2)→ Cl, l = 1, 2. (89)

The first mappings α−1
l : Hl → Il, l = 1, 2, decode the entropy codes, i.e.,

each received codeword hl,il ∈ Hl is used to recover the (transmitted) message
index il ∈ Il. By this convention, we confine here to the separate/independent
coding12 of the message indices I1 and I2. Owing to the information lossless
property, the pairs (α1, α

−1
1 ) and (α2, α

−1
2 ) constitute uniquely decodable

codes.
As for the second mappings βl : (I1 × I2)→ Cl, the decoded mes-
sage indices are used to jointly reconstruct estimates of sources

12Separate coding enables low-complexity and low-delay coding as the pairs (αl, α−1
l ),

l = 1, 2, can be chosen to constitute two instantaneous lossless source codes.
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X1 and X2 as x̂1 := β1(i1, i2) = c1,i1,i2 and x̂2 := β2(i1, i2) = c2,i1,i2 ,
where cl,i1,i2 ∈ RN is the codevector of a reconstruction codebook
Cl , {cl,1,1, . . . , cl,|I1|,|I2|}, |Cl| = |I1||I2|, l = 1, 2. Thus, the decoder D per-
forms a single operation to 1) take account of the quantization/encoding steps
applied to Y1 and Y2, and 2) reconstruct the signal estimates of X1 and X2,
given the underlying distributed CS setup.

Entropy Coding

The pairs of mappings (α1, α
−1
1 ) and (α2, α

−1
2 ) can realize different entropy

coding classes in the system. An appropriate choice for the used source
code depends on application requirements such as the reconstruction fidelity
and maximum allowed delay (i.e., coding block length), and implementation
factors such as the sensors’ computation and memory capabilities. A unified
framework for subsuming entropy coding in the distributed quantizer design
is discussed next.

Average Rate

Let Rl be the average encoding rate in bits/vector Yl for sensor l = 1, 2. Thus,
the average sum rate of the sensors is

R , R1 +R2. (90)

In practice, Rl is quantified by the average codeword length of the codebook
Hl, i.e.,

Rl , E[γ(·)] =
∑|Il|
il=1 p(il)γ(il), l = 1, 2, (91)

where γ(il) is the length of codeword hl,il ∈ Hl, and p(il) , Pr(Il = il) is
the probability of index il ∈ Il. An alternative rate definition is presented in
the following.

Rate Measure

Following the approaches in [66, 108, 244] and [243, Sect. 4.2], instead of
using (91), the average rate is approximated via the entropy bound of a source
code13. Let r(p(il)) be a rate measure which is a function of the message

13The design of practical codes is beyond the scope of this work.
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index probabilities p(il), il ∈ Il, l = 1, 2. Accordingly, R in (90) is given as
the expectation of the rate measures, i.e.,

R ,
∑2
l=1
∑|Il|
il=1 p(il)r(p(il)). (92)

As a major benefit, the rate definition in (92) permits flexible treatment of the
entropy coding without tying the design to any particular source code.
Entropy bounds and their associated rate measures for various coding
settings have been addressed in, e.g., [244] and [243, Sect. 4.2]. For
the considered separate coding, r(p(il)) = −log2p(il), il ∈ Il, and, thus,
the average sum rate is approximated as R = H(I1) +H(I2), where
H(Il) = −

∑|Il|
il=1 p(il)log2p(il) is the entropy of message index Il, l = 1, 2.

Distributed Variable-Rate QCS Method

This section describes a distortion-rate (DR) optimization framework for the
variable-rate communication system of Fig. 22. We devise a distributed QCS
method for the efficient acquisition of the correlated sparse sources X1 and
X2 under complexity-constrained encoding. Practical training algorithms are
presented, and implementation and complexity aspects are discussed.

Problem Formulation

Let X̂l be a length-N random vector that represents the estimate of source
Xl, l = 1, 2, at the output of decoder D. The average sum MSE reconstruction
distortion is defined as

D , D1 +D2 =
∑2
l=1 E

[
‖Xl − X̂l‖22

]
, (93)

where the expectation E[·] is taken over the distributions of Xl and Wl,
l = 1, 2. Furthermore, let Lµ(D,R) be a weighted DR cost function as

Lµ(D,R) , (1− µ)D + µR, (94)

where µ ∈ [0, 1] is a weighting parameter for adjusting the DR trade-off, and
R is the average sum rate given in (92).
Our design objective is to minimize Lµ(D,R) in (94) for a given µ by opti-
mizing the pre-quantizers PQl (i.e., the pre-quantization codebooks Gl), the
encoders El (i.e., the message index mappings πl), and the decoder D (i.e., the
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reconstruction codebooks Cl) so that the pre-quantization cells Sl,vl , vl ∈ Vl,
at each PQl, l = 1, 2, satisfy a nearest-neighbor (NN) condition [122]. This
structural constraint is the key to restrain the sensors’ encoding complexity.
Since the joint optimization of all these blocks is intractable, the design is
split into two steps: first, each PQl is optimized under the NN constraints
(Section 6), followed by the optimization of E1, E2, and D for fixed pre-
quantizers (Section 6). Despite the sub-optimality, the approach is shown to
yield satisfactory empirical performance in Section 6.
Note that the rate term µR in (94) eliminates the need of constructing specific
codebooksH1 andH2 in the optimization phase. As demonstrated in [66] (for
a point-to-point case), decent performance is achievable by subsuming rate
measures r(p(il)) = −log2p(il), il ∈ Il, in the optimization loop, followed
by a source code whose average codeword length is close to the index entropy
[66]. These include Huffman codes [149] and [74, Sect. 5.6] and arithmetic
codes [247]. Note that µ = 0 realizes a minimum-distortion fixed-rate method
with Rl = log2|Il|, l = 1, 2.

Optimization of Pre-Quantizers

At each PQl, the cells Sl,vl and codepoints gl,vl , vl ∈ Vl, of the |Vl|-level VQ
are optimized to minimize the MSE distortion induced by discretizing the
measurement vector space (see (86)), i.e., the distortion

Dpq
l ,

∑|Vl|
vl=1 p(vl)E

[
‖Yl − gl,vl‖22|Vl = vl

]
, l = 1, 2. (95)

This approach inherently results in the required NN encoding (cf. (96)). Since
finding the globally optimal partition and codebook of a quantizer is intractable,
the common alternating optimization technique [211, 107, 192, 188, 317,
244, 294, 265, 266] is adopted to derive the necessary optimality conditions.
Such conditions serve as a practical means to train each PQl, l = 1, 2, via
principles of the iterative Linde-Buzo-Gray (LBG) algorithm [188], elaborated
in Section 6.
For given codepoints gl,vl , vl ∈ Vl, the optimal cells which minimize Dpq

l

satisfy the NN condition [188],

S∗l,vl =
{
yl : ‖yl − gl,vl‖

2
2 ≤ ‖yl − gl,v′

l
‖22, ∀v′l 6= vl

}
, vl ∈ Vl, (96)
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i.e., the cells form a Voronoi partition [134, Sect. 5.1]. For given cells Sl,vl ,
vl ∈ Vl, the optimal codepoints satisfy the centroid condition [188]

g∗l,vl = E[Yl|Vl = vl] = 1
p(vl)

∫
yl∈Sl,vl

ylf(yl)dyl, vl ∈ Vl, (97)

where f(yl) is the probability density function (PDF) of Yl.

Alternating Optimization of Encoders & Decoder

In this section, the encoders E1 and E2, and decoder D are optimized to
minimize Lµ(D,R) in (94) for fixed PQ1 and PQ2. The optimization involves
six sets of optimization variables: the message index mappings π1 and π2, the
rate measures r(p(i1)) and r(p(i2)), and the codevectors c1,i1,i2 and c2,i1,i2 ,
i1 ∈ I1, i2 ∈ I2. Due to the intractability of joint optimization, the alternating
optimization principles (see Section 6) are applied, and consequently, the
necessary optimality conditions for each variable set while keeping the others
fixed are derived. The implementation aspects are detailed in Section 6.

Message Index Mappings

The minimization of Lµ(D,R) over the message index mapping πl is inde-
pendent of r(p(il′)), il′ ∈ Il′ , l 6= l′. Hence, for fixed r(p(il)), il ∈ Il, C1, C2,
and πl′ , the optimal message index mapping π∗l for sensor l 6= l′ is the one that
minimizes Lµ(D,R). The distortion termD of Lµ(D,R) can be reformulated
as

D =
∑2
l=1
∑
v1∈V1

∑
v2∈V2

∫
y1

∫
y2
p(v1, v2|y1,y2)

E
[
‖Xl − cl,π1(v1),π2(v2)‖22|V1 = v1, V2 = v2, . . .

Y1 = y1,Y2 = y2
]
f(y1,y2)dy1dy2

(a)=
∑2
l=1
∑
v1∈V1

∑
v2∈V2

∫
y1∈S1,v1

∫
y2∈S2,v2{

E[‖Xl‖22|Y1 = y1,Y2 = y2] + ‖cl,π1(v1),π2(v2)‖22−

2cT
l,π1(v1),π2(v2)E[Xl|Y1 = y1,Y2 = y2]

}
f(y1,y2)dy1dy2

(b)=
∑2
l=1
∑
v1∈V1

∑
v2∈V2 p(v1, v2)

{
E[‖Xl‖22|V1 = v1, V2 = v2]+

‖cl,π1(v1),π2(v2)‖22 − 2cT
l,π1(v1),π2(v2)zl,v1,v2

}
(98)
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where (a) follows from i) the Markov properties14 Vl → Yl → Yl′ → Vl′ ,
Xl → (V1, V2)→ Cl, Xl → Yl → Vl, and Xl → Yl′ → Vl′ , l 6= l′, and ii)
the fact that p(vl|yl) = 1, if yl ∈ Sl,vl , and 0 otherwise, l = 1, 2; (b) follows
from p(v1, v2) =

∫
y1∈S1,v1

∫
y2∈S2,v2

f(y1,y2)dy1dy2, and the definition of

a vector zl,v1,v2 ∈ RN as

zl,v1,v2 , E [Xl|V1 = v1, V2 = v2] , l = 1, 2
= 1
p(v1, v2)

∫
y1∈S1,v1

∫
y2∈S2,v2

E[Xl|Y1 = y1,Y2 = y2]f(y1,y2)dy1dy2,

(99)

which represents the centroid of the minimum mean square error (MMSE)
estimates of source Xl, l = 1, 2, for those measurement realizations y1 and
y2 that are pre-quantized to the cell index pair (v1, v2), v1 ∈ V1, v2 ∈ V2, at
PQ1 and PQ2.

Remark 6.2. A closed-form expression of the MMSE estimate
E[Xl|Y1 = y1,Y2 = y2], l = 1, 2, in (99) has been derived for a sim-
ilar signal setup in, e.g., [266, Proposition 1]. Nevertheless, as it will be
pointed out later, computation of these complex estimates is obviated by
means of the pre-quantizers PQ1 and PQ2 both in the offline training and
online communication phase.

Finally, the rate term R in Lµ(D,R) can be extended as

R =
∑2
l=1
∑
il∈Il p(il)r(p(il))

=
∑2
l=1
∑
vl∈Vl p(vl)r

(
p(πl(vl))

)
.

(100)

By combining (98) and (100), and dropping the unnecessary terms
E[‖Xl‖22|V1 = v1, V2 = v2] in the minimization, finding the optimal message
index mapping π∗l = {π∗l (1), . . . , π∗l (|Vl|)} for each sensor l = 1, 2 separates
into |Vl| subproblems. Accordingly, the optimal message index for a v1th cell

14Random variables X , Y , and Z form a Markov chain Z → Y → X (in this or-
der) if X and Z are conditionally independent given Y [74, Sect. 2.8]. Consequently,
p(x, y, z) = p(x)p(y|x)p(z|y).
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of sensor 1 is given by the minimization problem

π∗1(v1) = argmin
π1(v1)∈I1

{
(1− µ)

∑2
l=1
∑
v2∈V2 p(v1, v2)(

‖cl,π1(v1),π2(v2)‖22 − 2cT
l,π1(v1),π2(v2)zl,v1,v2

)
+

µp(v1)r
(
p(π1(v1))

)}
, ∀v1 ∈ V1.

(101)
Each optimal message index π∗2(v2), v2 ∈ V2, for sensor 2 is found similarly
by swapping the roles of the sensor indices.

Rate Measures

The rate measure update follows the procedures in [66, 244]. Accordingly, for
fixed πl, the optimal rate measures for each sensor l = 1, 2 are given as

r∗(p(il)) = −log2p(il), ∀il ∈ Il,
= −log2

∑
vl∈π−1

l
(il) p(vl). (102)

By (102), the average sum rate (92) becomes R = H(I1) +H(I2), where
H(Il) = −

∑|Il|
il=1 p(il)log2p(il) is the entropy of Il, l = 1, 2.

Reconstruction Codebooks

The minimization of Lµ(D,R) in (94) with respect to the codebook Cl is inde-
pendent of R, and Cl′ , l′ 6= l. Accordingly, for a fixed π1 and π2, the optimal
reconstruction codebook C∗l = {c∗l,1,1, . . . , c∗l,|I1|,|I2|} for source l = 1, 2 is
found from solving |I1||I2| separate optimization problems for each index
pair (i1, i2), i1 ∈ I1, i2 ∈ I2, as

c∗l,i1,i2 = argmin
cl,i1,i2∈R

N

E
[
‖Xl − cl,i1,i2‖22|I1 = i1, I2 = i2

]
. (103)
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From (103), each c∗l,i1,i2 is given by the MMSE estimate of source Xl, l = 1, 2,
given the message index pair (i1, i2) [266], i.e.,

c∗l,i1,i2 = E [Xl|I1 = i1, I2 = i2] , ∀i1 ∈ I1, i2 ∈ I2
=
∑
v1∈V1

∑
v2∈V2 p(v1, v2|i1, i2)

E [Xl|I1 = i1, I2 = i2, V1 = v1, V2 = v2]
(a)=
∑
v1∈V1

∑
v2∈V2

p(v1, v2)p(i1, i2|v1, v2)
p(i1, i2) E [Xl|V1 = v1, V2 = v2]

(b)=
∑
v1∈π−1

1 (i1)
∑
v2∈π−1

2 (i2)
p(v1, v2)
p(i1, i2) E [Xl|V1 = v1, V2 = v2]

(c)=
∑
v1∈π−1

1 (i1)
∑
v2∈π−1

2 (i2) p(v1, v2)zl,v1,v2∑
v1∈π−1

1 (i1)
∑
v2∈π−1

2 (i2) p(v1, v2) ,

(104)
where (a) follows from the Markov properties Xl → Vl → Il
and Xl → Vl′ → Il′ , l 6= l′; (b) follows from the Markov property
Il → Vl → Vl′ → Il′ , l 6= l′, and the fact that p(il|vl) = 1, if πl(vl) = il, and
0 otherwise; (c) follows from (99).

Algorithm Implementation

Practical implementation aspects of the proposed method, termed DQCS-PQ,
are elaborated next. Two offline training algorithms and an algorithm for an
online communication phase are presented. Each algorithm’s complexity in
terms of computational and memory requirements are also discussed.

Offline Training Phase

An offline training algorithm for optimizing each PQl, l = 1, 2, is described
in Algorithm 7, and the algorithm for optimizing E1, E2, and D is presented in
Algorithm 8. The foundation of both algorithms is the iterative Lloyd algorithm
[192, 188]: in Algorithm 7, each PQl, l = 1, 2, is optimized by successively
applying the necessary optimality conditions (96) and (97) (Steps 1) and 2)).
Similarly, the optimization of E1, E2, and D in Algorithm 8 relies on the
six-step iteration loop15, in which the optimality conditions (101), (102), and
(104) (Steps 1) – 3)) are first applied in respect to sensor 1, and then, in respect
to sensor 2. Once Algorithm 8 has converged, the resulting message index

15Other optimization orders within the sequential algorithm could be considered as well.
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Algorithm 7 Practical training algorithm for PQl, l = 1, 2 (offline).

Inputs: a) CS matrix Φl; b) measurement training vectors {y(1)
l ,y(2)

l , . . .};
c) pre-quantization rate R̄l.
Initialization: Initial codebook Gl = {gl,1, . . . ,gl,|Vl|}.
Repeat
1) For given Gl, find the optimal cells S∗l,vl , vl ∈ Vl, by classifying the

vectors {y(1)
l ,y(2)

l , . . .} according to (96).
2) For a given Sl,vl , vl ∈ Vl, compute the optimal codepoints g∗l,vl , vl ∈ Vl,
as the conditional expectations in (97).
until convergence
Output: Pre-quantization codebook Gl = {gl,1, . . . ,gl,|Vl|}.

probabilities p(il), il ∈ Il, l = 1, 2, are used to generate the desired binary
source codebooksH1 andH2.
The requisite training data sets for Algorithms 7 and 8 are generated as follows.
Source and noise samples {x(1)

l ,x(2)
l , . . .} and {w(1)

l ,w(2)
l , . . .} are created by

sampling from their respective distributions. Then, the measurement training
vectors {y(1)

l ,y(2)
l , . . .} generated according to (86) are used to optimize

each PQl, l = 1, 2. The MMSE estimate centroids zl,v1,v2 , v1 ∈ V1, v2 ∈ V2,
for Algorithm 8 are pre-computed as conditional expectations (99) using
the source samples {x(1)

l ,x(2)
l , . . .} and the indices {v(1)

l , v
(2)
l , . . .} obtained

from quantizing {y(1)
l ,y(2)

l , . . .} via PQl, l = 1, 2. The multi-dimensional
integrals in (97) and (104) are similarly evaluated via Monte Carlo integration
techniques.
Convergence: The convergence of the iterative descent algorithms in Algo-
rithms 7 and 8 rests on the rationale behind the Lloyd and LBG algorithms
[211, 192, 188]; at each iteration step, the objective function value either
decreases or remains the same, and thus, the algorithm converges. However,
since only necessary but not the sufficient optimality conditions are met, the
resulting quantization system is, at best, locally optimal [188, 66, 108, 294].
LBG type algorithms are known to be sensitive to initialization, making them
susceptible to poor local minima. This accentuates the importance of proper
initialization of system blocks (i.e., π2, C1, and C2). One technique to mitigate
this problem is the splitting method [188], which we use in the simulations
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Algorithm 8 Practical training algorithm for E1, E2, and D (offline).

Inputs: a) CS matrices Φl; b) pre-quantization rates R̄l; c) codebook sizes
|Il|; d) rate measures r(p(il)), il ∈ Il; e) weight parameter µ ∈ [0, 1]; f)
MMSE estimate centroids zl,v1,v2 , v1 ∈ V1, v2 ∈ V2, l = 1, 2.
Initializations: a) Initial codebooks Cl = {cl,1,1, . . . , cl,|I1|,|I2|}, l = 1, 2;
b) initial message index mapping π2 = {π2(1), . . . , π2(|V2|)}.
Repeat
for l = 1, 2 do

1) For given C1, C2, πl′ , l′ 6= l, and r(p(il)), il ∈ Il, find the optimal
message index mapping π∗l = {π∗l (1), . . . , π∗l (|Vl|)} via (101).
2) For given πl, update the rate measures r(p(il)), il ∈ Il, according to
(102).
3) For given π1 and π2, compute the optimal codevectors c∗l,i1,i2 , i1 ∈ I1,
i2 ∈ I2, as the conditional expectations in (104).

end for
until convergence
Generate the binary source codebooksHl using the index probabilities p(il),
il ∈ Il, l = 1, 2.
Outputs: Message index mappings πl = {πl(1), . . . , πl(|Vl|)};
source codebooks Hl = {hl,1, . . . ,hl,|Hl|}; reconstruction codebooks
Cl = {cl,1,1, . . . , cl,|I1|,|I2|}; encoder mappings αl; decoder mappings α−1

l

and βl, l = 1, 2.

in Section 6. Other robust designs include a deterministic annealing method
for fixed-rate VQ design in [250], and its extension as an entropy-constrained
design in [251].

Remark 6.3. The entropy-constrained design has a built-in tendency to re-
duce the codebook sizes, especially for large values of µ [66]. Namely, as
Algorithm 8 proceeds, some message index, say ĭ1 ∈ I1, may become un-
populated (i.e., π−1

1 (̆i1) = ∅) in Step 1). Consequently, the rate measure in
Step 2) becomes r(p(̆i1)) =∞, and the codevectors c1,̆i1,1, . . . , c1,̆i1,|I2| and
c2,̆i1,1, . . . , c2,̆i1,|I2| in Step 3) become undefined. It was conjectured in [66]
that, unlike for a fixed-rate quantizer, there is no rationale to re-include such
unassigned indices in the subsequent iterations.
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Algorithm 9 Distributed variable-rate QCS method with complexity-
constrained encoders (DQCS-PQ) (online).

Inputs: a) CS matrices Φl; b) PQl: codebook Gl; c) El: mappings πl and
αl, and codebookHl; d) D: mappings α−1 and βl, and codebooksHl and
Cl, l = 1, 2.
Separate encoding at sensor l = 1, 2:
(1) Acquisition of measurements yl according to (86).
(2) PQl: Assignment of pre-quantization index v∗l via (105) using Gl.
(3) El: a) Assignment of message index as i∗l = πl(v∗l );
b) Assignment of binary codeword as hl,i∗

l
= αl(i∗l ).

Joint decoding at the sink:
(4) D: a) Decoding of binary codewords as
(i∗1, i∗2) =

(
α−1

1 (h1,i∗1), α−1
2 (h2,i∗2)

)
; b) Joint reconstruction of source

estimates as x̂l = βl(i∗1, i∗2) = cl,i∗1,i∗2 using Cl, l = 1, 2.

Training Complexity: We assess the computational and memory requirements
by estimating the number of involved training vectors, summands, and vari-
ables (i.e., indices) in one iteration loop of an algorithm. The complexity of
optimizing the cells of each PQl, l = 1, 2, via (96) scales as the number of
levels |Vl| and the size of the training data set; the complexity of optimizing the
codepoints via (97) scales as |Vl|. The complexity of computing the MMSE es-
timate centroids of (99) scales as 2|V1||V2| and the size of the training data set.
Representing the most demanding training steps, the complexity of optimizing
E1 and E2 via (101) scales as |V1||V2||I1| and |V1||V2||I2|, respectively. The
complexity of optimizing D via (104) scales as 2|V1||V2|.

Online Communication Phase

The main operations executed for reconstructing a pair of source realiza-
tions x1 and x2 in the online phase of the DQCS-PQ method are summa-
rized in Algorithm 9. At each sensor l = 1, 2, the measurement vector yl is
mapped to the (optimal) cell index v∗l ∈ Vl (i.e., the output of PQl) using
Gl = {gl,1, . . . ,gl,|Vl|} as

v∗l = argmin
vl∈Vl

‖yl − gl,vl‖
2
2, l = 1, 2. (105)
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For a given πl = {πl(1), . . . , πl(|Vl|)}, αl, and Hl = {hl,1, . . . ,hl,|Hl|},
the index v∗l is mapped to the message index i∗l = πl(v∗l ) and further to
the binary codeword hl,i∗

l
= αl(i∗l ) at El. The joint decoder D maps the

received codewords to the index pair (i∗1, i∗2) =
(
α−1

1 (h1,i∗1), α−1
2 (h2,i∗2)

)
and reconstructs source estimates as x̂l = βl(i∗1, i∗2) = cl,i∗1,i∗2 using
Cl = {cl,1,1, . . . , cl,|I1|,|I2|}, l = 1, 2.
Online Complexity: Thanks to the imposed NN constraint for each PQl,
l = 1, 2, the encoding complexity is tolerable: a sensor only has to calcu-
late |Vl| distances in (105), followed by the table look-ups associated with
πl, αl, andHl. Adjustment of the pre-quantization rate R̄l = log2|Vl| allows
DQCS-PQ to trade off between the encoding complexity and compression
performance. Clearly, an achievable performance range depends on the scaling
and operation point of the sensing setup through, e.g., the source statistics and
parameters N , Ml, K, Φl, and σ2

W, l = 1, 2. Thus, the need to upscale R̄l in a
high-dimensional setup may expand the VQ look-up table size 2R̄l intolerably
large. In this regard, the DQCS-PQ method is mainly applicable to setups
with moderate signal dimensions.

Remark 6.4. Even though an MMSE estimate E[Xl|Y1 = y1,Y2 = y2],
l = 1, 2, is an integral quantity in defining the optimal encoders and de-
coder, the pre-quantization technique relieves the sensor of reconstructing
this estimate in the online communication phase (see Algorithm 9). This is
different from the related works [265, 266], where the necessity of forming
these exponentially complex estimates [99, 235, 281] hinders the practical im-
plementation. Recall that the pre-quantization obviates the need of computing
the estimates also in the offline training phase (see Algorithm 8).

Optimal Codeword Lengths

Recall that the rate approximation (92) merely steers the quantizer design in
subsuming a desired source code. Thus, the respective codebooks H1 and
H2 must eventually be generated in practice. For the separate coding, the
optimal codeword lengths γ(il), il ∈ Il, satisfying the Kraft inequality are
known. For instance, (instantaneous) Huffman coding [149] and [74, Sect. 5.6]
and arithmetic coding [247] and [74, Sect. 13.3] perform close to the entropy
bound Rl ≥ H(Il), l = 1, 2 [66, 108].
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Remark 6.5. Improved compression performance is achievable from
DSC/SW coding of the message indices which takes the inter-sensor
correlation of I1 and I2 into account. The SW rate region is
defined by the rates satisfying R1 ≥ H(I1|I2), R2 ≥ H(I2|I1), and
R1 +R2 ≥ H(I1, I2) [268] and [74, Theorem 15.4.1]. Consequently, the
rate measure for the symmetric SW coding is r(p(i1, i2)) = −log2p(i1, i2),
and thus, the average sum rate (cf. (92)) becomes R = H(I1, I2), where
H(I1, I2) = −

∑|I1|
i1=1

∑|I2|
i2=1 p(i1, i2)log2p(i1, i2) is the joint entropy of in-

dices I1 and I2. An asymmetric SW design has been addressed in, e.g., [50].
The optimal codeword lengths, however, are unknown [108]. Typically, low-
density parity-check codes, turbo codes, and syndrome based codes are em-
ployed to approach the SW boundary [311, 234, 191]. Unfortunately, as the
coding involves (large) blocks of indices, the increased complexity and delay
of such non-instantaneous codes may become an issue. Potential variants
include the SW type finite-dimensional codes for lossless/near-lossless coding
introduced in [320, 319].

Numerical Results

Numerical results are presented to demonstrate the DR behavior of the
DQCS-PQ method (Algorithm 9) and to compare it against several base-
line QCS methods.

Simulation Setup

We consider a setup with equal numbers of measurements M ,M1 = M2,
and equal support probabilities p(Ts) = 1/

(N
K

)
, ∀s = 1, . . . ,

(N
K

)
.

For a given Ts, the non-zero parts of X̄ and X′l, denoted as
X̄Ts and X′l,Ts , are defined as i.i.d. Gaussian random variables
X̄Ts ∼ N (0, σ2

X̄IK), and X′l,Ts ∼ N (0, σ2
X′IK), s = 1, . . . ,

(N
K

)
, l = 1, 2.

Thus, Xl,Ts ∼ N
(
0, (σ2

X̄ + σ2
X′)IK

)
. The spatial correlation between

the sensors is adjusted by parameter ρcorr , σ2
X̄/σ

2
X′ with σ2

X̄ = 1. Two
types of measurement matrices Φ1 and Φ2 are considered by 1) drawing
the entries from Gaussian distribution N (0, 1/M), and normalizing the
columns as ‖ · ‖22 = 1, and 2) taking the first (last) M rows of an N ×N
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DCT-matrix, and normalizing the columns as ‖ · ‖22 = 1. Unless otherwise
stated, R̄1 = R̄2 = 10 bits, and log2|I1| = log2|I2| = {1, . . . , 8} bits.
The splitting method [188, 133] is employed to optimize both the pre-
quantizers (Algorithm 7), and the encoders and decoder (Algorithm 8). In
the splitting procedure, a quantization system is first optimized for codebook
sizes |Il| = 2, l = 1, 2 (|Vl| for PQl). Then, each resultant codevector is split
through small perturbation, and the algorithm is run for |Il| = 4 using the new
codevectors as initial ones (i.e., a "warm start"). This gradual bifurcation is
repeated until the desired codebook sizes are reached.
For DQCS-PQ, the codebooks H1 and H2 are generated via the Huffman
algorithm, and the average rates are defined via (91). The weight parameter
is set by a rule µ , µc/log2|Il|, where µc ≥ 0 is a non-negative parameter.
When E1, E2, and D are optimized for multiple (ascending) values of µc, the
quantities π2, C1, and C2 obtained for the preceding (smaller) µc are used to
initialize Algorithm 8 for the next µc.
We consider two baseline methods which rely on a customary approach behind
early QCS methods as by using a fixed rate Rl = log2|Il|, and relying on a
VQ encoder that minimizes MSE quantization distortion:

1. VQ-ES-DS: a method with separate NN encoding, and sepa-
rate decoding, where the VQ encoder of the lth sensor mini-
mizes

∑
il∈Il p(il)E

[
‖Yl − ŷl,il‖22|Il = il

]
with encoder codepoints

ŷl,il ∈ RM , and the decoder consists of the MSE-optimal decoder code-
vectors cES-DS

l,il
= E[Xl|Il = il], il ∈ Il, for the associated Voronoi re-

gions, l = 1, 2.

2. VQ-ES-DJ: a method with separate encoding identical to
VQ-ES-DS, but with joint decoding via decoder codevectors
cES-DJ
l,i1,i2

= E[Xl|I1 = i1, I2 = i2], i1 ∈ I1, i2 ∈ I2, l = 1, 2. In sum-
mary, DQCS-PQ differs from VQ-ES-DJ by using 1) pre-quantization,
2) variable-rate coding, and 3) encoders that minimize the signal
reconstruction distortion.

The distortion is measured asDave , 10log10
(
D1/E[‖X1‖22] +D2/E[‖X2‖22]

)
(dB), where E[‖Xl‖22] =

∑(NK)
s=1 p(Ts)E

[
‖Xl,Ts‖22

]
= K(σ2

X̄ + σ2
X′), l = 1, 2.

The rate is measured as Rave , R/2 (bits). Due to the exponential complexity
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Table 3: Huffman source codebooksH1 andH2 of DQCS-PQ used in Section 6.

Message index I1/I2 Codebook H1 Codebook H2

1 10010 –
2 101 101
3 10000 –
4 0 0
5 11 11
6 10011 –
7 – 1001
8 10001 1000

of quantizers in the offline training phase, the experiments are restricted to
moderate quantization rates and signal dimensions. Data sets of size 5× 105

are used for training and performance evaluation.

Illustration of Distributed Quantization

First, we visualize the general operation of DQCS-PQ by considering a low-
dimensional setup with N = 3, M = 2, K = 1, σ2

W = 0.003, ρcorr = 102,
Gaussian measurement matrices

Φ1 =
[
0.8472 0.8044 −0.6982
0.5312 0.5941 −0.7159

]
,

Φ2 =
[
0.9966 −0.5589 −0.0016
0.0827 −0.8293 1.0000

]
,

(106)

and quantizer parameters µc = 0.5, |Vl| = 32, and |Il| = 8. The en-
coders/decoder optimized via Algorithms 7 and 8 are depicted in Fig. 24:
(a) and (b) illustrate the outcomes of pre-quantization of Y1 and Y2, and
the subsequent message index mappings π1 and π2, respectively; (c) and (d)
depict the reconstruction codebooks C1 and C2, respectively; (e) tabulates π1
and π2. The source codebooks H1 and H2 are presented in Table 3. For an
ease of comparison, VQ-ES-DJ is similarly illustrated in Fig. 25.
The resulting DR performance for DQCS-PQ are Dave = −10.19 dB and
Rave = 1.83 bits, and Dave = −4.475 dB and Rave = 3 bits for VQ-ES-DJ.
This implies a striking 39 % reduction in the rate, and a 5.7 dB reduction in
the distortion in favor of the DQCS-PQ method.
Figs. 24(a) and (b) illustrate the key function of PQ1 and PQ2, "encoder
shaping". Consider the message index I1 = 2 and I2 = 7: the 5 cells assigned
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Figure 24: Visualization of DQCS-PQ in terms of (a) the pre-quantizer PQ1 and encoder
E1, (b) the pre-quantizer PQ2 and encoder E2, (c) the reconstruction codebook C1, (d) recon-
struction codebook C2, and (e) message index mappings π1 and π2. In (a) and (b), the black
dots represent the codepoints gl,1, . . . ,gl,32 of PQ1 and PQ2; each dotted line represents the
sparsity-dependent span φ

l,n
Xl,n, n = 1, 2, 3; each color indicates the set π−1

l (il) for mes-
sage index il ∈ Il, l = 1, 2 (the colors are equivalent in (e)). In (c) and (d), the dots represent
the codevectors cl,1,1, . . . , cl,8,8; the coordinate axes are shown as dashed lines.

to I1 = 2, i.e., π−1
1 (2) = {5, 6, 7, 8, 10}, form an irregularly shaped region

of measurement vectors, whereas the region for I2 = 7 consists of 2 non-
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Figure 25: Visualization of VQ-ES-DJ in terms of (a) the encoder at sensor 1, (b) the encoder
at sensor 2, (c) the decoder codevectors for X1, and (d) the decoder codevectors for X2. The
lines, dots, and colors have the same meanings as those in Fig. 24.

contiguous cells16 by π−1
2 (7) = {25, 32}. This shaping feature allows the

cells Sl,1, . . . ,Sl,32 to merge (i.e., classify measurement (training) vectors) into
message indices Il = {1, . . . , 8}, l = 1, 2, by taking the collective effect of the
CS and DSC into account. As a consequence, to some extent the partitioning
in Fig. 24(a) follows the sparsity-dependent linear projections φ

l,n
Xl,n + Wl,

where φ
l,n
∈ RM is the nth column of Φl, and Xl,n is the nth element of Xl,

n = 1, 2, 3. Similarly, Figs. 24(c) and (d) show that nearly all reconstruction
codevectors are (approximately) K-sparse vectors. Because they are also

16This can be interpreted as an index reuse, characteristic to a distributed quantization setup
[294, 110].
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rather evenly distributed in R3, the codebooks C1 and C2 presumably contain
accurate estimates for the K-sparse sources X1 and X2. On the contrary, the
encoder regions of VQ-ES-DJ in Fig. 25(a) are solely based on the probability
mass of Y1, and the codevectors in Figs. 25(c) and (d) are dispersed with no
K-sparse structure. Such incognizance of the CS resulted in poor performance.
Table 3 illustrates the power of entropy coding in DQCS-PQ: the codebooks
H1 andH2 contain only 7 and 5 codewords (instead of 8), respectively, and the
expected codeword length is minimized by assigning the shortest codeword ”0”
to the most frequent indices I1 = I2 = 4, the codeword ”1 1” to the second
most frequent indices I1 = I2 = 5, and so forth. Note that even though H1
contains 5-bit codewords, Rave for DQCS-PQ is 39 % lower (and Dave 5.7
dB lower) than for VQ-ES-DJ that uses fixed-length 3-bit codewords.

Distortion-Rate Performance

Fig. 26(a) depicts the average distortion Dave versus the average rate Rave
for N = 20, M = 8, K = 2, σ2

W = 0.01, ρcorr = 103, and the Gaussian
type Φ1 and Φ2. By completely disregarding the signal correlation, the
VQ-ES-DS method performs poorly. Significant gains are achieved by using
the VQ-ES-DJ for which the joint decoding effectively expands the codebook
size from |Il| to |Il|2 (especially for high correlations). However, since the
encoders of both methods are blind to the peculiarities of the CS, and they
use fixed rates, the proposed variable-rate CS-aware DQCS-PQ invariably
obtains the best compression performance for all values of µc, including the
fixed-rate version (µc = 0). A similar performance trend is true for all the
subsequent experiments as well.
It can be seen that VQ-ES-DS becomes saturated with the distortion at
around Dave = −5 dB. Such an unavoidable constant error level is caused
by the remote source coding nature of CS. The saturation will also happen
for the other methods for sufficiently high rates. Namely, regardless of
the compression/coding method, the CS parts with additive measurement
noise at the sensors prevent the perfect reconstruction of X1 and X2 at
the decoder, even for the rates approaching infinity. For the VQ-ES-DS
method, the error level is defined by the rate-independent MMSE estima-

tion error of the form
∑2
l=1

∫
yl
E
[
‖Xl − E[Xl|Yl = yl]‖22

]
f(yl)dyl.
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Figure 26: Distortion-rate performance for N = 20, M = 8, K = 2, the Gaussian type Φ1
and Φ2, and signal correlation parameter (a) ρcorr = 103, (b) ρcorr = 102, and (c) ρcorr = 101.
The colors and markers of the curves in (b) and (c) are equivalent to those in (a).
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For VQ-ES-DJ and DQCS-PQ, the level is given by∑2
l=1

∫
y1

∫
y2

E
[
‖Xl − E[Xl|Y1 = y1,Y2 = y2]‖22

]
f(y1,y2)dy1dy2.

Influence of the Weight Parameter

The impact of weight parameter µ in DQCS-PQ can be perceived from
Fig. 26(a). By choosing an appropriate variable-rate code, DQCS-PQ can
flexibly make a trade-off for the DR performance, and thus, lends itself to
varying compression scenarios. For instance, consider a rate-limited WSN
application, where the maximum (source) rate is restricted to, say, Rave = 5
bits due to bad channel conditions, or congested data traffic. Using the entropy
coding of the message indices, the reconstruction performance is improved
from Dave = −5.8 dB (µc = 0) to Dave = −7.6 dB (µc = 0.75). Alterna-
tively, consider an application with a minimum required reconstruction fidelity
of, say, Dave = −7 dB. With the aid of variable-length coding, a significant
rate reduction of 1.5 bits from Rave = 6.0 bits (µc = 0) to Rave = 4.5 bits
(µc = 0.75) is achieved.

Influence of Source Correlation

Figs. 26(a) – (c) present the compression performance for different signal
correlation levels ρcorr = {103, 102, 101}. As a first remark, the DQCS-PQ
method utilizes the signal correlation efficiently for compressing sparse
sources. The higher the correlation, the greater the compression gain is
in favor of DQCS-PQ. For ρcorr = 103 (high correlation), a distortion of
Dave = −7 dB is achieved at rates Rave = 6.7 bits for VQ-ES-DJ, and 4.5
bits for DQCS-PQ (µc = 0.75). For ρcorr = 101 (low correlation), the re-
spective rates are Rave = 7.4 and 6.0 bits. Note that while VQ-ES-DJ and
DQCS-PQ perform better with the increasing correlations, the indiscernible
disparities of the curves of fully separate VQ-ES-DS are solely attributed to
different signal powers E[‖Xl‖22].

Influence of Number of Measurements

Fig. 27 demonstrates the influence of different number of measurements
M = {2, 3, 4} in the setup with N = 10, K = 1, σ2

W = 0.01, ρcorr = 102,
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Figure 27: Distortion-rate performance for N = 10, K = 1, ρcorr = 102, the DCT type Φ1
and Φ2, and number of measurements (a) M = 2, (b) M = 3, and (c) M = 4. The colors and
markers of the curves in (a) and (b) are equivalent to those in (c).
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and the DCT type Φ1 and Φ2. Unlike the other methods, DQCS-PQ achieves
decent performance even in a very noisy scenario (i.e., forM = 2). By increas-
ing the measurements to M = 3 and further to M = 4, the setup becomes less
contaminated, allowing each QCS method to compress the sparse sources more
reliably. However, whereas VQ-ES-DS and VQ-ES-DJ make considerable
gains when switching from M = 3 to M = 4, the respective improvement for
DQCS-PQ is negligible. This is congruent with the CS philosophy: when M
is sufficient for a successful support recovery, further increasing M does not
provide significant gains. Accordingly, given that M is at a satisfactory level,
it is more cost-effective to improve the reconstruction quality by increasing
the rate. Since acquiring more measurements can be expensive – or even
infeasible – in practice, the capability to operate at low signal-to-noise ratios
is indisputably a great advantage of the DQCS-PQ method.

Conclusions

This section addressed lossy DSC for efficiently acquiring correlated sparse
sources from quantized noisy compressive measurements in WSNs. A DR
optimized complexity-constrained variable-rate distributed QCS method was
developed to minimize a weighted sum of the average MSE signal recon-
struction distortion and the average rate. In order to ameliorate the practical
feasibility, the encoding complexity of each sensor was restrained by pre-
discretizing the measurement vector space by utilizing VQ. Conforming to
an entropy-constrained design framework, the method incorporates a desired
variable-rate code using the rate measures of an entropy bound. Alternating
optimization was used to derive the necessary optimality conditions and pro-
pose practical training algorithms for a two-sensor system. The computational
complexities in the training and communication phases were discussed.
The numerical results illustrated that the devised method has superior DR
performance under varying signal correlation levels and signal-to-noise ra-
tios. Moreover, the method is adaptable to various compression settings with
stringent rate or distortion requirements. The results also demonstrated the
improvement of compression performance by increasing either the number of
measurements or the encoding rate in a QCS setup. Depending on the applica-
tion and its restrictions, either option may be more beneficial, and, in the first
place, feasible to realize. The key finding was that efficient finite-rate acquisi-
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tion of correlated sparse sources calls for 1) a DSC design, 2) CS-awareness
both at the encoder and decoder ends, and 3) the use of entropy coding.
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7
Rate-Distortion Performance of Lossy

Compressed Sensing

This section addresses the rate-distortion (RD) performance of lossy CS from
an information-theoretic perspective. A single-sensor setup is assumed due to
the analytical tractability. In this setup, a CS based sensor observes a sparse
information source indirectly and communicates compressed noisy measure-
ments to a decoder for signal reconstruction with the aim to minimize the
MSE distortion. Thus, the obtained theoretical results shed light on, e.g., the
compression performance limits of the single-sensor version of the QCS setup
in Section 6. The minimum achievable rate for a given distortion fidelity in a
QCS setup is represented by the remote rate-distortion function (RDF). We
first present an analytically tractable lower bound to the remote RDF by pro-
viding support side information to the encoder and decoder. A variant of the
Blahut-Arimoto algorithm is devised to numerically approximate the remote
RDF. Furthermore, we present several practical symbol-by-symbol QCS algo-
rithms relying on 1) compress-and-estimate, 2) estimate-and-compress, and
3) support-estimation-and-compress strategies. Numerical results illustrate
the main RD characteristics of the lossy CS and compare the performance of
practical QCS methods against the proposed limits. In particular, an entropy-
constrained VQ based estimate-and-compress QCS method is numerically
shown to approach the remote RDF.

134
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Related Works

Since existing symbol-by-symbol quantizer based QCS algorithms are already
discussed in Section 6, the following sections mainly review the works that
focus on information theoretic perspectives of lossy CS.

Lossy CS

In a lossy compression system, the point of interest lies in encoding an in-
formation source at the minimum rate so that the source can be reproduced
at the destination with a distortion not exceeding a tolerable level. This best
achievable compression performance for a given distortion fidelity is given
by the rate-distortion function (RDF) of a source [260]. However, the limit is
achievable only via excessively complex encoder-decoder pairs with infinitely
long block lengths [25, Sect. 3.3] and [134]. Thus, the RD theory is primarily
applicable to performance analysis and benchmarking of practical lossy coding
methods.
As discussed in Section 6, the compression task in a QCS setup falls into
remote source coding [85][25, Sect. 3.5, 4.5.4][253, 304, 303, 110]. The
compression limit for such a setup is given by the remote RDF. Information-
theoretic analysis of QCS – termed lossy CS henceforth – is incomplete, i.e.,
the remote RDF for lossy CS is unknown. A problem overview along with
initial results was first given in [129]. Kipnis et al. [165] analyzed lossy CS
under a large system limit (i.e., M,N →∞) using the replica method, and
derived the minimal achievable per-letter MSE in a general form. Coluccia
et al. [69] derived a distortion-rate (DR) lower bound assuming support SI
at the decoder, high-rate quantization, a large system regime N →∞, and
noiseless measurements. As slightly different, yet related works, RD bounds
for directly compressing sparse sources were derived in [57, 293, 230], and the
compression of (sparse) Bernoulli generalized Gaussian sources via uniform
SQ was studied in [113]. Other works on remote compression in (non-CS)
setups include [276, 256, 163].

Computation of RDFs

Despite the well-known general definitions, deriving a RDF/remote RDF in
closed form is, in general, elusive. To date, remote RDFs have been derived
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only for few well-behaved source/observation distributions; see, e.g., the
works in [85, 304], [25, Sect. 4.5.4] and [256, 276, 163], assuming Gaussian
distributions, and [166] considering a remote binary source. When a closed-
form solution is unattainable, one recourse is numerical approximation. The
bulk of such iterative methods rely on the Blahut-Arimoto (BA) algorithm,
which traces back to the pioneering works by Blahut [30] and Arimoto [11].
This algorithm has been adapted to remote sensing scenarios under joint
compression and classification in [86], and the chief executive officer problem
in [168]. The effect of discretizing a continuous source on the accuracy of the
RDF evaluated via the BA algorithm for finite output alphabets was analyzed
in [106]; similarly, an approximation of the capacity of a continuous channel
was studied in [58]. Other computation methods include a mapping based
method akin to deterministic annealing in [249], and Lagrange duality based
convex optimization in [65].

Source Coding with Side Information

In some WSN applications, the encoder and/or decoder is intermittently rein-
forced by various types of prior knowledge, i.e., side information (SI), on the
signal of interest. SI on, e.g., sparsity, occupied frequency bands, or magnitude
variations of a signal can be obtained via temporal/spatial correlations or inter-
sensor collaboration. Since SI reduces the necessary transmission rate, added
SI can be used to derive RD lower bounds in closed form. Compression with
shared SI at the encoder and decoder follows conditional RD theory introduced
by Gray [131, 132]. The case with correlated, but not necessarily identical
SI at the encoder and decoder was addressed in, e.g., [73, 62, 140]. Other
(non-CS) SI aided compression variants can be found in, e.g., [25, Sect. 6.1],
[174, 126, 189], [121, Sect. 11.1] and [124, Sect. 5.6].

Lossy CS via Remote Source Coding

In this work, the objective is to investigate the RD performance of the model
depicted in Fig. 28, where the information source is observed via noisy com-
pressed measurements, encoded with a lossy source code, and communicated
to the decoder for signal reconstruction. The transmissions from encoder E to
decoder D are assumed to be error-free. The compression task is classified as
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Figure 28: A single-sensor lossy compression of a sparse source from compressive noisy
measurements.

remote source coding because the encoder accesses the source only through
noisy measurements. The source and the measurement model are defined next,
followed by the formal statement of the problem.

Source Model

Let {Xn}∞n=1 be a discrete-time memoryless vector source sequence17.
Each random vector18 Xn = [Xn,1 · · · Xn,N ]T is K-sparse, where
K ≤ N , i.e., it takes on values in the continuous source alphabet
X = {x ∈ RN : ‖x‖0 = K}. The set X thus consists of the union of

(N
K

)
subspaces, i.e., the signal model is nonlinear [101, 81]. It is further as-
sumed that the source sequence is generated from the memoryless sequence
of tuples {(Gn,Bn)}∞n=1 so that Xn = Gn �Bn, where � denotes the
Hadamard product; Gn is a length-N zero mean Gaussian random vector
Gn ∼ N (0,ΣG) with a covariance matrix ΣG ∈ SN++; Bn is a length-N
binary support random vector, independent of Gn, with the discrete al-
phabet B = {b1, . . . ,b|B|}, where |B| =

(N
K

)
is the number of all possi-

ble sparsity patterns. Each bs = [bs,1 · · · bs,N ]T ∈ B is unique, contains K
ones and N −K zeros, and is associated with the a priori probability
p(bs) , Pr(B = bs) with p(bs) ∈ [0, 1] and

∑|B|
s=1 p(bs) = 1.

17Due to the independence over time, the time index n will often be suppressed for brevity
whenever not explicitly needed.

18In this section, with slight abuse of notation, we use capital bold letters (e.g., X) to refer
to random vectors, and small bold letters to refer to their corresponding realizations (e.g.,
X = x).
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Noisy CS

Let Φ ∈ RM×N be a fixed and known measurement matrix, K ≤M ≤ N .
The sensor (i.e., the encoder) observes {Xn}∞n=1 indirectly [43, 87, 146, 49]
as

Yn = ΦXn + Wn, n = 1, 2, . . . (107)

where Wn, n = 1, 2, . . ., are length-M random measurement noise vectors
independent of {Xn}∞n=1, and each Yn is a length-M measurement random
vector that takes values in the measurement vector space Y . It is assumed
that Wn ∼ N (0,ΣW) with a covariance matrix ΣW ∈ SM++. No restricting
assumptions of Φ are made in the derivations; the impact of Φ on the CS
recovery performance is discussed in Section 2.

Lossy CS Problem

Let Xm , {Xn}mn=1 and xm , {xn}mn=1 denote the blocks of m consecutive
source random vectors and the corresponding realizations, respectively. Let
Xm denote the m-fold Cartesian product of X . Analogous notations are
used for the other vectors. Let X̂ be the reproduction random vector at the
decoder output, taking values in the reproduction alphabet X̂ . Finally, define
the average per-letter MSE distortion between vectors x = [x1 · · ·xN ]T ∈ X
and x̂ = [x̂1 · · · x̂N ]T ∈ X̂ as

d(x, x̂) , N−1∑N
k=1(xk − x̂k)2 (108)

and the average per-letter MSE distortion between blocks xm ∈ Xm and
x̂m ∈ X̂m as

d(xm, x̂m) , (mN)−1∑m
n=1

∑N
k=1(xn,k − x̂n,k)2. (109)

The lossy source coding system in Fig. 28 operates as follows [134, Sect. 2.1],
[74, Sect. 10.2] and [121, Sect. 3.5, 3.6]. The encoder E observes a block of
measurements ym ∈ Ym and compresses it into a message represented by an
index u ∈ U of rate mNR bits using an encoder mapping

gmE : Ym → U ,
{
1, . . . , 2mNR

}
(110)

where the rate R is defined as the bits/entry of X. The decoder D uses the
index to reconstruct an estimate of xm ∈ Xm via a decoder mapping

gmD : U → X̂m. (111)
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A pair (R,D) for distortion D ≥ 0 is achievable if there exists a se-
quence of (2mNR,m)-RD codes with mappings gmE and gmD so that
lim
m→∞

E
[
d(Xm, gmD {gmE (Ym)})

]
≤ D. Let R be the closure of the set of

achievable (R,D) pairs.

Definition 2. (Lossy CS source coding problem) Amongst all the E-D pairs
of mappings (110) and (111), determine the infimum of (achievable) rates
R such that X can be reproduced with the average distortion satisfying
E
[
d(Xm, X̂m)

]
≤ D + ε for any positive real number ε, i.e., define [74,

Sect. 10.2]
Rrem

X (D) = inf
(R,D)∈R

R. (112)

Rrem
X (D) is called the remote RDF of source X.

It is worth noting that the MSE distortion, in general, leads to non-sparse
signal reconstruction, which might be undesirable in certain CS applications.

Remote RDF

The general expression of the remote RDF for a discrete memoryless source
with discrete memoryless observations has been derived in [25, Eqs. (3.5.1) –
(3.5.5)]. Adapting the result to continuous-valued signals X and Y, Rrem

X (D)
in (112) can be expressed as

Rrem
X (D) = min

f(x̂|y):E[d(X,X̂)]≤D

1
N
I(Y; X̂) (113a)

where the optimization is over the conditional PDF f(x̂|y), commonly referred
to as the test channel, and d(x, x̂) is the distortion in (108). The mutual
information19 between Y and X̂ is

I(Y; X̂) =
∫

y

∫
x̂
f(y)f(x̂|y)logf(x̂|y)

f(x̂) dydx̂ (113b)

and the average MSE distortion between X and X̂ is

E
[
d(X, X̂)

] (a)=
∫

x

∫
y

∫
x̂
f(x)f(y|x)f(x̂|y)d(x, x̂)dxdydx̂ (113c)

19The logarithms are in base 2 in this section.
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Figure 29: A single-sensor lossy CS of a sparse source with support side information.

where (a) follows from f(x̂|y) = f(x̂|y,x) because X→ Y→ X̂ forms a
Markov chain. Note that the remote sensing mechanism is captured by the
conditional PDF f(y|x), governed by the measurements in (107).
Due to the time-varying sparsity of {Xn}∞n=1 through {Bn}∞n=1, the PDFs of
X, and consequently, of Y are mixture distributions, which seems to make
the optimization over f(x̂|y) in (113a) difficult. Hence, we treat the lossy CS
problem of Definition 2 with the following two approaches: 1) analytically
tractable lower bound to Rrem

X (D) is derived in Section 7, and 2) a method to
numerically approximate Rrem

X (D) is devised in Section 7. Note that similar
difficulty resides also in the direct compression of X, in which case only RD
bounds have been derived [57, 293, 230].

Rate-Distortion Lower Bound for Lossy CS

Consider the compression setup of Fig. 29, where, compared to Fig. 28, the
encoder Esi and decoder Dsi possess SI on sequence {Bn}∞n=1. Such an SI
aided setup can be used to derive a lower bound to Rrem

X (D) in (113a). Having
the support SI at the decoder is often optimistic in practice, but sometimes the
encoder may acquire SI on B (i.e., an estimate B̂) from the measurements Y
at a moderate cost via a sparse signal reconstruction algorithm (see Section 2).
Nevertheless, the shared support SI allows to derive an analytically tractable
lower bound to Rrem

X (D) which sheds light on the RD behavior of the original
setup in Fig. 28, and establishes a benchmark for practical coding methods.

Lossy CS Problem with Support SI

Owing to the support SI, an informed lossy source code is defined as follows
[131, 174, 73] and [126, Sect. 2.3.1]. The encoder Esi observes a block of
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measurements ym ∈ Ym along with the SI bm ∈ Bm and compresses it to a
message index u ∈ U using an encoder mapping

gmEsi : Ym × Bm → U . (114)

The decoder Dsi uses the index and the common SI bm to reconstruct an
estimate of xm ∈ Xm via a decoder mapping

gmDsi : U × Bm → X̂m. (115)

A pair (R,D) for distortion D ≥ 0 is achievable if there exists a sequence
of informed (2mNR,m)-RD codes with mappings gmEsi

and gmDsi
so that

lim
m→∞

E
[
d(Xm, gmDsi

{gmEsi
(Ym,Bm),Bm})

]
≤ D. Let Rsi be the closure of

the set of such achievable (R,D) pairs.

Definition 3. (Lossy CS source coding problem with support SI) Amongst
all the Esi-Dsi pairs of mappings (114) and (115), determine the infimum of
(achievable) rates R so that X can be reproduced with the average distortion
satisfying E

[
d(Xm, X̂m)

]
≤ D + ε for any positive real number ε, i.e., define

Rrem
X|B(D) = inf

(R,D)∈Rsi
R. (116)

Rrem
X|B(D) is called the conditional remote RDF of source X. Clearly,R ⊆ Rsi,

and Rrem
X|B(D) establishes a lower bound to the best possible compression

performance of the lossy CS as

Rrem
X (D) ≥ Rrem

X|B(D). (117)

Next, we present detailed derivation of Rrem
X|B(D).

Conditional Remote RDF

The conditional RDF for a discrete source along with the respective coding
theorems has been derived in [131]. Extending the results to a remote com-
pression setup, the conditional remote RDF Rrem

X|B(D) can be expressed as

Rrem
X|B(D) = min

{f(x̂|y,bs)}|B|s=1:E[d(X,X̂)]≤D

1
N
I(Y; X̂|B) (118a)
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where the optimization is over the |B| different test channels f(x̂|y,bs),
s = 1, . . . , |B|, the conditional mutual information between Y and X̂ given
B is

I(Y; X̂|B) =
∑|B|
s=1 p(bs)I(Y; X̂|B = bs) (118b)

and the average MSE distortion between X and X̂ is

E
[
d(X, X̂)

]
=
∑|B|
s=1 p(bs)E

[
d(X, X̂)|B = bs

]
(118c)

where, compared to (113c), the expectation is also taken over B. Since B is
provided at no cost in the system shown in Fig. 29, Rrem

X|B(D) determines the
complementary information rate that must be conveyed to the decoder Dsi to
reconstruct X with fidelity D.
We can observe that (118b) and (118c) decompose with respect to realizations
B = bs, s = 1, . . . , |B|. The conditional remote RDFRrem

X|B(D) in (118a) can
thus be expressed as the weighted sum minimization [131, Theorem 5]

Rrem
X|B(D) = min∑|B|

s=1 p(bs)Ds=D
Ds≥0, s=1,...,|B|

∑|B|
s=1 p(bs)Rrem

X|bs(Ds) (119)

with optimization variables Ds, s = 1, . . . , |B|, where Rrem
X|bs(Ds) is the con-

ditional marginal remote RDF of source X for a fixed realization B = bs and
distortion Ds ≥ 0, given as

Rrem
X|bs(Ds) = min

f(x̂|y,bs):E[d(X,X̂)|B=bs]≤Ds

1
N
I(Y; X̂|B = bs) (120a)

where the mutual information between Y and X̂, conditioned on B = bs, is

I(Y; X̂|B = bs) =
∫

y

∫
x̂
f(y|bs)f(x̂|y,bs)logf(x̂|y,bs)

f(x̂|bs)
dydx̂ (120b)

and the average MSE distortion between X and X̂, conditioned on B = bs, is

E
[
d(X, X̂)|B = bs

] (a)=
∫

x

∫
y

∫
x̂
f(x|bs)f(y|x,bs)f(x̂|y,bs)

d(x, x̂)dxdydx̂
(120c)

where (a) follows from f(x̂|y,x,bs) = f(x̂|y,bs) because X→ Y→ X̂
forms a Markov chain when conditioned on B. Owing to the support SI, all
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Figure 30: A single-sensor lossy CS of a sparse subsource with support side information.

the PDFs above are equivalent to those in (113), except they are conditioned
on the realization B = bs.
Based on the above formulations, the characterization of Rrem

X|B(D) in (119)
boils down to deriving each Rrem

X|bs(Ds), s = 1, . . . , |B|, in (120a). This is
carried out in the next section.

Conditional Marginal Remote RDF

The conditional marginal remote RDF Rrem
X|bs(Ds), s = 1, . . . , |B|, in (120a)

determines the minimum (achievable) rate Rs so that X can be reproduced
with the average distortion satisfying E

[
d(X, X̂)|B = bs

]
≤ Ds in the setup

depicted in Fig. 30, where
∑|B|
s=1 p(bs)Rs = R. In order to derive Rrem

X|bs(Ds),
we introduce the following three definitions.

Definition 4. (Subsource) Let {Xs,n}∞n=1 = {Gn � bs}∞n=1 be the memory-
less sequence of the sth subsource, consisting of K-sparse source vectors
{Xn}∞n=1 restricted to a fixed realization B = bs, s = 1, . . . , |B|. Each sub-
source Xs comprises of two parts: 1) the length-K random vector

Xs , Gsupp(bs) ∼ N (0,ΣXs) (121)

that extracts the entries of Xs (i.e., the entries of G) restricted to the sup-
port of bs, where supp(bs) ,

{
k ∈ {1, . . . , N}|bs,k 6= 0

}
denotes the sup-

port of vector bs, Gsupp(bs) extracts the entries Gk from G for indices
k ∈ supp(bs), and the covariance matrix ΣXs ∈ SK++ extracts the entries
ΣG(k, k′) from ΣG for indices k, k′ ∈ supp(bs); 2) the all-zero vector
0N−K corresponding to the entries of Xs for indices k ∈ supp(bs)c, where
supp(bs)c ,

{
{1, . . . , N} \ supp(bs)

}
is the complement of supp(bs).

It is worth noting that the subsources Xs, s = 1, . . . , |B|, are virtual, i.e., not
actually present in the system. However, they play an instructive role in the
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derivations. Due to the decomposability, the subsources can be seen as a
composite source20 [25, Sect. 6.1.1] and [126].

Definition 5. (Measurements of a subsource) Let {Ys,n}∞n=1 be the mem-
oryless sequence of the measurements of form (107) restricted to a fixed
realization B = bs, i.e., the measurements of subsource Xs, s = 1, . . . , |B|,
in (121), defined as

Ys , ΦXs + W = ΦsXs + W (122)

where matrix Φs ∈ RM×K extracts the K columns of Φ with indices
k ∈ supp(bs), and thus, Ys ∼ N (0,ΣYs) with a covariance matrix
ΣYs = ΦsΣXsΦT

s + ΣW ∈ SM++.

Definition 6. (MMSE estimator of a subsource) Let Zs be a length-N random
vector representing the MMSE estimator of source X given Y for a fixed
realization B = bs, i.e., the MMSE estimator of subsource Xs in (121) given
Ys in (122). Each Zs is given by the conditional expectation as [229, Sect. 8.2]

Zs , E[X|Y,B = bs], s = 1, . . . , |B|, (123)

which, owing to the sparsity of Xs (cf. (121)), splits into two parts: 1) the
length-K random vector

Zs , E[Xs|Y,B = bs] = ΣXsYsΣ−1
Ys

Ys = FsYs ∼ N (0,ΣZs) (124)

that represents the MMSE estimator of Xs given Y and B = bs; 2) 0N−K
that corresponds to the MMSE estimator of the zero part of Xs. For jointly
Gaussian random vectors, Zs is linear [120, Sect. 10.2], where the cross-
covariance matrix is ΣXsYs = ΣXsΦT

s ∈ RK×M , the MMSE estimation ma-
trix is Fs , ΣXsYsΣ−1

Ys
∈ RK×M , and Zs ∼ N (0,ΣZs) with covariance

matrix ΣZs = FsΣT
XsYs

∈ SK+ .

Rrem
X|bs(Ds) in (120a) can be characterized by a two-stage encoding structure,

where the encoder first optimally estimates the subsource Xs (see (121)) from
measurements Ys (see (122)), and then optimally encodes the constructed
estimator Zs in (124). This is elaborated next.

20The sequence pair {(Xn,Bn)}∞n=1 forms a jointly stationary and ergodic regenerative
composite source with stationary memoryless subsource processes; {Bn}∞n=1 is the hidden
switch sequence that controls the output process {Xn}∞n=1 by randomly activating the sub-
sources {Xs,n}

∞
n=1 according to probabilities p(bs), s = 1, . . . , |B| [25, Sect. 6.1.1] and

[126].
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MMSE Distortion Separation

Let X̂s be a length-N random vector representing the reproduction of sub-
source Xs at the decoder output (see Fig. 30). Accordingly, the average
conditional MSE distortion E

[
d(Xs, X̂s)

]
, E

[
d(X, X̂)|B = bs

]
in (120c)

separates as

E
[
d(Xs, X̂s)

]
= N−1E

[
‖Xs − Zs + Zs − X̂s‖22

]
(a)= N−1E

[
‖Xs − Zs‖22

]
+N−1E

[
‖Zs − X̂s‖22

]
(b)= DZ|bs + E

[
d(Zs, X̂s)

] (125)

where (a) follows from the MMSE orthogonality principle [229, Sect. 8.2.1]
(see Appendix C); (b) follows by denoting the (rate-dependent) average MSE
distortion between Zs and X̂s as E

[
d(Zs, X̂s)

]
= N−1E

[
‖Zs − X̂s‖22

]
, and

defining the (rate-independent) average MMSE estimation error with respect
to subsource Xs as [120, Sect. 10.2] (see Appendix D)

DZ|bs = N−1Tr
(
ΣXs −ΣZs

)
. (126)

Similar separation appears also in, e.g., [85, 253, 304].

Reduced Distortion

Due to the decomposability of (124), the last term in (125) splits as

E
[
d(Zs, X̂s)

]
= E

[
d(Zs, X̂s)

]
+ E

[
d(0N−K , X̂supp(bs)c)

]
(127)

where X̂s is the length-K reproduction random vector associated with Xs,
and X̂supp(bs)c is the reproduction random vector associated with the zero part
of Xs. Since an RDF is a monotonic nonincreasing function of the distortion
[25, Sect. 2], it is optimal for Rrem

X|bs(Ds) to set X̂supp(bs)c = 0N−K , and thus
the distortion in (125) reduces to

E
[
d(Xs, X̂s)

]
= DZ|bs + E

[
d(Zs, X̂s)

]
. (128)

Let D′s ≥ 0 be a reduced distortion criterion for the sth subsource as

D′s , Ds −DZ|bs ≥ 0, s = 1, . . . , |B|, (129)

where Ds ≥ 0 is the distortion criterion in (120a), and DZ|bs is given
in (126). Note that according to (128), E

[
d(Zs, X̂s)

]
≤ D′s implies

E
[
d(Xs, X̂s)

]
≤ Ds.
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Estimate-and-Compress Separation

Let Rdir
Z|bs(D

′
s) denote the direct RDF of the MMSE estimator Zs defined in

(124) for the reduced distortion D′s in (129), i.e., define

Rdir
Z|bs(D

′
s) = min

f(ẑs|zs):E[d(Zs,Ẑs)]≤D′s

1
N
I(Zs; Ẑs) (130a)

where the minimization is over the test channel f(ẑs|zs), Ẑs is a length-K
reproduction random vector for Zs, the average mutual information between
Zs and Ẑs is

I(Zs; Ẑs) =
∫

zs

∫
ẑs
f(zs)f(ẑs|zs)logf(ẑs|zs)

f(ẑs)
dzsdẑs (130b)

and the average MSE distortion between Zs and Ẑs is

E
[
d(Zs, Ẑs)

]
=
∫

zs

∫
ẑs
f(zs)f(ẑs|zs)d(zs, ẑs)dzsdẑs. (130c)

The RDF Rdir
Z|bs(D

′
s) can be derived by decorrelating the Gaussian (effective)

source Zs ∼ N (0,ΣZs) via the Karhunen-Loève transform, and applying re-
verse water-filling [74, Sect. 10.3.3]. Accordingly, let ΣZs = QsΛsQT

s be the
eigendecomposition, where the diagonal matrix Λs , diag(λs,1, . . . , λs,K)
contains the eigenvalues λs,1 ≥ . . . ≥ λs,K ≥ 0 of ΣZs ∈ SK+ , and the
columns of Qs ∈ RK×K are the corresponding eigenvectors. Consequently,
Rdir

Z|bs(D
′
s) is given as

Rdir
Z|bs(D

′
s) = min∑K

k=1 D
′
s,k=D′s

D′s,k≥0, k=1,...,K

1
N

∑K
k=1 max

{
0, 1

2log λs,k
D′s,k

}
(131)

where D′s,k, k = 1, . . . ,K, are the optimization variables.
The following proposition gives an expression for the conditional marginal
remote RDF Rrem

X|bs(Ds).
Proposition 6: The conditional marginal remote RDF of Xs in (120a) is
given as the (direct) RDF of the MMSE estimator Zs in (131), i.e.,

Rrem
X|bs(Ds) = Rdir

Z|bs(D
′
s), s = 1, . . . , |B|, (132)

where D′s = Ds −DZ|bs ≥ 0 is the reduced distortion in (129), and DZ|bs
is given in (126).
Proof: The proposition follows from the proofs in [85, 304].
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Figure 31: A forward channel to illustrate the optimal compression structure with respect to
the conditional marginal remote RDF Rrem

X|bs
(Ds) in (120a).

According to Proposition 6, the remote source coding problem of Definition 3
separates into 1) the MMSE estimation of Xs given Ys, and 2) the derivation
of the RDF of the resultant estimator. On this account, the best encoder Esi
comprises of the MSE-optimal extraction of the subsources Xs from the noisy
linear measurements Ys in (122), s = 1, . . . , |B|, followed by the optimal
coding of the extracted messages. The estimate-and-compress separation is
illustrated in Fig. 31.

Remark 7.1. The two expressions (130) and (131) for Rdir
Z|bs(D

′
s) are inter-

related by Gaussian "forward channels" depicted in Fig. 31. Namely, the opti-
mal conditional PDF f(ẑs|zs) can be described via Ẑ ′s,k , θs,kZ

′
s,k + Vs,k,

k = 1, . . . ,K, with parameters θs,k = λs,k−D′s,k
λs,k

and σ2
Vs,k

= θs,kD
′
s,k, where

D′s,k are optimal variables for (131), Z ′s,k is the kth element of the decorre-
lated MMSE estimator Z′s = QT

sZs, and Vs,k ∼ N (0, σ2
Vs,k

) is a zero mean
Gaussian random variable independent of Z ′s,k [25, Theorem 4.3.2]. Thus,
the forward channel model provides a practical way to realize the optimal
conditional PDF and the respective reproduction random vectors.

Remark 7.2. If rank(ΣZs) < K, then the covariance matrix ΣZs has a null-
space. Consequently, the random vector Zs is a degenerate Gaussian vector
[33, Lecture 7], and Z′s contains a deterministic zero part. This case is inher-
ently handled in (131) by allocatingD′s,k = 0 for k = rank(ΣZs) + 1, . . . ,K.
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The null-space may be caused for example by the rank deficiency of matrix
Φs.

Remark 7.3. A proof of the optimality of the two-step coding structure is
implicitly present in the seminal work by Dobrushin and Tsybakov [85, Sect. 5]
for the case with frequency-weighted MSE distortion where the source and
observable processes are jointly Gaussian and stationary. Furthermore, they
proved such optimality explicitly for the MSE distortion in the case where
observations are noisy versions of the signal (i.e., no dimension reduction)
[85, Sect. 7]. Later, Wolf and Ziv [304] addressed a DR framework and proved
that separation holds for MSE distortion under more general conditions (i.e.,
Gaussianity is not required). Consequently, the decomposition principle of
Proposition 6 is also valid for non-Gaussian sources/observations; however,
finding analytical expressions for Rdir

Z|bs(D
′
s) and DZ|bs may be difficult.

Similar separation results appear in, e.g., [303, 256, 163] and [25, Sect. 4.5.4].

Remark 7.4. Rrem
X|bs(Ds) is an upper bound to the conditional marginal re-

mote RDF of a subsource X̃s = G̃� bs, where G̃ is a non-Gaussian random
vector with covariance matrix ΣG̃ = ΣG [25, p. 130].

Characterization of the Conditional Remote RDF

Let DZ|B ≥ 0 denote the total average MMSE estimation error over all sub-
sources Xs, s = 1, . . . , |B|, with the support SI, i.e.,

DZ|B ,
∑|B|
s=1 p(bs)DZ|bs

(a)= N−1∑|B|
s=1 p(bs)Tr

(
ΣXs −ΣZs

) (133)

where (a) follows from (126). The conditional remote RDFRrem
X|B(D) is given

by the following theorem.

Theorem 1. For distortion range DZ|B ≤ D < 1
N

∑|B|
s=1 p(bs)Tr

(
ΣXs

)
,

Rrem
X|B(D) is positive and can be evaluated via the convex minimization prob-

lem as

Rrem
X|B(D) = min∑|B|

s=1 p(bs)
∑K

k=1 D
′
s,k=D−DZ|B

D′s,k≥0, k=1,...,K, s=1,...,|B|

N−1∑|B|
s=1 p(bs)

∑K
k=1 max

{
0, 1

2log λs,k
D′s,k

}

(134)
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where ΣXs is the covariance matrix of Xs in (121); λs,1, . . . , λs,K are the
eigenvalues of the covariance matrix ΣZs of Zs in (124); D′s,k are the op-
timization variables, k = 1, . . . ,K, s = 1, . . . , |B|. If the distortion values
satisfy D ≥ 1

N

∑|B|
s=1 p(bs)Tr

(
ΣXs

)
, then Rrem

X|B(D) is zero.

Proof: The proof is given in Appendix E.

Remark 7.5. Rrem
X|B(D) is an upper bound to the conditional remote RDF

of a source X̃ = G̃�B, where G̃ is a non-Gaussian random vector with
covariance matrix ΣG̃ = ΣG [25, p. 130].

In Theorem 1, Rrem
X|B(D) is determined by a weighted sum of the RDFs of the

MMSE estimators Zs under a reduced distortion criterion, where the weights,
i.e., the prior probabilities of the sparsity patterns p(bs), s = 1, . . . , |B|, rep-
resent the "appearance frequencies" of such estimators. In particular, (134)
involves finding the optimal allocation of the distortion components not only
for the |B| different sparsity patterns, but also for the K entries of each decor-
related random vector Z′s. This type of weighted minimization is discernibly a
consequence of the composite source structure.
Furthermore, Rrem

X|B(D) reflects the remote sensing nature of the lossy CS:
regardless of the rate, the lowest achievable distortion is ultimately dictated
by DZ|B which is a constant term solely governed by the noisy measurement
model in (122). This unavoidable degradation in compression performance,
which is caused by the indirect observations of the source, distinguishes
the lossy CS from directly compressing X; see, e.g., the works in [57, 293,
230] which derive RD bounds for compressing sparse sources. Note that a
constant distortion floor occurs whether or not the support SI is available and
only the respective levels for Rrem

X|B(D) and Rrem
X (D) are different. This is

demonstrated by the numerical results in Section 7.

Numerical Approximation of the Remote RDF

Since finding an analytical solution for the lossy CS problem of Definition 2
turned out to be elusive, we develop a method based on the Blahut-Arimoto
(BA) algorithm [30, 11] to numerically approximate the remote RDF Rrem

X (D)
in (113a). The standard BA algorithm is designed for direct (i.e., for intact
measurements Y = X) source coding with discrete input/output alphabets.
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Hence, the algorithm needs to be adapted to handle 1) continuous-valued
signals X and Y, and 2) the remote compression setup. The former is accom-
plished by a VQ-optimized alphabet discretization method, and the latter by
appropriately modifying the distortion measure.

Discretization of Signal Alphabets

As the first step, the measurement vector space Y (i.e., the encoder input)
and the reproduction alphabet X̂ (i.e., the decoder output) are discretized
via a VQ. Let V , {1, . . . , |V|} be an index set. The |V|-level VQ is deter-
mined by 1) the encoder regions Sv, v ∈ V , which partition the measurement
space, i.e., Sv ⊆ Y , Sv ∩ Sv′ = ∅, for any v 6= v′, and

⋃|V|
v=1 Sv = Y; 2) the

reconstruction codebook X̂ q , {x̂1, . . . , x̂|V|} with codevectors x̂v ∈ RN ,
v ∈ V . The VQ encoder is a mapping Evq : Y → V such that for an input
y ∈ Sv, it produces an index Evq(y) = v ∈ V . The VQ decoder performs an
inverse mapping Dvq : V → X̂ q as Dvq(v) = x̂v ∈ X̂ q. The random variable
V represents the VQ output.
Since the next section elucidates the main role of the VQ in RD approximation,
the optimization of the VQ is deferred until Section 7.

Modified Blahut-Arimoto Algorithm for Lossy CS

Consider now a VQ as described above with
p(v) , Pr(V = v) =

∫
y∈Sv f(y)dy, v ∈ V . Consequently, index v ∈ V

represents all the measurement vectors that belong to VQ region Sv. Similarly,
let X̂q be a discrete reproduction random vector at the output of decoder D
with alphabet X̂ q = {x̂1, . . . , x̂|V|} (i.e., the VQ codebook). Replacing Y
with V and X̂ with X̂q in (113a), Rrem

X (D) can be approximated as

Rrem
X,ba(D) = min

p(x̂j |v):E[d(X,X̂q)]≤D

1
N
I(V ; X̂q) (135a)

where the optimization is over the conditional probabilities
p(x̂j |v) , Pr(X̂q = x̂j |V = v), v, j ∈ V . The mutual information be-
tween V and X̂q is

I(V ; X̂q) =
∑|V|
v=1

∑|V|
j=1 p(v)p(x̂j |v)logp(x̂j |v)

p(x̂j)
(135b)
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and the average distortion between X and X̂q is

E
[
d(X, X̂q)

]
=
∑|V|
v=1

∑|V|
j=1 p(v)p(x̂j |v)d̄(X, x̂j |v) (135c)

where d̄(X, x̂j |v) ≥ 0 is the modified distortion measure, defined as the aver-
age per-letter MSE distortion between X and x̂j conditioned on V = v, i.e.,

d̄(X, x̂j |v) , E
[
d(X, x̂j)|V = v

]
, v, j ∈ V

= 1
N

∫
y
E
[
‖X− x̂j‖22|V = v,Y = y

]
f(y|v)dy

= 1
N

∫
y

p(v|y)
p(v) E

[
‖X− x̂j‖22|V = v,Y = y

]
f(y)dy

(a)= 1
N

1
p(v)

∫
y∈Sv

E
[
‖X− x̂j‖22|Y = y

]
f(y)dy

(135d)
where (a) follows from the Markov chain X→ Y→ V , and from p(v|y) = 1,
if y ∈ Sv, v ∈ V , and 0 otherwise. Note that pre-calculated |V|2 quantities
d̄(X, x̂j |v) remain fixed in the BA algorithm. In the context of discrete remote
sources, a distortion measure similar to (135d) appears in, e.g., [25, Sect. 3.5]
and [303, 86].
Consider a Lagrangian for (135a) as

L
(
{p(x̂j |v)}|V|v,j=1, λ, {νv}

|V|
v=1
)

= 1
N

∑|V|
v=1

∑|V|
j=1 p(v)p(x̂j |v)logp(x̂j |v)

p(x̂j)
+λ

∑|V|
v=1

∑|V|
j=1 p(v)p(x̂j |v)d̄(X, x̂j |v) +

∑|V|
v=1 νv

∑|V|
j=1 p(x̂j |v)

(136)
where λ > 0 is the Lagrange multiplier associated with the sum distortion con-
straint, and νv, v ∈ V , are the Lagrange multipliers associated with the valid
conditional probability constraints

∑|V|
j=1 p(x̂j |v) = 1, ∀v ∈ V . Following a

standard BA procedure, an (R,D) point of Rrem
X,ba(D) in (135a) is obtained

by sequentially updating the conditional probabilities p(x̂j |v) and the repro-
duction probabilities p(x̂j) for a fixed λ at each iteration t = 1, 2, . . . as [74,
Sect. 10.8]

p(x̂j |v)t+1 :=
p(x̂j)texp

[
− λd̄(X, x̂j |v)

]
∑|V|
j′=1 p(x̂j′)texp

[
− λd̄(X, x̂j′ |v)

] , ∀v, j ∈ V (137a)

p(x̂j)t+1 :=
∑|V|
v=1 p(x̂j |v)t+1p(v), ∀j ∈ V, (137b)
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until convergence, and by evaluating the rate according to (135b) and the
distortion according to (135c). Hence, different values for λ sweep the curve
for Rrem

X,ba(D), which approximates the remote RDF Rrem
X (D) in (113a) with

an accuracy that increases with the number |V|.
The proposed BA method is summarized in Algorithm 10. The algorithm
can be terminated when the quantities do not significantly change (e.g.,
when

∑|V|
j=1

(
p(x̂j)t − p(x̂j)t−1)2 < εba for a pre-defined positive constant

εba > 0). The algorithm inputs p(v), x̂v, and d̄(X, x̂j |v), v, j ∈ V , are the
outcomes of the VQ optimization. The optimization of the VQ is addressed
next.

Vector Quantization Optimization

In Algorithm 10, the accuracy of distortion evaluation through (135c) is ul-
timately limited by the |V|2 fixed quantities d̄(X, x̂j |v), v, j ∈ V , of (135d).
Taking this into account, we optimize the Evq-Dvq pair such that it minimizes
the average MSE distortion between the source X and its |V|-level reproduc-
tion X̂q. Thus, the VQ design aims at finding the encoder regions Sv and
codevectors x̂v, v ∈ V , as

{S∗v , x̂∗v}v∈V := argmin
{Sv ,x̂v}v∈V

1
N

E
[
‖X− X̂q‖22

]
:= argmin
{Sv ,x̂v}v∈V

1
N

∑
v∈V

∫
y
p(v|y)

E
[
‖X− x̂v‖22|V = v,Y = y

]
f(y)dy

(a)
:= argmin
{Sv ,x̂v}v∈V

1
N

∑
v∈V

∫
y∈Sv

E
[
‖X− x̂v‖22|Y = y

]
f(y)dy

(b)
:= argmin
{Sv ,x̂v}v∈V

∑
v∈V p(v)d̄(X, x̂v|v)

(138)
where (a) follows from the Markov chain X→ Y→ V , and p(v|y) = 1, if
y ∈ Sv, v ∈ V , and 0 otherwise; (b) follows from (135d).

Remark 7.6. Besides d̄(X, x̂j |v), v, j ∈ V , the VQ affects the final distortion
in (135c) through the conditional probabilities p(x̂j |v), v, j ∈ V – the vari-
ables to be optimized in iterative steps (137a) and (137b). In addition, the
VQ affects the rate approximation in (135b) through the index probabilities
p(v), v ∈ V . Therefore, a better approximation of Rrem

X (D) is achievable by
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Algorithm 10 A modified Blahut-Arimoto algorithm for approximating the
remote RDF Rrem

X (D)
Inputs: a) Lagrange multipliers λ > 0; b) codevectors x̂v, and index
probabilities p(v), v ∈ V , obtained as described in Section 7; c) modified
distortion measures d̄(X, x̂j |v), v, j ∈ V , of form (135d).
Initializations: a) Set t := 1; b) set p(x̂j)t := 1/|V|, j ∈ V .
for a given λ
repeat

1) Update the conditional probabilities p(x̂j |v)t+1, v, j ∈ V , according
to (137a).
2) Update the reproduction probabilities p(x̂j)t+1, j ∈ V , according to
(137b).
3) Set t := t+ 1.

until a pre-defined stopping criterion is met.
4) Compute the rate Rλ according to (135b), and the distortion Dλ accord-
ing to (135c).
end for
Output: Rrem

X,ba(D) curve determined by the (Rλ, Dλ) pairs.

incorporating the VQ optimization in the iterative loop of Algorithm 10, and,
thus, generating a unique VQ for each λ. For example, the mapping approach
in [249] adapts the reproduction points within the optimization loop. Never-
theless, the presented non-adaptive discretization yields decent accuracy for
all distortion values D, as demonstrated in Section 7.

Remark 7.7. Note that if one sets the conditional probabilities (137a) as
p(x̂j |v) = 1 for v = j, and 0 otherwise, the reproduction probabilities be-
come p(x̂j) = p(v) for v = j, and 0 otherwise in (137b). Thus, the distortion
(135c) for Rrem

X,ba(D) becomes equal to the VQ distortion in (138), and the

rate (135b) becomes R = −
∑|V|
v=1 p(v)log(p(v)) = H(V ), i.e., the entropy

of quantization index V . In this sense, Rrem
X,ba(D) can be seen as a "noisy VQ"

that randomizes the mapping V → X̂ q via conditional probabilities p(x̂j |v)
that determine a noisy channel between the encoder output and decoder input.
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The joint optimization over Sv and x̂v, v ∈ V , in (138) is intractable, and thus,
a common alternating minimization is used to derive necessary optimality
conditions [211, 107, 192, 188]. Then, the proposed VQ is equivalent to the
VQ in [265] designed for noiseless channels. The optimal encoder regions for
fixed codevectors satisfy a generalized nearest-neighbor condition

S∗v =
{
y : ‖z− x̂v‖22 ≤ ‖z− x̂v′‖22, ∀v′ 6=v

}
, ∀v ∈ V, (139)

where z ∈ RN is the MMSE estimate of X given Y = y (i.e., Z is the MMSE
estimator of X given Y), defined as [99, 235, 281] and [98, Sect. 11.5]

z , E[X|Y = y]
=
∑|B|
s=1 p(bs|y)E[X|Y = y,B = bs]

=
∑|B|
s=1

p(bs)f(y|bs)∑|B|
s′=1 p(bs′)f(y|bs′)

zs
(140)

where the conditional PDF f(y|bs) is Gaussian as N (0,ΣYs) (see Defini-
tion 5), and zs , E[X|Y = y,B = bs] is the MMSE estimate of X given
Y = y and B = bs, which, according to Definition 6, comprises of vectors
zs = Fsys ∈ RK and 0N−K . Similarly, the optimal codevectors for fixed
encoder regions satisfy a generalized centroid condition

x̂∗v = 1
p(v)

∫
y∈Sv

E[X|Y = y]f(y)dy, ∀v ∈ V . (141)

The VQ can be trained offline via the iterative Lloyd algorithm [107, 192, 188]
by successively applying the necessary optimality conditions (139) and (141)
for training data sets; see Section 6 for training principles.

Practical Symbol-by-Symbol QCS Methods

Recall that approaching Rrem
X (D) in (113a) requires encoding (large) blocks

of vectors, which is infeasible in practice. To this end, this section presents the
design of practical QCS methods relying on symbol-by-symbol quantization
under three different compression strategies: 1) compress-and-estimate, 2)
estimate-and-compress, and 3) support-estimation-and-compress strategies.
The schemes are depicted in Fig. 32. The methods use different quantization
schemes, which are introduced in Section 7. The details of each method are
presented in Sections 7 – 7.
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Figure 32: A single-source QCS setups relying on (a) compress-and-estimate, (b) estimate-
and-compress, and (c) support-estimation-and-compress strategies.

Quantization Types

Let U be a length-L random vector with PDF f(u). U is the input of a
quantizer Q, determined by 1) encoder regions Si, i ∈ I = {1, . . . , |I|},
which partition the input as Si ⊆ RL, Si ∩ Si′ = ∅, for any i 6= i′, and⋃|I|
i=1 Si = RL, and 2) a reconstruction codebook C = {c1, . . . , c|I|} with

codevectors ci ∈ RL. For a realization u, quantizer encoder Q : RL → I pro-
duces an index i = Q(u) if u ∈ Si. For a received index i, quantizer decoder
Q−1 : I → C produces an estimate of u as û = Q−1(i) = ci ∈ C.

Uniform Scalar Quantization

A uniform scalar quantizer (USQ) Qu of rate R′ bits/U consists of fixed-
length intervals as presented in Algorithm 11. The online compression phase
is presented in Algorithm 12. Saturation effects are omitted herein.

Lloyd-Max Quantization

A fixed-rate Lloyd-Max quantizer [211, 192] Qlm of rate R′ bits/U optimizes
the |I| = 2R′ quantization regions and the codebook to minimize the MSE
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Algorithm 11 Uniform scalar quantization (offline).

Input: a) Quantization rate R′; b) input range parameters qhi ≥ qlo.
Output: Reconstruction codebook Cu = {cu

1 , . . . , c
u
2R′} generated as

cu
1 = qlo; cu

i = cu
i−1 + (qhi − qlo)/(2R′ − 1), for all 2 ≤ i ≤ 2R′ − 1; and

cu
2R′ = qhi.

Algorithm 12 Fixed-rate quantization of an input realization u (online).

Input: Reconstruction codebook Cfix (Clm or Cu).
Encoding: 1) Find the encoding index i∗ = argmini∈I ‖u− cfix

i ‖22; 2)
communicate the R′-bit representation of i∗ to the decoder.
Decoding: Given the received index i∗, obtain an estimate of u as
û = cfix

i∗ ∈ Cfix.

distortion
D′ =

∑2R′
i=1 p(i)E

[
‖U− clm

i ‖22|I = i
]
, (142)

where I represents the quantization index, and p(i) , Pr(I = i). Qlm can
be trained by the iterative Lloyd and LBG algorithms [211, 192, 188], as
presented in Algorithm 13. The online compression phase is presented in
Algorithm 12.

Variable-Rate Quantization

A variable-rate quantizer Qvr minimizes a distortion-rate cost function (cf.
(94))

(1− µ′)D′ − µ′
∑
i∈I p(i)log(p(i)) (145)

whereD′ is given in (142), and µ′ ∈ [0, 1] is a weighting parameter. Following
entropy-constrained scalar/vector quantization (ECSQ/ECVQ) [306, 66], Qvr

can be trained as presented in Algorithm 14 (see also Algorithm 9 in Sec-
tion 6). The online phase is presented in Algorithm 15. The source codebook
H , {h1, . . . ,h|H|},contains in general variable length binary codewords and
it can be generated by, e.g., the Huffman coding [149].
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Algorithm 13 Training of a Lloyd-Max quantizer (offline).

Input: a) Sequence {u(1),u(2), . . .} sampled from f(u); b) quantization
rate R′.
Initialization: Reconstruction codebook Clm.
Repeat until convergence
1) For given codebook, find the optimal regions by classifying
{u(1),u(2), . . .} as

S lm
i =

{
u : ‖u− clm

i ‖22 ≤ ‖u− clm
i′ ‖22, ∀i′ 6= i

}
, i ∈ I. (143)

2) For given regions, find the optimal codevectors as the conditional expec-
tations

clm
i = E[U|I = i] = 1

p(i)

∫
u∈Slm

i

uf(u)du, i ∈ I. (144)

Output: Reconstruction codebook Clm = {clm
1 , . . . , clm

2R′}.

Algorithm 14 Training of an entropy-constrained quantizer (offline).

Input: a) Sequence {u(1),u(2), . . .} sampled from f(u); b) quantization
levels 2R′ ; c) weight parameter µ′ ∈ [0, 1].
Initialization: i) Reconstruction codebook Cvr, and ii) index probabilities
p(i) = 1/2R′ , i ∈ I.
Repeat until convergence
1) For given codebook and rate measures, find the optimal regions by
classifying {u(1),u(2), . . .} as

Svr
i =

{
u : (1− µ′)‖u− cvr

i ‖22 − µ′log(p(i)) ≤

(1− µ′)‖u− cvr
i ‖22 − µ′log(p(i′)), ∀i′ 6=i

}
, i ∈ I.

(146)

2) Update the rate measures −log(p(i)), i ∈ I, given the new regions.
3) For given regions, find the optimal codevectors cvr

i , i ∈ I, equivalently
as in (144).
Output: a) Reconstruction codebook Cvr = {cvr

1 , . . . , cvr
2R′}; b) index prob-

abilities p(i), i ∈ I; c) source codebook H = {h1, . . . ,h|H|} generated
using p(i), i ∈ I.
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Algorithm 15 Variable-rate quantization of an input realization u (online).

Input: a) Reconstruction codebook Cvr; b) index probabilities p(i), i ∈ I;
c) weight parameter µ′ ∈ [0, 1]; d) source codebookH.
Encoding: 1) Find the encoding index i∗ = argmini∈I (1−µ′)‖u−cvr

i ‖22−
µ′log(p(i)); 2) communicate the binary codeword hi∗ to the decoder.
Decoding: Given the received codeword hi∗ , find the corresponding index
i∗ and obtain an estimate of u as û = cvr

i∗ ∈ Cvr.

Compress-And-Estimate QCS Methods

A compress-and-estimate (C&E) scheme depicted in Fig. 32(a) consists of
two stages: 1) a compression stage where the encoder quantizes Y under
an MSE distortion criterion that depends only on Y (not on X), and 2) an
estimation stage where the decoder estimates X from the decoded quantized
measurements Ŷ = Q−1(Q(Y)). Let X̂C&E denote a length-N reproduction
random vector at the decoder output. The end-to-end MSE distortion can be
written as

DC&E = E
[∥∥X− X̂C&E∥∥2

2
]

= E
[∥∥X− RD

[
Q−1(Q(Y))

] ∥∥2
2
]
, (147)

where RD : Ŷ→ X̂C&E is a signal reconstruction algorithm at D. A C&E
principle underlies many early QCS algorithms in, e.g., [151, 78]. An
information-theoretic study of QCS under C&E scheme is addressed in [164].
Four C&E algorithms with 1) USQ, 2) Lloyd-Max SQ (referred to as "SQ"
in the QCS method names henceforth), 3) ECSQ, and 4) VQ are considered.
The details of each method are summarized in Table 4. The table lists the used
offline training algorithms with the key parameters, i.e., the quantizer input
vector U of length L, and the total average rate Rtot = NR bits/X, where the
rate R is defined as the bits/entry of X.
To summarize the main operations of SQ based methods 1) – 3), the decoder
receivesM indices, forms ŷ = [cC&E

1,i∗1
· · · cC&E

M,i∗M
]T, and estimates the source as

x̂ = RD(ŷ). In particular, the MSE-optimal RD for C&Evq can be defined as
follows. For C&Evq, the MSE-optimal output vectors of RD(·) that minimize
the distortion in (147) are given as

x̂(cC&Evq
i ) = E

[
X|I = i

]
= 1
p(i)

∫
y∈SC&Evq

i

zf(y)dy, i ∈ I, (148)
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where z ∈ RN is the MMSE estimate of X given Y = y (see (140)).

Estimate-and-Compress QCS Methods

An estimate-and-compress (E&C) scheme depicted in Fig. 32(b) consists
of two stages: 1) an estimation stage of X from Y at the encoder, and 2) a
compression stage to quantize the resulting signal estimate under an MSE
distortion criterion. Let X̂E&C denote a length-N reproduction random vector
at the decoder output. The end-to-end MSE distortion reads as

DE&C = E
[∥∥X− X̂E&C∥∥2

2
]

= E
[∥∥X− Q−1 [Q(RE(Y))]

∥∥2
2
]
, (149)

where RE : Y→ X̃(Y) is a reconstruction algorithm at E, and X̃(Y) denotes
the estimator of X from Y. Recall that an E&C scheme adheres to the op-
timal encoding structure for remote source coding [304]. E&C based QCS
algorithms have been devised in, e.g., [265, 266, 177, 179, 180, 182, 181] and
[184, Sect. V]. The related information-theoretic studies include [165, 183,
184].
Five E&C algorithms with 1) USQ, 2) SQ, 3) ECSQ, 4) VQ, and 5) ECVQ
are considered with the details listed in Table 4. For SQ based methods
1) – 3), the decoder uses the N received indices to estimate the source as
x̂ = [cE&C

1,i∗1
· · · cE&C

N,i∗N
]T; for VQ based methods 4) – 5), the decoder operates

as x̂ = cE&C
i∗ .

Support-Estimation-and-Compress QCS Methods

A support-estimation-and-compress (SE&C) scheme depicted in Fig. 32(c)
consists of three stages: 1) a support estimation stage where the encoder
estimates B from Y, 2) an estimation stage of X given Y and the support
estimator at E, and 3) a two-phase compression stage of the resulting source
estimate by a) lossless compression of the support, and b) lossy compression
of the non-zero part. Let X̂SE&C denote a length-N reproduction random
vector at the decoder output. The end-to-end MSE distortion can be expressed
as

DSE&C = E
[∥∥X− X̂SE&C∥∥2

2
]

= E
[∥∥X− Q−1[Q (SE(Y) + RE(Y|SE(Y)))

]∥∥2
2
]
,

(150)
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Table 4: QCS methods relying on different compression strategies

Class Method Training/
Online

U L Rtot = NR

Compress-
and-
Estimate

C&Eusq Alg. 11 / 12 Ym 1 MR′

C&Esq Alg. 13 / 12 Ym 1 MR′

C&Eecsq Alg. 14 / 15 Ym 1
∑M

m=1 γ(HC&E
m )

C&Evq Alg. 13 / 12 Y M R′

Estimate-
and-
Compress

E&Cusq Alg. 11 / 12 [X̃(Y)]n 1 NR′

E&Csq Alg. 13 / 12 [X̃(Y)]n 1 NR′

E&Cecsq Alg. 14 / 15 [X̃(Y)]n 1
∑N

n=1 γ(HE&C
n )

E&Cvq Alg. 13 / 12 X̃(Y) N R′

E&Cecvq Alg. 14 / 15 X̃(Y) N γ(HE&C)
Support-
Estimation-
and-
Compress

SE&Cusq Alg. 11 / 12 [Zs(Y, B̃(Y))]n 1 γ(HSE&C
supp ) +KR′

SE&Csq Alg. 13 / 12 [Zs(Y, B̃(Y))]n 1 γ(HSE&C
supp ) +KR′

SE&Cecsq Alg. 14 / 15 [Zs(Y, B̃(Y))]n 1 γ(HSE&C
supp ) +∑K

k=1 γ(HSE&C
k )

SE&Cvq Alg. 13 / 12 Zs(Y, B̃(Y)) K γ(HSE&C
supp ) +R′

where SE : Y→ B̃(Y) is a support estimation algorithm at E, and B̃(Y)
denotes the estimator of B from Y. The sparsity K is assumed to be known
by SE(·). QCS schemes akin to SE&C have been considered in, e.g., [129,
265].
The optimal RE(·) in (150) is the one that minimizes the MSE distortion
E
[
‖Xs − RE(·)‖22

]
, where Xs is the sth subsource in Definition 4. It can

be shown that RE(Y|SE(Y)) = Zs(Y, B̃(Y)), where Zs(Y, B̃(Y)) is the
MMSE estimator of Xs given Y and B̃(Y) so that (cf. (124))

zs(y, b̃s) , E[Xs|Y = y, B̃(Y) = b̃s]
= ΣXsΦT

s (ΦsΣXsΦT
s + ΣW)−1 y.

(151)

Four SE&C algorithms with 1) USQ, 2) SQ, 3) ECSQ, and 4) VQ are con-
sidered; see the details in Table 4. Quantizers operate equivalently as in the
corresponding E&C schemes. The support estimator B̃(Y) is communicated
losslessly using a binary source codebookHSE&C

supp , which can be generated by,
e.g., the Huffman coding.
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Numerical Results

Numerical results are presented to illustrate the RD behavior of lossy CS,
assess the tightness of the lower bound, and compare the performance of the
QCS methods of Section 7 against the derived limits.

Simulation Setup

Consider setups with ΣG = σ2
GIN with σ2

G = 1, and ΣW = σ2
W IM with

σ2
W = 0.01. The following curves are evaluated:

1) Rrem
X|B(D): the conditional remote RDF of Theorem 1.

2) Rrem
X,ba(D): a numerically approximated remote RDF of Algorithm 10.

3)Rdir
X|B(D): the conditional direct RDF of X, corresponding to the lossy com-

pression of X with B available as the SI at the encoder and decoder, derived
in Appendix F (see [293, Sect. VII-A]). Note that Rdir

X|B(D) ≤ Rrem
X|B(D).

4) Rdir
X,ba(D): a numerically approximated direct RDF of X which represents

lossy compression of X (with no support SI), and is obtained by applying
the discretization of Section 7 and Algorithm 10 using Y = X. Note that
Rdir

X|B(D) ≤ Rdir
X,ba(D) ≤ Rrem

X,ba(D).
5) DZ|B: the average MMSE estimation error in (133) (known B).
6) DZ: numerically evaluated average MMSE estimation error of X given Y,
i.e.,DZ , N−1E

[
‖X− Z‖22

]
; estimator Z , E[X|Y] takes values according

to (140) (unknown B).
7) Various QCS methods of Section 7 which will be specified for each simula-
tion case later.
The measurement matrix Φ is generated by taking the first M rows of an
N ×N discrete cosine transform matrix, and normalizing the columns as
‖ · ‖2 = 1. ECSQs/ECVQs are run with µ′ = 0.1/log(|I|). All binary source
codebooks H are generated via the Huffman coding. The distortion is mea-
sured as 10log10

(
E[d(X,Xest)]/N−1E[‖X‖22]

)
dB, where Xest is the method-

dependent decoded estimate of X, and E
[
‖X‖22

]
=
∑|B|
s=1 p(bs)Tr

(
ΣXs

)
.

The rate is measured as R bits/entry of X. The convex minimization problems
are solved via CVX [130].
Complexity: As the complexities of Algorithm 10 and the QCS methods
in Section 7 increase exponentially with the number of quantization levels
and |B|, the experiments are confined to moderate signal dimensions and
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quantization rates. It is worth remarking that in respect to any discretized BA
algorithm, there is similar complexity issue due to a large number of variables,
regardless of the quantization method. In fact, due to the VQ advantages [194],
the proposed algorithm enjoys a superior trade-off between the approximation
accuracy and the complexity compared to SQ. The complexities of the VQ
based QCS methods can be reduced by low-complexity VQ variants such as
tree-structured, multi-step, and lattice VQs [133]. Since Y has a Gaussian
mixture density, computationally efficient VQs designed in [272] are also
potential candidates.

Rate-Distortion Behavior of Lossy CS

Consider a setup with N = 7, M = 5, K = 1, and equal support probabili-
ties p(bs) = 1/|B|, ∀s = 1, . . . , |B|. Fig. 33(d) depicts the average distortion
versus the average rate for different compression schemes. The quantization
algorithms are run with R′ = {21, . . . , 212}, and the BA Algorithm 10 with
log|V| = 12. Only few VQ based QCS methods of Section 7 are reported here;
experiments for all practical QCS methods are presented in Section 7. In order
to obtain high performance, the MMSE estimator in (140) – which is known to
have exponential complexity [99] – is used as RE(·) for E&Cvq and E&Cecvq.
Lower complexity alternatives are investigated in Section 7.
Let us first investigate the SI aided lower bounds Rdir

X|B(D), Rdir
X,ba(D), and

Rrem
X|B(D) to the remote RDF Rrem

X (D) in (113a). Owing to the direct ob-
servations with support SI, Rdir

X|B(D) appears as the line (in log scale) with
slope −6NK = −42 dB/bit [293] and yields the lowest R for all values of
D, as expected. The substantially increased rate for Rdir

X,ba(D) compared
to Rdir

X|B(D) is caused by the necessity of conveying the support of X to
the decoder. While Rdir

X|B(D) and Rrem
X|B(D) nearly coincide at high distor-

tion, the curves diverge for moderate to low distortion values. The gradu-
ally increasing gap between Rrem

X|B(D) and Rdir
X|B(D) for low values of D

is a consequence of the remote sensing. Note that whereas an arbitrarily
small distortion is achievable at asymptotically high rates for Rdir

X|B(D) and
Rdir

X,ba(D) (i.e., lim
D→0

Rdir
X|B(D) =∞ and lim

D→0
Rdir

X,ba(D) =∞), the lowest

achievable distortion for Rrem
X|B(D) is the MMSE estimation error floor DZ|B

(i.e., lim
D→DZ|B

Rrem
X|B(D) =∞).
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Figure 33: Rate-distortion performance of lossy CS schemes with equal support probabilities
for N = 7, K = 1, and the number of measurements (a) M = 2, (b) M = 3, (c) M = 4, and
(d) M = 5. The colors and markers of the curves in (b), (c), and (d) are equivalent to those in
(a).

Next, focus on the approximate remote RDF Rrem
X,ba(D), i.e., the best achiev-

able performance of any QCS method. The gap between Rrem
X|B(D) and

Rrem
X,ba(D) represents the compression loss induced by the random measure-

ments taken without knowing the sparse support in a QCS setup [129]. The
tightness of the lower bound is heavily influenced by the signal setup pa-
rameters, as will be exemplified in the subsequent experiments. Despite the
gap, the lower bound Rrem

X|B(D) captures the main peculiarities of the lossy
CS: the curve has an almost linear distortion region at low rates, whereas for
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high rates, the distortion saturates to the MMSE estimation error floor DZ.
As a special remark, the slope of Rrem

X,ba(D) at low rates is steeper than the
conventional −6 dB/bit due to the sparsity. Note that for a small R, the rate is
the most limiting factor to achievable distortion, and, thus, Rdir

X,ba(D) nearly
coincides with Rrem

X,ba(D); for higher rates, the impact of noisy compressive
measurements increases, thereby degrading the performance of Rrem

X,ba(D).
Regarding the approximation accuracy of Rdir

X,ba(D) and Rrem
X,ba(D), observe

that the highest obtained rate is R ≈ 1.3 bits, so the "over-sampling ratio" of
the VQ discretization is at least |V|/2NR ≈ 7.5.
Because the encoder of C&Evq is incognizant of CS, its performance is
the worst amongst the QCS methods. The advantages of entropy coding
are shown by the E&Cecvq curves which, for moderate rates, approach the
compression limit Rrem

X,ba(D). As a proof of validity, the E&Cvq method
eventually saturates to DZ, which is expected to also happen for the other
QCS methods at sufficiently high rates.

Effect of the Number of Measurements

For the setup of Section 7, Figs. 33(a) – (d) illustrate the influence of different
numbers of measurements M = {2, 3, 4, 5} on the compression performance.
As M increases, i.e., the signal-to-noise ratio increases, the level of DZ
decreases, and the performance of each method that has no support SI moves
closer to the lower bound Rrem

X|B(D). The largest gain is achieved when M
is increased from M = 2 to M = 3, whereas the difference between M = 4
and M = 5 is almost negligible. This matches the CS philosophy: increasing
M beyond the value that suffices for accurate CS signal recovery does not
bring significant gains. In this respect, provided that M is already at this
satisfactory level, it pays off to primarily invest in rate R to meet the given
distortion fidelityD. Note that the convergence of the curves to their respective
distortion floors is rather similar for all M , and that Rdir

X|B(D), Rdir
X,ba(D),

Rrem
X|B(D), and DZ|B remain unaltered.

Effect of Support Probabilities

Consider a setup with N = 20, M = 8, K = 2, and unequal support prob-
abilities as p(bs) = αspl

/∑|B|
s′=1 α

s′
pl, s = 1, . . . , |B|, where 0 < αpl ≤ 1 is a
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Figure 34: Rate-distortion performance of lossy CS schemes for N = 20, M = 8, K = 2,
and power law type support probabilities with parameters (a) αpl = 0.98, (b) αpl = 0.90, and
(c) αpl = 0.72. The colors and markers of the curves in (b) and (c) are equivalent to those in
(a).
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parameter that adjusts the concentration of the probability mass function of B,
and 1 > p(b1) ≥ · · · ≥ p(b|B|) > 0. For small values of αpl, the probability
mass concentrates around a fraction of elements in B =

{
b1, . . . ,b|B|

}
, and

vice versa. αpl = 1 corresponds to the uniform distribution, whereas αpl → 0
approaches remote compression of only a single sparse vector. The vectors
bs in alphabet B are ordered so that the decimal number of a binary string
represented by bs+1 is greater than that of bs, s = 1, . . . , |B| − 1 (|B| = 190).
Fig. 34 shows the average distortion versus the average rate for
αpl = {0.98, 0.90, 0.72}. Decreasing αpl reduces the uncertainty of the sig-
nal support which improves the compression efficiency. This is seen in the
increased decay rate of D for the non-SI schemes, the shift of Rrem

X,ba(D)
towards Rrem

X|B(D) and Rdir
X,ba(D) towards Rdir

X|B(D), and the diminution of
the gap between DZ and DZ|B, which is related to the best possible support
recovery for a given setup. This exemplifies that, for a sufficiently concentrated
probability mass of B, the E&Cecvq method efficiently encodes sparse vectors
from noisy compressive measurements: its performance approaches the best
achievable performance of a support unaware QCS method (i.e., Rrem

X,ba(D)).
The result illustrates the MSE separation principle (cf. (125)): an efficient
QCS method implicitly (successfully) recovers X from Y and encodes the
resulting estimates optimally.

Performance of QCS Methods

Let us now focus on the practical QCS methods. Consider a setup withN = 30,
M = {8, 12, 16, 20}, K = 2, and equal support probabilities. Basis pursuit
denoising (BPDN) [61] is used as a moderate complexity reconstruction
algorithm for RD in C&E, RE in E&C, and SE in SE&C; SE forms the support
estimate from the indices of the K largest magnitudes of the BPDN output.
In other words, the BPDN approximates the MMSE estimate (140) for RE;
another alternative is the randomized OMP [99]. Note that more sophisticated
support recovery algorithms SE could be considered as well. For C&Eusq and
SE&Cusq, qlo and qhi are set as the minimum and maximum codepoints of the
corresponding Lloyd-Max SQs. The same procedure is first used for E&Cusq,
after which each codepoint is added a constant shift so that E&Cusq contains
the codepoint of E&Csq that is closest to zero. The quantization algorithms
are run with R′ = {21, . . . , 210}, and the BA Algorithm 10 with log|V| = 10.
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Figure 35: Rate-distortion performance of QCS schemes with equal support probabilities for
N = 30, K = 2, and the number of measurements (a) M = 8, (b) M = 12, (c) M = 16, and
(d) M = 20.

Fig. 35 depicts the average distortion versus the average rate for different
QCS schemes for M = {8, 12, 16, 20}. The performances of the SQ based
methods can be ranked as E&C < C&E < SE&C, and the VQ based methods
as SE&C < C&E < E&C. Next, we elaborate each of the three classes in
more detail.
C&E: C&Eusq and C&Esq perform nearly identically. The entropy coding in
C&Eecsq can only slightly improve the performance. For large values of M ,
C&Evq slightly outperforms E&Cvq even though E&Cvq uses the optimal
E&C structure. This is caused by the fact that RE in E&C is approximated as
the BPDN instead of the MMSE estimator in (140). Recall that while C&Evq
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uses a suboptimal C&E strategy, it uses the MSE-optimal outputs in (148) for
a given VQ.
E&C: Among all QCS methods, entropy coding has the most significant im-
pact on E&Csq → E&Cecsq, which stems from the fact that E&Csq quantizes
the zero inputs inefficiently. The best practical QCS method is the E&Cecvq
method which approaches the compression limit Rrem

X,ba(D).
SE&C: It can be seen that the adaptive compression of the support set and
estimated magnitudes is an effective strategy as the SE&C methods outper-
form all SQ based C&E and E&C methods. Because all SE&C curves nearly
coincide, the support recovery performance of SE seems to be the limiting
factor in SE&C.
In general, as M increases, the QCS methods perform better and the gap
between the analytical MMSE estimation floor with support side information
(the lower horizontal lineDZ|B) and the error floor of the BPDN reconstruction
(the upper horizontal line) decreases. Note that only C&E and E&C methods
relying plainly on the BPDN outputs saturate to the upper floor; because
SE&C removes the noise outside the (estimated) support of each BPDN
output, it can surpass the floor, as illustrated by Figs. 35(b)–(d).

Conclusions

This section addressed lossy compression of single-sensor CS from the remote
source coding perspective. By providing support SI to the encoder and decoder,
a conditional remote RDF that establishes a compression lower bound for
a finite-rate CS setup was derived. The best such encoder separates into an
MMSE estimation step and an optimal transmission step. A modified BA
algorithm was developed to numerically approximate the remote RDF, and,
thus, to assess the best attainable compression performance of any practical
QCS method. The main RD characteristics of the lossy CS were demonstrated
by comparing the performance of various practical QCS methods against the
derived limits.
Simulation results showed that when SQ is used, an adaptive compression
of the support set and estimated magnitudes is an effective strategy. When
VQ/ECVQ is used, the estimate-and-compress strategy, as supported by the
theory, is the best one. Accordingly, the ECVQ based estimate-and-compress
method was numerically shown to approach the remote RDF.
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As illustrated by the numerical experiments, the sparsity of a signal is a feature
that provides substantial compression gains, and, thus, energy savings in a CS
based acquisition setup. Accordingly, finding an appropriate trade-off point in
terms of the compression rate and tolerable distortion in a low-power sensor
application with sparse signals is worth striving for.
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8
Channel Gain Cartography for Cognitive

Radios Leveraging Low Rank and Sparsity

This section focuses on channel gain cartography which aims at inferring the
channel gains between two arbitrary points in space based on the measure-
ments (samples) of the gains collected by a set of radios deployed in the area.
Channel gain maps are useful for various sensing and resource allocation tasks
essential for the operation of cognitive radio (CR) networks. In the considered
framework, the channel gains are modeled as the tomographic accumulations
of an underlying spatial loss field (SLF), which captures the attenuation in
the signal strength due to the obstacles in the propagation path. In order to
estimate the map accurately with a relatively small number of measurements,
the SLF is postulated to have a low-rank structure possibly with sparse devi-
ations. Efficient batch and online algorithms are developed for the resulting
map reconstruction problem. Comprehensive tests with both synthetic and real
datasets corroborate that the algorithms can accurately reveal the structure of
the propagation medium and produce the desired channel gain maps.

Related Works

RF cartography is an instrumental concept for CR tasks [160], motivated
by the under-utilization of the licensed RF spectrum [105]. Based on the

171
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measurements collected by spatially distributed CR sensors, RF cartography
constructs the maps over the space, time, and frequency, portraying the RF
landscape in which the CR network is deployed. Notable RF maps that have
been proposed include the power spectral density (PSD) maps, which acquire
the ambient interference power distribution, revealing the crowded regions
that CR transceivers need to avoid [21]; and the channel gain (CG) maps,
which capture the channel gains between any two points in space, allowing
CR networks to perform accurate spectrum sensing and aggressive spatial
reuse [161].
Prior works on channel gain cartography capitalized on experimentally val-
idated notion of a spatial loss field (SLF) [1], which expresses the shadow
fading over an arbitrary link as the weighted integral of the underlying at-
tenuation that the RF propagation experiences due to the blocking objects
in the path. Linear interpolation techniques such as kriging were employed
to estimate the shadow fading based on spatially correlated measurements,
and the spatio-temporal dynamics were tracked using Kalman filtering ap-
proaches [161, 79]. It is worth noting that SLF reconstruction is tantamount to
the radio tomographic imaging (RTI), useful in a wide range of applications,
from locating survivors in rescue operations to environmental monitoring [297,
298, 141]. The method in [297] captures the variation of the propagation
medium by taking SLF differences at consecutive time slots into consideration.
To cope with multipath fading in a cluttered environment, multiple channel
measurements were utilized to enhance localization accuracy in [155]. How-
ever, the methods in [297, 155] do not reveal static objects in the imaging area.
In contrast, a method to track moving objects using a dynamic SLF model, as
well as identifying the static ones, was reported in [141]. Exploiting the sparse
occupancy of the monitored area by the target objects, sparsity-leveraging
algorithms for constructing obstacle maps were developed [220, 158, 219].
This work adopts a related data model, but mainly focuses on the channel gain
map construction for CR applications.
Although more sophisticated methodologies for channel modeling do ex-
ist [282, 305], the computational cost and requirements on various struc-
tural/geometric prior information may hinder their use in CR applications. On
the other hand, the SLF model has been experimentally validated [1], as well
as in our work through a real tomographic imaging example. The proposed
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approach in this section provides a computationally efficient solution, by cap-
italizing on the inherent structure of measurement data, rather than relying
heavily on the physics of RF propagation.

System Model and Problem Statement

Notation. Bold uppercase (lowercase) letters denote matrices (column vectors).
Calligraphic letters are used for sets; In is the n×n identity matrix. 0n denotes
an n× 1 vector of all zeros, and 0n×n an n× n matrix of all zeros. Operators
(·)T , tr(·), and σi(·) represent the transposition, trace, and the i-th largest
singular value of a matrix, respectively; | · | is used for the cardinality of a set,
and the magnitude of a scalar. R � 0 signifies that R is positive semidefinite.
The `1-norm of X ∈ Rn×n is ||X||1 :=

∑n
i,j=1 |Xij |. The `∞-norm of X ∈

Rn×n is represented by ||X||∞ := max{|Xij | : i, j = 1, . . . , n}. For two
matrices X,Y ∈ Rn×n, the matrix inner product 〈X,Y〉 := tr(XTY). The

Frobenius norm of matrix Y is ||Y||F :=
√

tr(YYT ). The spectral norm
of Y is ||Y|| := max||x||2=1 ||Yx||2, and ||Y||∗ :=

∑
i σi(Y) is the nuclear

norm of Y. For a function h : Rm×n → R, the directional derivative of
h at X ∈ Rm×n along a direction D ∈ Rm×n is denoted as h′(X; D) :=
limt→0+[h(X + tD)− h(X)]/t.
Consider a set of N CRs deployed over a geographical area represented by
a two-dimensional plane A ⊂ R2. Let x(t)

n ∈ A denote the position of CR
n ∈ {1, 2, . . . , N} at time t. By exchanging pilot sequences, the CR nodes
can estimate the channel gains among them. A typical channel gain between
nodes n and n′ can be modeled as the product of pathloss, shadowing, and
small-scale fading. By averaging out the effect of the small-scale fading, the
(averaged) channel gain measurement over a link (n, n′) at time t, denoted by
G(x(t)

n ,x(t)
n′ ), can be represented (in dB) as

G(x(t)
n ,x

(t)
n′ ) = G0 − γ10 log10 ||x(t)

n − x(t)
n′ ||+ s(x(t)

n ,x
(t)
n′ ) (152)

whereG0 is the path gain at unit distance; ||x(t)
n −x(t)

n′ || is the distance between
nodes n and n′; γ is the pathloss exponent; and s(x(t)

n ,x(t)
n′ ) is the attenuation

due to the shadow fading. By subtracting the known pathloss component
in (152), the noisy shadowing measurement

š(x(t)
n ,x

(t)
n′ ) = s(x(t)

n ,x
(t)
n′ ) + ε(x(t)

n ,x
(t)
n′ ) (153)
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is obtained, where ε(x(t)
n ,x(t)

n′ ) denotes the measurement noise. LetM(t) be
the set of links, for which channel gain measurements are made at time t, and
collect those measurements in vector š(t) ∈ R|M(t)|. The goal of channel gain
cartography is to predict the channel gain between arbitrary points x, x′ ∈ A
at time t, based on the known nodal positions {x(t)

n } and the channel gain
measurements collected up to time t, that is, {š(τ)}tτ=1 [161, 79].
In order to achieve this interpolation, the structure of shadow fading experi-
enced by co-located radio links will be leveraged. To this end, a variety of
correlation models for shadow fading have been proposed [1, 139, 137]. In
particular, the models in [161, 1, 298, 141] rely on the so-termed spatial loss
field (SLF), which captures the attenuation due to obstacles in the line-of-sight
propagation.
Let f : A → R denote the SLF, which captures the attenuation at location
x̃ ∈ A, and w(x,x′, x̃) is the weight function modeling the influence of
the SLF at x̃ to the shadowing experienced by link x–x′. Then, s(x,x′) is
expressed as [142]

s(x,x′) =
∫
A
w(x,x′, x̃)f(x̃)dx̃. (154)

The normalized ellipse model is often used for the weight function, with w
taking the form [297]

w(x,x′, x̃) :=


1/
√
d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + δ

0, otherwise

(155)

where d(x,x′) := ‖x − x′‖ is the distance between positions x and x′, and
δ > 0 is a tunable parameter. The value of δ is commonly set to half the
wavelength to assign non-zero weights only within the first Fresnel zone. The
integral in (154) can be approximated by

s(x,x′) '
Nx∑
i=1

Ny∑
j=1

w(x,x′, x̃i,j)f(x̃i,j) (156)

where {x̃i,j}
Nx,Ny
i=1,j=1 are the pre-specified grid points over A. Let matrix F ∈

RNx×Ny denote the SLF, sampled by theNx-by-Ny grid. Similarly, the weight
matrix Wxx′ corresponding to link x–x′ is constructed. The shadow fading
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over link x–x′ in (156) can then be expressed as a linear projection of the SLF
given by

s(x,x′) ' 〈Wxx′ ,F〉 = tr(WT
xx′F). (157)

The goal is to form an estimate F̂(t) of F(t) at time t, based on {x(t)
n } and

{š(τ)}tτ=1. Once F̂(t) is obtained, the shadowing and the overall channel gain
across any link x–x′ at time t can be estimated via (157) and (152) as

ŝ(x(t),x′(t)) = 〈W(t)
xx′ , F̂

(t)〉 (158)

Ĝ(x(t),x′(t)) = G0 − γ10 log10 ||x(t) − x′(t)||+ ŝ(x(t),x′(t)). (159)

The number of unknown F(t) entries is less than NxNy, while the number
of measurements is O(tN2), provided that the SLF remains invariant for
t slots. If the number of entries to be estimated in F(t) is larger than the
number of measurements, the problem is underdetermined and cannot be
solved uniquely. To overcome this and further improve the performance even
in the overdetermined cases, a priori knowledge on the structure of F(t) will
be exploited next to regularize the problem.

Channel Gain Prediction Using Low Rank and Sparsity

Problem Formulation

The low-rank plus sparse structure has been advocated in various problems
in machine learning and signal processing [40, 102, 207]. Low-rank matrices
are effective in capturing slow variation or regular patterns, and sparsity is
instrumental for incorporating robustness against outliers. Inspired by these,
we postulate that F has a low-rank-plus-sparse structure as

F = L + E (160)

where matrix L is low-rank, and E is sparse. This model is particularly attrac-
tive in urban or indoor scenarios where the obstacles often possess regular
patterns, while the sparse term can capture irregularities that do not conform
to the low-rank model.
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Redefine W(t)
nn′ := W(t)

xnxn′ and š(t)
nn′ := š(x(t)

n ,x(t)
n′ ) for brevity.21Toward

estimating F(t) that obeys (160), consider the cost

c(t)(L,E) := 1
2

∑
(n,n′)∈M(t)

(
〈W(t)

nn′ ,L + E〉 − š(t)
nn′

)2
(161)

which fits the shadowing measurements to the model. Then, with T denoting
the total number of time slots taking measurements, we adopt the following
optimization criterion

(P1) min
L,E∈RNx×Ny

T∑
τ=1

βT−τ
[
c(τ)(L,E) + λ||L||∗ + µ||E||1

]
(162)

where β ∈ (0, 1] is the forgetting factor that can be optionally put in to weigh
the recent observations more heavily. The nuclear norm regularization term
promotes a low-rank L, while the `1-norm encourages sparsity in E. Parame-
ters λ and µ are appropriately chosen to control the effect of these regularizers.
Conditions for exact recovery through a related convex formulation in the
absence of measurement noise can be found in [307].
Problem (162) is convex, and can be tackled using existing efficient solvers,
such as the interior-point method. Once the optimal L̂ and Ê are found, the de-
sired F̂ is obtained as F̂ = L̂ + Ê. However, the general-purpose optimization
packages tend to scale poorly as the problem size grows. Specialized algo-
rithms developed for related problems often employ costly SVD operations
iteratively [307]. Furthermore, such an algorithm might not be amenable for
an online implementation. Building on [206] and [245], an efficient solution is
proposed next with reduced complexity.

21Prompted by [155], the benefit of multi-channel diversity for RTI may be incorporated
in the presented framework. Suppose K channels K(t)

nn′ are available to sensors n and n′ at
time t, and let ś(t)

nn′,k denote the noisy measurement including fading over link xn–xn′ at t in

channel k ∈ K(t)
nn′ . Construct a new measurement as s̄(t)

nn′ = φ(ś(t)
nn′,1, ś

(t)
nn′,2, . . . , ś

(t)
nn′,K),

where φ(·) is a channel selection function [155]. By replacing š(t)
nn′ in (161) with s̄(t)

nn′ , the
multiple channel measurements can be incorporated without altering the method. However,
the dynamic channel availability and multi-channel measurements will increase algorithm
complexity. On the other hand, it is not clear whether such a multi-channel approach can be
adopted for estimating any channel gain over multiple frequency bands.
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Efficient Batch Solution

Without loss of generality, consider replacing L with the low-rank product
PQT , where P ∈ RNx×ρ and Q ∈ RNy×ρ, and ρ is a pre-specified overesti-
mate of the rank of L. It is known that (e.g., [245])

||L||∗ = min
P,Q

1
2
(
||P||2F + ||Q||2F

)
subject to L = PQT . (163)

Thus, a natural re-formulation of (162) is (see also [206])

(P2) min
P,Q,E

f(P,Q,E) := (164)

T∑
τ=1

βT−τ
[
c(τ)(PQT ,E) + λ

2
(
||P||2F + ||Q||2F

)
+ µ||E||1

]
.

Instead of seeking the NxNy entries of L, the factorization approach (164)
entails only (Nx +Ny)ρ unknowns, thus reducing complexity and memory
requirements significantly when ρ� min{Nx, Ny}. Furthermore, adoption
of the separable Frobenius norm regularizer in (P2) comes with no loss of
optimality as asserted in the following lemma.
Lemma 3: If {L̂, Ê} minimize (P1) and we choose ρ ≥ rank(L̂), then, (P2)
is equivalent to (P1) at the minimum.
Proof: It is clear that the minimum of (P1) is no larger than that of

min
P,Q,E

T∑
τ=1

βT−τ
[
c(τ)(PQT ,E) + λ||PQT ||∗ + µ||E||1

]
(165)

since the search space is reduced by the re-parametrization L = PQT with
ρ ≤ min{Nx, Ny}. Now (163) implies that the minimum of (165) is no larger
than that of (P2). However, the inequality is tight since the objectives of (P1)

and (P2) are identical for E := Ê, P := ÛΣ̂1/2
, and Q := V̂Σ̂1/2

, where
L̂ = ÛΣ̂V̂T is the SVD. Consequently, (P1) and (P2) have identical costs at
the minimum. �
Although (P1) is a convex optimization problem, (P2) is not. Thus, in general,
one can obtain only a locally optimal solution of (P2), which may not be the
globally optimal solution of (P1). Interestingly, under appropriate conditions,
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global optimality can be guaranteed for the local optima of (P2), as claimed in
the following proposition.
Proposition 7: If {P̄, Q̄, Ē} is a stationary point of (P2), β̄ :=

∑T
τ=1 β

T−τ ,
and ||f̃(P̄Q̄T , Ē)|| ≤ λβ̄ with

f̃(L̂, Ê) :=
T∑
τ=1

βT−τ

 ∑
(n,n′)∈M(τ)

(
〈W(τ)

nn′ , L̂ + Ê〉 − š(τ)
nn′

)
W(τ)

nn′


(166)

then {L̂ := P̄Q̄T , Ê := Ē} is a globally optimal solution to (P1).
Proof: See Appendix G.
A stationary point of (P2) can be obtained through a block coordinate-descent
(BCD) algorithm, where the optimization is performed in a cyclic fashion
over one of {E,P,Q} with the remaining two variables fixed. In fact, since
the term µ||E||1 is separable in the individual entries as well, the cyclic
update can be stretched all the way up to the individual entries of E without
affecting convergence [280]. The proposed solver entails an iterative procedure
comprising three steps per iteration k = 1, 2, . . .
[S1] Update E:

E[k + 1] = arg min
E

T∑
τ=1

βT−τ
[
c(τ)(P[k]QT [k],E) + µ||E||1

]
[S2] Update P:

P[k + 1] = arg min
P

T∑
τ=1

βT−τ
[
c(τ)(PQT [k],E[k + 1]) + λ

2 ||P||
2
F

]
[S3] Update Q:

Q[k + 1] = arg min
Q

T∑
τ=1

βT−τ
[
c(τ)(P[k + 1]QT ,E[k + 1]) + λ

2 ||Q||
2
F

]
.

To update each block variable, the cost in (P2) is minimized while fixing the
other block variables to their up-to-date iterates.
To detail the update rules, let W(t) ∈ RNxNy×|M(t)| be a matrix with columns
equal to vec

(
W(t)

nn′

)
for (n, n′) ∈ M(t), where vec(·) produces a column

vector by stacking the columns of a matrix one below the other (unvec(·)
denotes the reverse process). Define W := [

√
βT−1W(1)

. . .
√
β0W(T )], š := [

√
βT−1š(1)T . . .

√
β0š(T )T ]T , and e := vec(E). Then,

one can write
∑T
τ=1 β

T−τ c(τ)(PQT ,E) = ‖WT vec(PQT + E)− š‖22. Let
el denote the l-th entry of e, and e−l represent the replica of e without its
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l-th entry. Similarly, let ωTl denote the l-th row of the matrix W , and W−l
denote the matrix W with its l-th row removed. The soft-thresholding function
soft_th(·;µ) is defined as

soft_th(x;µ) := sgn(x) max{0, |x| − µ}. (167)

Minimization in [S1] proceeds sequentially over the individual entries of e.
At iteration k, each entry is updated via

el[k + 1] = arg min
el

1
2 ||elωl −

ˇ̌s||22 + µβ̄|el|, l = 1, . . . , NxNy (168)

where ˇ̌sl[k] := š−WT vec(P[k]QT [k])−WT
−le−l. The closed-form solution

for el is obtained as

el[k + 1] = soft_th(ωTl ˇ̌sl[k];µβ̄)
||ωl||22

. (169)

Matrices P and Q are similarly updated over their rows through [S2] and
[S3]. Let pi be the i-th row of P, transposed to a column vector; i.e., P :=
[p1,p2, . . . ,pNx ]T . Define W̃(t)

i ∈ R|M(t)|×Ny to be the matrix whose rows
are the i-th rows of {W(t)

nn′}(n,n′)∈M(t) denoted as w̃(t)T
nn′,i, and s̃(t)

i ∈ R|M(t)|

a vector with entries equal to

s̃
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Nx∑
j 6=i

w̃(t)T
nn′,jQ[k]pj (170)

for (n, n′) ∈ M(t). Define also W̃ i := [
√
βT−1W̃(1)T

i . . .
√
β0W̃(T )T

i ]T

and s̃i := [
√
βT−1s̃(1)T

i . . .
√
β0s̃(T )T

i ]T . Then, pi is updated by solving a
ridge-regression problem as

pi[k + 1] = arg min
pi

[
1
2 ||W̃ iQ[k]pi − s̃i||22 + λβ̄

2 ||pi||
2
2

]

whose solution is given in closed form by

pi[k + 1] =
[
QT [k]W̃T

i W̃ iQ[k] + λβ̄Iρ
]−1

QT [k]W̃T
i s̃i (171)

which involves matrix inversion of dimension only ρ-by-ρ. Likewise, let
qi denote the i-th row of Q, transposed to a column vector; i.e., Q :=
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[q1, . . . ,qNy ]T . Define also W̆ i := [
√
βT−1W̆(1)T

i . . .
√
β0W̆(T )T

i ]T and

s̆i := [
√
βT−1s̆(1)T

i . . .
√
β0s̆(T )T

i ]T , where W̆(t)
i ∈ R|M(t)|×Nx is the matrix

whose rows are the transpositions of the i-th columns of {W(t)
nn′}(n,n′)∈M(t),

denoted as w̆(t)
nn′,i, and s̆(t)

i ∈ R|M(t)| has entries

s̆
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Ny∑
j 6=i

w̆(t)T
nn′,jP[k + 1]qj (172)

for (n, n′) ∈M(t). The update for qi is then given by solving another ridge
regression problem to obtain

qi[k + 1] = arg min
qi

[
1
2 ||W̆ iP[k + 1]qi − s̆i||22 + λβ̄

2 ||qi||
2
2

]
whose solution is given also in closed form by

qi[k + 1] =
[
PT [k + 1]W̆T

i W̆ iP[k + 1] + λβ̄Iρ
]−1

PT [k + 1]W̆T
i s̆i
(173)

which again involves matrix inversion of dimension ρ-by-ρ. The overall algo-
rithm is tabulated in Table 5.
Although the proposed batch algorithm exhibits low computational and mem-
ory requirements, it is not suitable for online processing, since (164) must
be re-solved every time a new set of measurements arrive, incurring major
computational burden. Thus, the development of an online recursive algorithm
is well motivated.

Online Algorithm

Stochastic Approximation Approach

In practice, it is often the case that a new set of data becomes available
sequentially in time. Then, it is desirable to have an algorithm that can process
the newly acquired data incrementally and refine the previous estimates, rather
than re-computing the batch solution, which may incur prohibitively growing
computational burden. Furthermore, when the channel is time-varying due to,
e.g., mobile obstacles, online algorithms can readily track such variations.
Stochastic approximation (SA) is an appealing strategy for deriving online
algorithms [267, 169]. Moreover, techniques involving minimizing majorized
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Table 5: Batch solver of (P2)

1: Initialize E[1] := 0Nx×Ny , P[1] and Q[1] at random.
2: For k = 1, 2, . . .

[S1] Update E:
3: Set e = vec(E[k])
4: For l = 1, 2, . . . , NxNy

5: Set ˇ̌sl[k] := š−WT vec(P[k]QT [k])−WT
−le−l

6: el[k + 1] = soft_th(ωTl ˇ̌sl[k];µβ̄)/||ωl||22
7: Next l
8: Set E[k + 1] = unvec(e[k + 1])

[S2] Update P:
9: For i = 1, 2, . . . , Nx

10: Set W̃ i and s̃i
11: pi[k + 1] =

[
QT [k]W̃T

i W̃ iQ[k] + λβ̄Iρ
]−1

(QT [k]W̃T
i s̃i)

12: Next i
13: P[k + 1] = [p1[k + 1],p2[k + 1], . . . ,pNx [k + 1]]T

[S3] Update Q:
14: For i = 1, 2, . . . , Ny

15: Set W̆ i and s̆i
16: qi[k + 1] =

[
PT [k + 1]W̆T

i W̆ iP[k + 1] + λβ̄Iρ
]−1

×(PT [k + 1]W̆T
i s̆i)

17: Next i
18: Q[k + 1] = [q1[k + 1],q2[k + 1], . . . ,qNy [k + 1]]T

19: Next k

surrogate functions were developed to handle nonconvex cost functions in
online settings [206, 208, 199, 242]. An online algorithm to solve a dictio-
nary learning problem was proposed in [199]. A stochastic gradient descent
algorithm was derived for subspace tracking and anomaly detection in [206].
Next, an online algorithm for the CPCP problem is developed. The proposed
approach employs quadratic surrogate functions with diagonal weighting to
capture disparate curvatures in the directions of different block variables.
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For simplicity, let the number of measurements per time slot t be constant
M := |M(t)| for all t. Define X := (P,Q,E) ∈ X ⊂ X ′ := R(Nx×ρ) ×
R(Ny×ρ) × R(Nx×Ny), where X is a compact convex set, and X ′ a bounded
open set, and ξ(t) := [{š(t)

m }Mm=1, {W
(t)
m }Mm=1] ∈ Ξ , where Ξ is assumed to

be bounded. Define with slight abuse of notation

g1(X, ξ(t)) = g1(P,Q,E, ξ(t))

:= 1
2

M∑
m=1

(
〈W(t)

m ,PQT + E〉 − š(t)
m

)2
(174)

g2(X) = g2(P,Q,E) := λ

2
(
||P||2F + ||Q||2F

)
+ µ||E||1. (175)

A quadratic surrogate function for g1(X, ξ(t)) is then constructed as

ǧ1(X,X(t−1), ξ(t)) := g1(X(t−1), ξ(t))

+ 〈P−P(t−1),∇Pg1(X(t−1), ξ(t))〉+ η
(t)
P
2 ‖P−P(t−1)‖2F

+ 〈Q−Q(t−1),∇Qg1(X(t−1), ξ(t))〉+
η

(t)
Q
2 ‖Q−Q(t−1)‖2F

+ 〈E−E(t−1),∇Eg1(X(t−1), ξ(t))〉+ η
(t)
E
2 ‖E−E(t−1)‖2F (176)

where η(t)
P , η(t)

Q , and η(t)
E are positive constants, and with ˜̃f (t)

m (P,Q,E) :=
〈W(t)

m ,PQT + E〉 − š(t)
m it can be readily verified that

∇Pg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m Q(t−1) (177)

∇Qg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m

TP(t−1)

(178)

∇Eg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m . (179)

Let us focus on the case without the forgetting factor, i.e., β = 1. A convergent
SA algorithm for (P2) is obtained by considering the following surrogate
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problem

(P3) min
X

1
t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
. (180)

In fact, solving (P3) yields a stochastic gradient descent (SGD) algorithm. In
particular, since variables P, Q, and E can be separately optimized in (P3),
the proposed algorithm updates the variables in parallel in each time slot t as

P(t) = arg min
P

t∑
τ=1

[
〈P−P(τ−1),∇Pg1(X(τ−1), ξ(τ))〉

+ η
(τ)
P
2 ||P−P(τ−1)||2F + λ

2 ||P||
2
F

]
(181)

Q(t) = arg min
Q

t∑
τ=1

[
〈Q−Q(τ−1),∇Qg1(X(τ−1), ξ(τ))〉

+
η

(τ)
Q
2 ||Q−Q(τ−1)||2F + λ

2 ||Q||
2
F

]
(182)

E(t) = arg min
E

t∑
τ=1

[
〈E−E(τ−1),∇Eg1(X(τ−1), ξ(τ))〉

+ η
(τ)
E
2 ||E−E(τ−1)||2F + µ||E||1

]
. (183)

By checking the first-order optimality conditions, and defining η̄
(t)
P :=∑t

τ=1 η
(τ)
P and η̄(t)

Q :=
∑t
τ=1 η

(τ)
Q , the update rules for P and Q are obtained

as

P(t) = 1
η̄

(t)
P + λt

t∑
τ=1

[
η

(τ)
P P(τ−1) −∇Pg1(X(τ−1), ξ(τ))

]
(184)

Q(t) = 1
η̄

(t)
Q + λt

t∑
τ=1

[
η

(τ)
Q Q(τ−1) −∇Qg1(X(τ−1), ξ(τ))

]
(185)

which can be written in recursive forms as

P(t) = P(t−1) − 1
η̄

(t)
P + λt

(
∇Pg1(X(t−1), ξ(t)) + λP(t−1)

)
(186)

Q(t) = Q(t−1) − 1
η̄

(t)
Q + λt

(
∇Qg1(X(t−1), ξ(t)) + λQ(t−1)

)
. (187)
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Table 6: Online SGD solver of (P2)

1: Initialize E(0) := 0Nx×Ny , P(0) and Q(0) at random.
2: For t = 1, 2, . . .
3: Set LP =

∑M
m=1

∥∥∥W(t)
m Q(t−1)

∥∥∥2

F
,

LQ =
∑M
m=1

∥∥∥W(t)T
m P(t−1)

∥∥∥2

F
,

LE =
∑M
m=1

∥∥∥W(t)
m

∥∥∥2

F
, and Lmin = min{LP, LQ, LE}.

4: Set η(t)
P ≥

L2
P

Lmin
, η

(t)
Q ≥

L2
Q

Lmin
, and η(t)

E ≥
L2

E
Lmin

.

5: Set η̄(t)
P =

∑t
τ=1 η

(τ)
P , η̄(t)

Q =
∑t
τ=1 η

(τ)
Q , and η̄(t)

E =
∑t
τ=1 η

(τ)
E .

6: P(t) = P(t−1) − 1
η̄

(t)
P +λt

(
∇Pg1(X(t−1), ξ(t)) + λP(t−1)

)
7: Q(t) = Q(t−1) − 1

η̄
(t)
Q +λt

(
∇Qg1(X(t−1), ξ(t)) + λQ(t−1)

)
8: Z(t) = 1

η̄
(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
9: E(t) = soft_th(Z(t);µt/η̄(t)

E )
10: Next t

Due to the non-smoothness of ||E||1, the update for E proceeds in two steps.
First, an auxiliary variable Z(t) is introduced, which is computed as

Z(t) = 1
η̄

(t)
E

[
t∑

k=1
η

(k)
E E(k−1) −∇Eg1(X(k−1), ξ(k))

]
. (188)

Again defining η̄(t)
E :=

∑t
τ=1 η

(τ)
E , matrix Z(t) can be obtained recursively as

Z(t) = 1
η̄

(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
. (189)

Then, E(t) is updated as

E(t) = soft_th(Z(t);µt/η̄(t)
E ). (190)

The overall online algorithm is listed in Table 6.
Remark 1 (Computational complexity). In the batch algorithm of Table 5,
the complexity orders for computing the updates for each of pi and qi are
O(NyMT ) and O(NxMT ), respectively, due to the computation of W̃T s̃i
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and W̆T
i s̆i. Thus, the complexity orders for updating P and Q per iteration

k are both O(NxNyMT ). The update of el incurs complexity O(MT ) for
computing ωTl ˇ̌sl. Thus, the complexity order for updating E per iteration
k is O(NxNyMT ). Accordingly, the overall per-iteration complexity of the
batch algorithm becomes O(NxNyMT ). On the other hand, the complexity
of the online algorithm in Table 6 is dominated by the gradient computations,
which require O(ρNxNyM). Since ρ is smaller than Nx and Ny, and the
per-iteration complexity does not grow with T , the online algorithm has a
much more affordable complexity than its batch counterpart, and it is scalable
for large network scenarios.

Convergence

The iterates {X(t)}∞t=1 generated from the algorithm in Table 6 converge to a
stationary point of (P2), as asserted in the following proposition. First define

Ct(X) := 1
t

t∑
τ=1

[
g1(X, ξ(τ)) + g2(X)

]
(191)

Čt(X) := 1
t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
(192)

C(X) := Eξ [g1(X, ξ) + g2(X)] . (193)

Note that Ct(X) is essentially identical to the cost of (P2). Furthermore, the
minimizer of Ct(X) approaches that of C(X) when t→∞, provided ξ obeys
the law of large numbers, which is clearly the case when e.g., {ξ(t)} is i.i.d.
Assume that ∇Pg1(·,Q,E, ξ), ∇Q(P, ·,E, ξ) and ∇E(P,Q, ·, ξ) are Lip-
schitz with respect to P, Q, and E, respectively, with constants LP, LQ,
and LE, respectively (which will be shown in Appendix H). Furthermore, let
ᾱ

(t)
i := (

∑t
τ=1(η(τ)

i + λ))−1 for i ∈ {P,Q}, and ᾱ(t)
E := (η̄(t)

E )−1 denote
step sizes.
Proposition 8: If (a1) {ξ(t)}∞t=1 is an independent and identically distributed
(i.i.d) random sequence; (a2) {X(t)}∞t=1 are in a compact set X ; (a3) Ξ is
bounded; (a4) For i ∈ {P,Q,E}, η̄i(t) ≥ ct ∀t for some c ≥ 0; and (a5)
c′ ≥ η

(t)
i ≥ L2

i /Lmin ∀t for some c′ > 0 and Lmin := min{LP, LQ, LE},
then the iterates {X(t)}∞t=1 generated by the algorithm in Table 6 converge to
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the set of stationary points of (P2) with β = 1, i.e.,

lim
t→∞

inf
X̄∈X̄

‖X(t) − X̄‖F = 0 a.s. (194)

where X̄ is the set of stationary points of C(X).
Proof: See Appendix H.

Numerical Tests

Performance of the presented batch and online algorithms is assessed through
numerical tests using both synthetic and real datasets. A few existing meth-
ods are also tested for comparison. The ridge-regularized least-squares (LS)
scheme estimates the SLF as vec(F̂) = (WWT + ωC−1

f )−1W š, where Cf
is the spatial covariance matrix of the SLF, and ω is a regularization parame-
ter [297, 155, 142]. The total variation (TV)-regularized LS scheme in [236]
is also tested, which solves minf ‖š−WT f‖22 + ω

(∑Nx−1
i=1

∑Ny
j=1 |fi+1,j −

fi,j |+
∑Nx
i=1

∑Ny−1
j=1 |fi,j+1 − fi,j |

)
where f := vec(F) and fi,j corresponds

to the (i, j)-th element of F. Finally, the LASSO estimator is obtained by
solving (P1) with λ = 0.

Test with Synthetic Data

Random tomographic measurements were taken by sensors deployed uni-
formly over A := [0.5, 40.5] × [0.5, 40.5], from which the SLF with
Nx = Ny = 40 was reconstructed. Per-time slot, 10 measurements were
taken, corrupted by zero-mean white Gaussian noise with variance σ2 = 0.1.
The regularization parameters were set to λ = 0.05 and µ = 0.01 through
cross-validation by minimizing the normalized error ‖F̂ − F0‖F /‖F0‖F ,
where F0 is the ground-truth SLF depicted in Fig. 36. Other parameters were
set to ρ = 13, β = 1, and δ = 0.06; while Cf = INxNy and ω = 0.13 were
used for the ridge-regularized LS.
To validate the batch algorithm in Table 5, two cases were tested. In the first
case, the measurements were generated for T = 130 time slots using N = 52
sensors, while in the second case, T = 260 and N = 73 were used. As
a comparison, the accelerated proximal gradient (APG) algorithm was also
derived for (P1) [187]. Note that the APG requires the costly SVD operation
of an Nx-by-Ny matrix per iteration, while only the inversion of a ρ-by-ρ
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Figure 36: True SLF.

matrix is necessary in the proposed BCD algorithm. Fig. 37 shows the SLFs
reconstructed by APG and BCD algorithms for the two cases. Apparently,
the reconstructed SLFs capture well the features of the ground-truth SLF in
Fig. 36. Note that (P2) is underdetermined when T = 130 since the total
number of unknowns in (P2) is 2, 640 while the total number of measurements
is only 1, 300. This verifies that the channel gain maps can be accurately
interpolated with a small number of measurements by leveraging the attributes
of the low rank and sparsity. Fig. 38a shows the convergence of the BCD and
APG algorithms. The cost of (P2) from the BCD algorithm converges to that
of (P1) from APG after k = 550 iterations, showing that the performance of
solving (P1) directly is achievable by the proposed algorithm solving (P2)
instead. This can also be corroborated from the reconstructed SLFs in Fig. 37
as well.
Table 7 lists the reconstruction error when T = 130 and the per-iteration
complexity of the batch algorithms. It is seen that the proposed method out-
performs benchmark algorithms in terms of the reconstruction error. Note
that the ridge-regularized LS has a one-shot (non-iterative) complexity of
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(a) BCD (T = 130, N = 52)
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(b) APG (T = 130, N = 52)
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(c) BCD (T = 260, N = 73)
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(d) APG (T = 260, N = 73)

Figure 37: SLFs reconstructed by the batch algorithms.

O((NxNy)3), but its reconstruction capability is worse than the proposed
algorithm as the true SLF is not smooth.
To test robustness of the proposed algorithm against imprecise CR location
estimates, the reconstruction error versus the maximum sensor location error
is depicted in Fig. 38b. To reconstruct F matrix, W was computed via a
set of erroneous sensor locations x̌(t)

n obtained by adding uniformly random
perturbations to true locations x(t)

n . It is seen that the SLF could be accurately
reconstructed when the location error was small.
The numerical tests for the online algorithm were carried out with the same
parameter setting as the batch experiments with N = 317. Fig. 38c depicts the
evolution of the average cost in (191) for two sets of values for (η̄(t)

P , η̄
(t)
Q , η̄

(t)
E ).
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Figure 38: SLF reconstruction using the batch and online algorithms. (a) Cost versus iterations
(batch). (b) Reconstruction error versus CR location error (batch). (c) Average cost over time
slots (online).
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Table 7: Reconstruction error at T = 130 and computational complexity per iteration.

Algorithm Proposed
(BCD)

Ridge-
regularized
LS

Total variation
(ADMM)

LASSO

‖F0 − F̂‖F /‖F0‖F 0.1064 0.1796 0.1196 0.1828
Complexity per
iteration

O(NxNyMT ) N/A O((NxNy)3 +
(NxNy)2MT )

O(NxNyMT )

The green dotted curve corresponds to using η̄(t)
P = η̄

(t)
Q = η̄

(t)
E = 300, while

the blue solid curve is for η̄(t)
P = η̄

(t)
Q = 300, and η̄(t)

E = 10. It can be seen that
the uniform step sizes for all variables result in convergence rate that is slower
than that with the disparate step sizes. Fig. 39 shows the SLFs reconstructed
via the online algorithm at t = 1, 000 and t = 5, 000 using the two choices of
step sizes. It can be seen that for a given time slot t, flexibly choosing the step
sizes yields much more accurate reconstruction. As far as reconstruction error,
the online algorithm with disparate step sizes yields 6.3× 10−2 at t = 5, 000,
while its batch counterpart has 2.4 × 10−2. Although slightly less accurate
SLF is obtained by the online algorithm, it comes with greater computational
efficiency.
To assess the tracking ability of the online algorithm, the slow channel variation
was simulated. The measurements were generated using the SLF in Fig. 36
with three additional objects slowly moving in the rate of unit pixel width per
70 time slots. Fig. 40 depicts instances of the true and reconstructed SLFs at
t = 2, 400 and t = 3, 200, respectively, obtained by the online algorithm. The
moving objects are marked by the red circles. It is seen that the reconstructed
SLFs correctly capture the moving objects, while the stationary objects are
estimated more clearly as t increases.

Test with Real Data

To validate the performance of the proposed framework for SLF and channel
gain map estimation in realistic scenarios, real received signal strength (RSS)
measurements were also processed. The data were collected by a set ofN = 20
sensors deployed in the perimeter of a square-shaped testbed as shown in
Fig. 41, where the crosses indicate the sensor positions. Data collection was
performed in two steps [142]. First, free-space measurements were taken to
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Figure 39: SLFs reconstructed by the online algorithm. (a) and (b) correspond to using
η̄

(t)
P = η̄

(t)
Q = 300 and η̄(t)

E = 10. (c) and (d) use η̄(t)
P = η̄

(t)
Q = η̄

(t)
E = 300.

obtain estimates of the path gain G0 and the pathloss exponent γ via least-
squares. The estimated γ was approximately 2, and G0 was found to be 75.
Then, tomographic measurements were formed with the artificial structure
shown in Fig. 41. For the both measurements, 100 measurements were taken
per time slot, in the 2.425 GHz frequency band, across 24 time slots. The
shadowing measurements were obtained by subtracting the estimated pathloss
from the RSS measurements.
The SLFs of size Nx = Ny = 61 were reconstructed by the proposed batch
algorithm. The regularization parameters were set to λ = 4.5 and µ = 3.44,
which were determined by cross-validation. The parameter δ in (155) was set
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Figure 40: (a) and (b) are true SLFs; (c) and (d) show reconstructed SLFs at different time
slots.

to 0.2 feet to capture the non-zero weights within the first Fresnel zone, and
ρ = 10 and β = 1 were used.
For comparison, the ridge-regularized LS estimator was also tested. To con-
struct Cf , the exponential decay model in [1] was used, which models the

covariance between points x and x′ as Cf (x,x′) = σ2
se
− ‖x−x′‖2

κ , where σ2
s

and κ > 0 are model parameters. In our tests, σ2
s = κ = 1, and ω = 79.9

were used.
The SLF, shadow fading map, and channel gain map reconstructed by the
proposed BCD algorithm are depicted in Fig. 42. The shadow fading and
channel gain maps portray the gains in dB between any point in the map and the
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Figure 41: Configuration of the testbed.

fixed CR location at (10.2, 7.2) (marked by the cross). Fig. 43 shows the results
from the ridge-regularized LS estimation. It can be seen from Fig. 42(a) and
Fig. 43(b) that the proposed low-rank plus sparse model produces a somewhat
sharper SLF image than the ridge-regularized LS approach. Although the
latter yields a smooth SLF image, it produces more artifacts near the isolated
block and the boundary of the SLF. Such artifacts may lead to less accurate
shadowing and channel gain maps. For instance, Fig. 42(b) and Fig. 43(b) both
show that the shadow fading is stronger as more building material is crossed in
the communication path. However, somewhat strong attenuations are observed
near the cinder block location and the interior of the oriented strand board
(OSB) wall only in Fig. 43(b), which seems anomalous.
The online algorithm was also tested with the real data. Parameters η̄(t)

P =
η̄

(t)
Q = 620 and η̄(t)

E = 200 were selected, and 6 × 105 measurements were
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Figure 42: Reconstructions by the proposed batch algorithm.
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Figure 43: Reconstructions by the ridge-regularized LS.
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Figure 44: Reconstructions by the proposed online algorithm.
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Figure 45: NMSE of channel gain prediction by (a) the batch; and (b) online algorithms.

uniformly drawn from the original dataset with replacement to demonstrate the
asymptotic performance. Fig. 44 depicts the reconstructed SLF, shadow fading
and channel gain maps obtained from the online algorithm. It can be seen
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that the SLF shown in Fig. 44a is close to that depicted in Fig. 42a. Similar
observations can be made for the shadow fading and channel gain maps as
well. Thus, the online algorithm is a viable alternative to the batch algorithm
with reduced computational complexity, and affordable memory requirement.
Channel gain estimation performance of the proposed algorithms was assessed
via 5-fold cross-validation. Let ǧtest and ĝtest denote RSS measurement vectors
in the test set and its estimate, respectively. Prediction performance is mea-
sured by the normalized mean-square error (NMSE) ‖ǧtest − ĝtest‖2/‖ǧtest‖2.
Fig. 45a displays the NMSE of batch algorithms with 480 test samples versus
the number of training samples. It is shown that the proposed algorithm out-
performs competing alternatives, particularly when a small number of training
samples are available, validating the usefulness of the proposed model. The
online algorithm was also tested with 2.85 × 105 measurements uniformly
drawn from 1, 920 training samples with replacement. Fig. 45b depicts the
evolution of the NMSE measured on 480 test samples at every t. It is observed
that the online algorithm attains the batch performance as t increases.

Conclusions

A low-rank plus sparse matrix model was proposed for channel gain cartog-
raphy, which is instrumental for various CR spectrum sensing and resource
allocation tasks. The channel gains were modeled as the sum of the distance-
based pathloss and the tomographic accumulation of shadowing due to the
underlying SLF. The SLF was postulated to have a low-rank structure cor-
rupted by sparse outliers. Efficient batch and online algorithms were developed
by leveraging a bifactor-based characterization of the matrix nuclear norm.
The algorithms enjoy low computational complexity and a reduced memory
requirement, without sacrificing the optimality, with provable convergence
properties. Tests with both synthetic and real measurement datasets corrobo-
rated the claims and showed that the algorithms could accurately reveal the
structure of the propagation medium.
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9
Exploiting Sparse User Activity in Multiuser

Detection

This section focuses on efficient sparsity-utilizing multiuser detectors in code-
division multiple access (CDMA) systems. Relying on the fact that the number
of active users in CDMA systems is often much lower than the spreading
gain, the presented approach fruitfully exploits this a priori information to
improve performance of multiuser detectors. A low-activity factor manifests
itself in a sparse symbol vector with entries drawn from a finite alphabet that is
augmented by the zero symbol to capture user inactivity. The non-equiprobable
symbols of the augmented alphabet motivate a sparsity-exploiting maximum
a posteriori probability (S-MAP) criterion, which is shown to yield a cost
comprising the `2 least-squares error penalized by the p-th norm of the wanted
symbol vector (p = 0, 1, 2). Related optimization problems appear in variable
selection (shrinkage) schemes developed for linear regression, as well as
in the emerging field of CS. The contribution of this work to such sparse
CDMA systems is a gamut of sparsity-exploiting multiuser detectors trading
off performance for complexity requirements. From the vantage point of CS
and the Lasso spectrum of applications, the contribution amounts to sparsity-
exploiting algorithms when the entries of the wanted signal vector adhere to
finite-alphabet constraints.

199
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Related Works

Multiuser detection (MUD) algorithms play a major role for mitigating multi-
access interference present in CDMA systems; see e.g., [288] and references
therein. These well-appreciated MUD algorithms simultaneously detect the
transmitted symbols of all active user terminals. However, they require knowl-
edge of which terminals are active, and exploit no possible user (in)activity.
In this work, MUD algorithms are developed when the active terminals are
unknown and the activity factor (probability of each user being active) is low
– a typical scenario in tactical or commercial CDMA systems deployed. The
inactivity per user can be naturally incorporated by augmenting the underlying
alphabet with an extra zero constellation point. Low activity thus implies a
sparse symbol vector to be detected. With non-equiprobable symbols in the
augmented alphabet, the optimal sparsity-embracing MUD naturally suggests
a maximum a posteriori (MAP) criterion for detection. Sparse sphere decod-
ing has been considered in, e.g., [277]. Sparsity has been used for estimating
parameters of communication systems in, e.g., [53, 23, 9, 109], but not for
multiuser detection.

Modeling and Problem Statement

Consider the uplink of a CDMA system with K user terminals and spreading
gain N . Assume first that N ≥ K. The under-determined case (N < K) will
also be addressed later on in Section 9. Suppose the system has a relatively
low activity factor, which analytically means that each terminal is active with
probability (w.p.) pa < 1/2 per symbol, and the events “active” are indepen-
dent across symbols and across users. The case of correlated (in)activity of
users across symbols will be dealt with in Section 9. Let bk ∈ A denote the
symbol, drawn from a finite alphabet by the k-th user, when active; otherwise,
bk = 0. Incorporating possible (in)activity per user is equivalent to having bk
take values from an augmented alphabet Aa := A

⋃
{0}.

The access point (AP) receives the superimposed modulated (quasi-) syn-
chronous signature waveforms through (possibly frequency-selective) fading
channels in the presence of additive white Gaussian noise (AWGN); and
projects on the orthonormal space spanned by the aggregate waveforms to
obtain the received chip samples collected in the N × 1 vector y. With the
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K × 1 vector b containing the symbols of all (active and inactive) users, the
canonical input-output relationship is, see e.g., [288, Sec. 2.9]

y = Hb + w (195)

where H is an N × K matrix capturing transmit-receive filters, spreading
sequences, channel impulse responses, and timing offsets; and the N × 1
vector w is the AWGN. Without loss of generality (w.l.o.g.), w can be scaled
to have unit variance. Note that (195) holds for quasi-synchronous systems
too, where relative user asynchronism is bounded to a few chips per symbol,
provided that: either i) user transmissions include guard bands to eliminate
inter-symbol interference (ISI); or ii) the received vector y collects only the
chips of each user that belong to the part of the common symbol interval under
consideration.
The low activity factor implies that b is a sparse vector. However, the AP is
neither aware of the positions nor the number of zero entries in b. In order to
perform multiuser detection (MUD) needed to determine the optimal b̂, the
AP must account for the augmented alphabet Aa, i.e., consider all the possible
candidate vectors b ∈ AKa . This way, the MUD also determines the k-th user’s
activity captured by the extra constellation point bk = 0. Supposing that the
AP has the channel matrix H available (e.g., via training), the goal of this
paper is to detect the optimal b̂ given the received vector y by exploiting the
sparsity of active users.
To motivate this sparsity-exploiting MUD setup in the CDMA context, con-
sider a set of terminals wishing to link with a common AP. Suppose that the
AP acquires the full matrix H (with all terminals active) during a training
phase. Those channels may include either non-dispersive or multipath fading,
and are assumed invariant during the coherence time, which is typically larger
compared to the symbol period. Each terminal accesses the channel randomly,
and the AP receives the superposition of signals from the active terminals only.
The AP is interested in determining both the active terminals and the symbols
transmitted.
Another scenario where H is known and sparsity-exploiting MUD is well
motivated, entails an unmanned aerial vehicle (UAV) collecting information
from a ground wireless sensor network (WSN) placed over a grid, as depicted
in Fig. 46. As the UAV flies over the grid of sensors, it collects the signals from
a random subset of them. If the channel fading is predominantly affected by
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Figure 46: Wireless sensors access a UAV.

path loss, the UAV can acquire H based on the relative AP-to-sensor distances.
Again, the UAV faces the problem of determining both identities of active
sensors, and the symbols each active sensor transmits.
With this problem setup in mind, we will develop different MUD strategies,
which account for the low activity factor. First, we will look at the maximum a
posteriori probability (MAP) optimum MUD that exploits the sparsity present.

Sparsity-Exploiting MAP Detector

The goal is to detect b in (195), given a prescribed activity factor, the received
vector y, and the matrix H. Recall though that the low activity factor leads
to a sparse b, i.e., each entry bk is more likely to take the value 0 from the
alphabet. Because entries {bk}Kk=1 are non-equiprobable, the optimal detector
in the sense of minimizing the detection error rate is the MAP one.
Aiming at a sparsity-aware MAP criterion, consider first the prior probability
for b. For simplicity in exposition, suppose for now that each terminal trans-
mits binary symbols when active, i.e., A = {±1}. (It will become clear later
on that all sparsity-cognizant MUD schemes are applicable to finite alpha-
bets of general constellations, not necessarily binary.) If bk takes values from
{−1, 0, 1}, with corresponding probabilities {pa/2, 1− pa, pa/2}, and since
each entry bk is independent from bk′ for k 6= k′, the prior probability for b
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can be expressed as

Pr(b) =
K∏
k=1

Pr(bk) = (1− pa)K−‖b‖0(pa/2)‖b‖0 (196)

where ‖b‖0 denotes the `0 (pseudo) norm that is by definition equal to the
number of non-zero entries in the vector b. Upon taking logarithms, (196)
yields

ln Pr(b) = −λ‖b‖0 +K ln(1− pa) (197)

where
λ := ln 1− pa

pa/2
. (198)

Since low activity factor means pa < 1/2, it follows readily from (198) that
λ > 0. With the prior distribution of b in (197), the sparsity-aware MAP
(S-MAP) detector is

b̂MAP =arg max
b∈AKa

Pr(b|y)=arg min
b∈AKa

−ln p(y|b)−ln Pr(b)

= arg min
b∈AKa

1
2‖y−Hb‖22 + λ‖b‖0 (199)

where the last equality follows from (197) and the Gaussianity of w. Hence,
the S-MAP detection task amounts to finding the vector in the constraint set
AKa , which minimizes the cost in (199).
Two remarks are now in order.
Remark 4: (General constellations). Beyond binary alphabets, it is easy to
see why the S-MAP detector in (199) applies to more general constellations,
including pulse amplitude modulation (PAM), phase-shift keying (PSK), and
quadrature amplitude modulation (QAM). Specifically, for general M -ary
constellations withM ≥ 2 it suffices to adjust accordingly the prior probability
as a function of ‖b‖0 in (196). This will render the S-MAP MUD in (199)
applicable to generalM -ary constellations, provided that λ in (198) is replaced
by λ := ln 1−pa

pa/M
.

Remark 5: (Scale λ as a function of pa). The definition in (198) reveals the
explicit relationship of λ with the activity factor pa. Different from CS and VS
approaches, where λ is a tuning parameter often chosen with cross-validation
techniques as a function of the data size N and K, here it is directly coupled
with the user activity factor pa. Such a coupling carries over even when users
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have distinct activity factors. Specifically, if the user k is active w.p. pa,k,
then the term λ‖b‖0 := λ

∑K
k=1 |bk| in (199) should change to

∑K
k=1 λk|bk|,

where λk is defined as in (198) with pa,k substituting pa. This user-specific
regularization will be used in Section 9 to adaptively estimate user activity
factors on-the-fly, and thus enable sparsity-aware MUD which accounts for
correlated user (in)activity across the time slots.
With the variable bk only taking values from {±1, 0}, it holds for p ≥ 1 that

‖b‖0 =
K∑
k=1
|bk|p = ‖b‖pp, ∀ b ∈ AKa . (200)

Hence, the S-MAP detector (199) for binary transmissions is equivalent to

b̂MAP = arg min
b∈AKa

1
2‖y−Hb‖22 + λ‖b‖pp , ∀ p ≥ 1. (201)

Notice that the equivalence between (199) and (201) is based on the norm
equivalence in (200), which holds only for constant modulus constellations.
Although the cost in (201) will turn out to be of interest on its own, it is not an
S-MAP detector for non-constant modulus constellations.
Interestingly, since low-activity factor implies a positive λ, the problem (201)
entails a convex cost function, compared to the non-convex one in (199). In
lieu of the finite-alphabet constraint, the criterion of (201) consists of the
least-squares (LS) cost regularized by the `p norm, which in the context of
linear regression has been adopted to mitigate data overfitting. In contrast, the
LS estimator only considers the goodness-of-fit, and thus tends to overfit the
data. Shrinking the LS estimator, by penalizing its size through the `p norm,
typically outperforms LS in practice. For example, the Lasso adopts the `1
norm through which it effects sparsity[278]. In the MUD context for CDMA
systems with low-activity factor, the vector b has a sparse structure, which
motivates well this regularizing strategy. What is distinct and interesting here
is that this penalty-augmented LS approach under finite-alphabet constraints
emerges naturally as the logarithm of the prior in the S-MAP detector.
However, the finite-alphabet constraint renders the solution of (201) com-
binatorially complex. For general H and y, the solution of (201) requires
exhaustive search over all the 3K feasible points, with the complexity grow-
ing exponentially in the problem dimension K. Likewise, for general M -ary
alphabets the complexity incurred by (199) is O((M + 1)K). On the other
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hand, many (sub-) optimal alternatives are available in the MUD literature; see
e.g., [288, Ch. 5-7]. Similarly here, we will develop different (sub-) optimal
algorithms to trade off complexity for probability of error performance in
sparsity-exploiting MUD alternatives.
Since the exponential complexity of MUD stems from the finite-alphabet
constraint, one reduced-complexity approach is to solve the unconstrained
convex problem, and then quantize the resultant soft decision to the nearest
point in the alphabet. This approach includes the sub-optimal linear MUD
algorithms (decorrelating and minimum mean-square error (MMSE) detec-
tors). Another approach is to search over (possibly a subset of) the alphabet
lattice directly as in the decision-directed detectors or the sphere decoders
[97]. Likewise, it is possible to devise (sub-) optimal algorithms for solving
the S-MAP MUD problem (201) along these two categories. First, we will
present the sparsity-exploiting MUD algorithms by relaxing the finite-alphabet
constraint.

Relaxed S-MAP Detectors

In addition to offering an S-MAP detector for constant modulus constellations,
the cost in (201) is convex. Thus, by relaxing the combinatorial constraint, the
optimization problem (201) can be solved efficiently by capitalizing on con-
vexity. As mentioned earlier, this problem is similar to the penalty-augmented
LS criterion that is used for VS in linear regression, where the choice of p is
important for controlling the shrinking effect, that is the degree of sparsity
in the solution. Next, we will develop detectors for two choices of p, and
compare them in terms of complexity and performance.

Linear Ridge MUD

The choice p = 2 is a popular one in statistics, well-known as Ridge regression.
Its popularity is mainly due to the fact that it can regularize the LS solution
while retaining its closed-form expression as a linear function of the data y. A
relaxed detection algorithm for S-MAP MUD can be developed accordingly
with p = 2, what we term Ridge detector (RD). Ignoring the finite-alphabet
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constraint, the optimal solution of (201) for p = 2 takes a linear form

bRD = arg min
b

1
2‖y−Hb‖22 + λ‖b‖22

= (HTH + 2λI)−1HTy. (202)

In addition to its simplicity, and different from LS, the existence of the inverse
in (202) is ensured even for ill-posed or under-determined problems; i.e., when
H is rank deficient or fat (N < K). Notice that bRD takes a form similar to
the linear MMSE multiuser detector, with the parameter λ replacing the noise
variance, and connecting the activity factor with the degree of regularization
applied to the matrix HTH.
Upon quantizing each entry of the soft decision bRD with the operator

Qθ(x) := sign(x)11(|x| ≥ θ) (203)

where θ > 0, sign(x) = 1(−1) with x > (<)0, and 11 denoting the indicator
function, the hard RD is

b̂RD = Qθ(bRD) = Qθ
(
(HTH + 2λI)−1HTy

)
. (204)

Because the detector in (202) is linear, it is possible to express linearly its soft
output bRD with respect to (w.r.t.) the input symbol vector b. Based on this
relationship, one can subsequently derive the symbol error rate (SER) of the
hard detected symbols in b̂RD as a function of the quantization threshold θ.
These steps will be followed next to obtain the performance of the RD.

Performance Analysis

Letting b̌ denote the vector transmitted, and substituting y = Hb̌ + w into
(202) yields

bRD = (HTH + 2λI)−1HT (Hb̌ + w) = Gb̌ + w′ (205)

where G := I − 2λ(HTH + 2λI)−1, and the colored noise w′ :=
(HTH + 2λI)−1HTw is zero-mean Gaussian with covariance matrix Σw′ :=
E{w′(w′)T } = (HTH + 2λI)−2HTH.
It follows readily from (205) that the k-th entry of bRD satisfies

bRD
k = Gkk b̌k +

∑
`6=k

Gk`b̌` + w′k (206)
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where Gk` and w′k are the (k, `)-th and k-th entries of G and w′, respec-
tively. The last two terms in the right-hand side of (206) capture the multiuser
interference-plus-noise effect, which has variance

σ2
k = var

∑
`6=k

Gk`b̌` + w′k

 =
∑
`6=k

G2
k`pa + Σw′,kk (207)

where Σw′,kk denotes the (k, k)-th entry of Σw′ .
With the interference-plus-noise term being approximately Gaussian dis-
tributed, deciphering b̌k from (206) amounts to detecting a ternary determin-
istic signal in the presence of zero-mean, Gaussian noise of known variance.
Hence, the symbol error rate (SER) for the k-th entry using the quantization
rule in (204) entry-wise can be analytically obtained as

PRD
e,k = 2(1− pa)Q

(
θ

σk

)
+ paQ

(
Gkk − θ
σk

)
(208)

where Q(µ) := (1/
√

2π)
∫∞
µ exp(−ν2/2)dν denotes the Gaussian tail func-

tion.
The SER in (208) is a convex function of the threshold θ. Thus, taking the
first-order derivative w.r.t. θ and setting it equal to zero yields the optimal
threshold for the k-th entry as

θ̂k = Gkk
2 + σ2

k

Gkk
λ . (209)

The corresponding minimum SER becomes [cf. (208) and (209)]

P̂RD
e,k =2(1− pa)Q

(
Gkk
2σk

+ λσk
Gkk

)
+paQ

(
Gkk
2σk
− λσk
Gkk

)
. (210)

As the CDMA system signal-to-noise ratio (SNR) goes to infinity, asymp-
totically we have G → I and Σw′ → 0, so the optimal threshold in (209)
approaches 0.5. The numerical tests in Section 9 will also confirm that se-
lecting θk = 0.5 approaches the minimum SER P̂RD

e,k over the range of SNR
values encountered in most practical settings.
The clear advantage of RD-MUD is its simplicity as a linear detector. However,
using the `2 norm for regularization, the RD-MUD inherently introduces a
Gaussian prior for the unconstrained symbol vector and is thus not affecting
sparsity in bRD; see also [278]. This renders the performance of RD dependent
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on the quantization threshold θ – a fact also corroborated by the simulations
in Section 9. These considerations motivate the ensuing development of an
alternative relaxed S-MAP algorithm, which accounts for the sparsity present
in b.

Lasso-Based MUD

Another popular regression method is the Lasso one, which regularizes the
LS cost with the `1 norm. In the Bayesian formulation, regularization with
the `1 norm corresponds to adopting a Laplacian prior for b [278]. The nice
feature of Lasso-based regression is that it ensures sparsity in the resultant
estimates. The degree of sparsity depends on the value of λ, which is selected
here using the a priori information available on the activity factor [cf. (198)].
The optimal solution of (201) for p = 1 without the finite-alphabet constraint
yields the Lasso detector (LD) as

bLD = arg min
b

1
2‖y−Hb‖22 + λ‖b‖1. (211)

While a closed-form solution is impossible for general H, the minimization
in (211) is a quadratic programming (QP) problem that can be readily accom-
plished using available QP solvers, such as SeDuMi [271]. Upon slicing the
solution in (211), we obtain the detection result as

b̂LD = Qθ(bLD). (212)

The larger λ is, the more sparse bLD becomes [cf. (198)]. This is intuitively
reasonable, because λ is inversely proportional to the activity factor pa. Since
the Lasso approach (211) yields sparse estimates systematically, and can
be obtained via QP solvers in polynomial time, LD is a competitive MUD
alternative. Lack of a closed-form solution prevents analytical evaluation of
the SER, which will be tested using simulations in Section IV.
Remark 6: So far, we assumed A = {±1} to ensure equivalence of the `p-
norm regularized S-MAP detector (201) with the more general one in (199).
However, the sub-optimal algorithms of this section ignore the finite-alphabet
constraint, and just rely on the convexity of the cost function in (201) to offer
MUD schemes that can be implemented efficiently, either in linear closed-form
or through quadratic programming. In fact, starting from (201) and forgoing
its equivalence with (199), the RD and LD relaxations of (201) apply also
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for general M -ary alphabets for any M > 2. Of course, the quantization
thresholds required for slicing the soft symbol estimates in order to obtain
hard symbol estimates must be modified in accordance with the corresponding
constellation. For non-constant modulus transmissions, the cost in (201) favors
low-energy (close to the origin) constellation points, but this effect is mitigated
by the judicious selection of the quantization thresholds.
Note that forgoing the equivalence of (201) with (199) is less of an issue for
RD and LD because the major limitation of these simple relaxation-based
algorithms is their sub-optimality, which emerges because they do not account
for the finite-alphabet symbol constraints. Next, MUD algorithms are devel-
oped to minimize the S-MAP cost while adhering to the constraint in (199)
explicitly.

S-MAP Detectors with Lattice Search

User symbols in this section are drawn from an M -ary PAM alphabet
A = {±1,±3, . . . ,±(M − 1)}, with M even. Consider also reformu-
lating the S-MAP problem in (199) using the QR decomposition of the
matrix H (assumed here to be square or tall with full column rank) as
H = QR, where R is a K × K upper triangular matrix, and Q is an
N ×K unitary matrix. Substituting this QR decomposition into (199), and
left multiplying with the unitary Q inside the LS cost, the S-MAP detec-

tor becomes: b̂MAP = arg minb∈Aka
1
2

∥∥∥QTy−QT (QR)b
∥∥∥2

2
+ λ‖b‖0 =

arg minb∈AKa
1
2‖y

′ −Rb‖22 + λ‖b‖0, where y′ := QTy; or, after using the
definitions of the norms,

b̂MAP = arg min
b∈AKa

K∑
k=1

1
2

(
y′k −

K∑
`=k

Rk`b`

)2

+ λ|bk|0

 . (213)

Although the optimal solution of (213) still incurs exponential complexity, the
upper triangular form of R enables decomposition of (213) into sub-problems
involving only scalar variables. As it will be seen later in Section 9, the S-MAP
problem accepts a neat closed-form solution in the scalar case (K = 1). This
is instrumental for the development of efficient (near-) optimal algorithms
searching over the finite-alphabet induced lattice. One such sub-optimal MUD
algorithm is described next.
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Algorithm 16 (DDD): Input y′, R, λ, and M even. Output b̂DDD.

1: for k = K,K − 1, . . . , 1 do
2: (Back substitution) Compute the unconstrained LS solution bLS

k :=
(y′k −

∑K
`=k+1Rk`b̂

DDD
` )/Rkk.

3: (Quantize to A) Set b̂DDD
k := bbLS

k e.
4: (Compare with 0) If 2bLS

k bbLS
k e − bbLS

k e2 − 2λ/R2
kk ≤ 0, then set

b̂DDD
k := 0.

5: end for

Sparsity-Exploiting Decision-Directed MUD

Close look at (213) reveals that once the estimates {b̂`}K`=k+1 are available, the
optimal b̂k can be obtained by minimizing the cost corresponding to the k-th
summand of (213). This leads to the per-symbol optimal decision-directed
detector (DDD), which following related schemes in different contexts, could
be also called successive interference cancellation or decision-feedback de-
coding, see e.g., [123, Sec. 9.4] and [288, Ch. 7]. The main difference here is
that b is sparse.
The DDD algorithm relies on back substitution to decompose the overall
S-MAP cost into K sub-costs each dependent on a single scalar variable
and accepting a closed-form solution. Specifically, supposing the symbols
{b̂DDD
` }K`=k+1 have been already detected, the DDD algorithm detects the k-th

symbol as

b̂DDD
k = arg min

bk∈Aa

1
2

y′k − K∑
`=k+1

Rk`b̂
DDD
` −Rkkbk

2

+ λ|bk|0 . (214)

This minimization problem entails only one scalar variable taking one of
(M + 1) possible points in Aa. Thus, the minimum is found after comparing
the costs corresponding to these (M + 1) values. Appendix I proves that this
optimal solution can be found in closed form as

b̂DDD
k = bbLS

k e11
(
2bLS
k bbLS

k e − bbLS
k e2 − 2λ/R2

kk > 0
)

(215)

where bLS
k := (y′k −

∑K
`=k+1Rk`b̂

DDD
` )/Rkk, and b·e quantizes to the nearest

point in A. The simple implementation steps are tabulated as Algorithm 16.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



S-MAP Detectors with Lattice Search 211

When R is diagonal, Algorithm 1 yields the optimal S-MAP detection result;
i.e., b̂MAP = b̂DDD for this case. However, since the DDD detects symbols
sequentially, it is prone to error propagation, especially at low SNR values.
The error propagation can be mitigated by preprocessing and ordering methods
[288, Ch. 7]. Also similar to all related detectors that rely on back substitution,
error performance of the sparse DDD will be analyzed assuming there is no
error propagation. For the special case of M = 2, Appendix J shows that
under this assumption, the SER for (215) becomes

PDDD
e,k = 2(1− pa)Q

( |Rkk|
2 + λ

|Rkk|

)
+ paQ

( |Rkk|
2 − λ

|Rkk|

)
. (216)

For a general M -ary constellation, it is also possible to approximate the SER
using the union bound.
Because it accounts for the finite-alphabet constraint, sparse DDD outperforms
the relaxed detectors of the previous section – a fact that will be confirmed
also by simulations. However, the error propagation emerging at medium-low
SNR degrades the sparse DDD performance when compared to the optimal
but computationally complex S-MAP detector. As a compromise, a branch-
and-bound type of MUD algorithm is developed next, to attain (near-) optimal
performance by exploiting the finite-alphabet and sparsity constraints, at the
price of increased complexity compared to DDD.

Sparsity-Exploiting Sphere Decoding-based MUD

Sphere decoding (SD) algorithms have been widely used for maximum-
likelihood (ML) demodulation of multiuser and/or multiple-input multiple-
output (MIMO) transmissions. Given a PAM or QAM alphabet, SD yields
(near-) ML performance at polynomial average complexity; see e.g., [123, Sec.
5.2]. However, different from the ML-optimal SD that minimizes an LS cost,
the S-MAP problem (213) entails also a regularization term to account for
sparsity in b. Although the resultant algorithm will be termed sparse sphere
decoder (SSD), it searches in fact within an “`0-norm regularized sphere,”
which is not a sphere but a hyper-solid.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



212 Exploiting Sparse User Activity in MUD

The goal is to find the unknown K × 1 vector b ∈ AKa , which minimizes the
distance metric [cf. (213)]

DK
1 (b) :=

K∑
k=1

1
2

(
y′k −

K∑
`=k

Rk`b`

)2

+ λ|bk|0

 . (217)

For a large enough threshold τ , candidate vectors (and thus the minimizer of
DK

1 too) satisfy22

DK
1 (b) < τ (218)

that specifies a hyper-solid inside which the wanted minimizer must lie. Define
now [cf. (215)]

ρk :=

y′k − K∑
`=k+1

Rk`b`

/Rkk, k = K,K − 1 · · · 1 (219)

where ρK := y′K/RKK . Note that ρk depends on {b`}K`=k+1.
Using (219), the hyper-solid in (218) can be expressed as

DK
1 (b) =

K∑
k=1

{
R2
kk

2 (ρk − bk)2 + λ|bk|0

}
< τ (220)

or, in a more compact form as DK
1 (b) =

∑K
k=1 dk(bk) < τ , where dk(bk) :=

(R2
kk/2) (ρk − bk)2 + λ|bk|0. In addition to the overall metric DK

1 assessing
a candidate vector b ∈ AKa , as well as the per entry metric dk for each
candidate symbol bk ∈ Aa, it will be useful to define the accumulated metric
DK
k :=

∑K
`=k d`(b`) corresponding to the K − k+ 1 candidate symbols from

entry K down to entry k.
Per entry k, which subsequently will be referred to as level k, eq. (220) implies
a set of inequalities:

Level k : dk(bk) < τ −DK
k+1 , for k = K,K − 1 . . . 1, (221)

with DK
K+1 := 0. SSD relies on the Schnorr-Euchner (SE) enumeration, see

e.g., [80], properly adapted here to account for the `0-norm regularization.
SE capitalizes on the inequalities (221) to search efficiently over all possible

22At initialization, τ is set equal to∞ so that (218) is always satisfied.
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vectors b with entries belonging to Aa. Any candidate b ∈ AKa obeying the
K inequalities in (221) for a given τ , will be termed admissible. Threshold τ
is reduced after each admissible b is identified, as will be detailed soon. The
SE-based SSD amounts to a depth-first tree search, which seeks and checks
candidate vectors starting from entry (level) K and working downwards to
entry 1 per candidate vector.
At levelK, SE search chooses bK = bρKe11(2ρKbρKe−bρKe2−2λ/R2

KK >

0), which we know from (215) is the constellation point yielding the smallest
dK . If this choice of bK does not satisfy the inequality (221) with k = K,
no other constellation point will satisfy it either, and the minimizer of DK

1
in (217) must lie outside23 the hyper-solid postulated by (218). If this choice
of bK satisfies (221), SE proceeds to level K − 1 in which (219) is used first
with k = K − 1 to find ρK−1 that depends on the chosen bK from level
K; subsequently, bK−1 is selected as bK−1 = bρK−1e11(2ρK−1bρK−1e −
bρK−1e2− 2λ/R2

K−1,K−1 > 0). If this choice of bK−1 does not satisfy (221)
with k = K − 1, then we move back to level K, and select bK equal to the
constellation point yielding the second smallest dK , and so on; otherwise, we
proceed to level K − 2. Continuing this procedure down to level 1, yields
the first candidate vector b̂, which is deemed admissible since it has entries
belonging to Aa and also satisfying (218). This candidate is stored, and the
threshold is updated to τ := DK

1 (b̂).
Then, the search proceeds looking for a better candidate. Now at level 1, we
move up to level 2 and choose b2 equal to the constellation point yielding the
second smallest cost d2. If this b2 satisfies (221) at level 2 with the current τ ,
we move down to level 1 to update the value of b1 (note that b2 has just been
updated and {b`}K`=3 are equal to the corresponding entries in b̂). If (221) at
level 2 is not satisfied with the current τ , we move up to level 3 to update the
value of b3, and so on.
Finally, when it fails to find any other admissible candidate satisfying (221),
the search stops, and the latest admissible candidate b̂ is the optimal b̂MAP

solution sought. With τ = ∞, the first found admissible candidate b̂ is the
b̂DDD solution of Section V-A.
Before summarizing the SSD steps, it is prudent to elaborate on the ordered
enumeration of the constellation points per level, which in fact constitutes

23This will never happen with τ =∞ in (218).
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the main difference of SSD relative to SD. In lieu of the 0 constellation
point and the `0 norm, SE in SD enumerates the PAM symbols per level k
in the order of increasing cost as: {bk, bk + 2∆k, bk − 2∆k, bk + 4∆k, bk −
4∆k, · · · }

⋂
A, with bk := bρke and ∆k := sign(ρk−bk). (With bρke yielding

the smallest dk, if ∆k = 1, then bρke+ 2 yields the second smallest dk and
bρke − 2 the third; and the other way around, if ∆k = −1.) SD effects
such an ordered enumeration by alternately updating bk = bk + 2∆k and
∆k = −∆k − sign(∆k), [80]. To demonstrate how SSD further accounts
for the `0-norm regularization and the augmented alphabet of S-MAP which
includes 0, let b(i)k ∈ Aa denote the symbol for level k incurring the i-th
smallest (i = 1, 2, . . . ,M + 1) cost dk. If b(i)k ∈ A, then b(i+1)

k will be either
0 or b(i)k + 2∆k. If dk(0) < dk(b

(i)
k + 2∆k), then the next symbol in the

ordered enumeration should be b(i+1)
k = 0, and an auxiliary variable b(c)k is

used to cache the subsequent symbol in the order as b(i+2)
k = b

(i)
k + 2∆k.

With b(i+1)
k = 0, the auxiliary variable allows the wanted b(i+2)

k at the next
enumeration step to be retrieved from b

(c)
k .

Similar to SD, the ordered enumeration pursued by SSD per level implies a
corresponding order in considering all b ∈ AKa , which leads to a repetition-
free and exhaustive search of all admissible candidate vectors. At the same
time, the hyper-solid postulated by (218) shrinks as τ decreases, until no
other admissible vector can be found. This guarantees that the SSD outputs
the vector with the smallest DK

1 , and thus the optimal solution to (213). The
SSD algorithm can be summarized in the following six steps 1–6 tabulated as
Algorithm 17.
Remark 7: SSD inherits all the attractive features of SD [80]. Specifically,
during the search one basically needs to store DK

k per level k. Its in place
update for each bk candidate implies that SSD memory requirements are only
linear in K. In addition, the computational efficiency of SSD (relative to that
of ML which is O((M + 1)K)) stems from four factors: (i) the DDD solution
provides an admissible initialization reducing the search space at the outset;
(ii) the recursive search enabled by the QR decomposition gives rise to the
causally dependent inequalities (221), which restrict admissible candidate
entries to choices that even decrease over successive depth-first passes of the
search; (iii) ordering per level increases the likelihood of finding “near-optimal
admissible” candidates early, which means quick and sizeable shrinkage of
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Algorithm 17 (SSD): Input τ =∞, y′, R, λ, andM even. Output the solution
b̂MAP := b̂SSD to (213).

1: (Initialization) Set k := K, DK
k+1 := 0.

2: Compute ρk as in (219), set bk := bρke, b
(c)
k := 0, ∆k := sign(ρk − bk).

If 2ρkbk − b2k − 2λ/R2
kk < 0, then
// symbol 0 yields smaller dk than bρke

Set b(c)k := bk, and bk := 0.
End if and go to Step 3.

3: If dk(bk) := (R2
kk/2)(ρk − bk)2 + λ|bk|0 ≥ τ −DK

k+1, then
go to Step 4. // outside hyper-solid in (218)

Else if |bk| > M − 1, then
go to Step 6. // inside hyper-solid in (218),

but outside Aa

Else if k > 1, then
computeDK

k := DK
k+1 +dk(bk); set k := k−1, and go to Step 2.

// go the next level (deeper in the tree)
Else go to Step 5. // k = 1, at the tree’s bottom

End if
4: If k = K, then terminate

Else set k := k + 1, go to Step 6.
End if

5: (An admissible b is found)
Set τ := DK

2 + d1(b1), b̂SSD := b, and k := k + 1; then go to Step 6.
6: (Enumeration at level k proceeds to the candidate symbol next in the

order)
If bk = 0, then

Retrieve the next (based on cost dk ordering) symbol bk := b
(c)
k ,

and set b(c)k := FLAG.
Else set bk := bk + 2∆k, and ∆k := −∆k − sign(∆k).

If b(c)k 6= FLAG and 2ρkbk − b2k − 2λ/R2
kk < 0, then

// 0 yields smaller dk than bk

Set b(c)k := bk, and bk := 0.
End if

End if and go to Step 3.
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the hyper-solid, and thus fast convergence to the S-MAP optimal solution; and
(iv) metrics involved in the search can be efficiently reused since children of
the same level in the tree share the already computed accumulated metric of
the “partial path” from this level to the root.
Compared to other sub-optimal detection schemes presented in previous sec-
tions, the SSD algorithm can return the S-MAP optimal solution possibly at
exponential complexity, unless one stops the search at the affordable complex-
ity – case in which the solution is only ensured to be near-optimal. Fortunately,
at medium-high SNR, both SD and SSD return the optimal solution at aver-
age complexity which is polynomial (typically cubic). Moreover, SSD can
be generalized to provide symbol-by-symbol soft output with approximate a
posteriori probabilities, as is the case with the SD; see e.g., [123, Chapter 5].

Generalizations of S-MAP Detectors

Up to now, four sparsity-exploiting MUD algorithms have been developed
to solve the integer program associated with the linear model in (195). The
present section will present interesting generalizations to account for correlated
user (in)activity across symbols, and under-determined CDMA systems.

Exploiting User (In)Activity Across Symbols

Sparsity-aware detectors for the linear model in (195) were so far developed
on a symbol-by-symbol basis, which does not account for the fact that user
(in)activity typically persists across multiple symbols. To this end, user activity
across time can for instance be thought of as a Markov chain with two states
(active-inactive). Once a user terminal starts transmitting to the AP, it becomes
more likely to stay active for the next symbol slot too; and likewise, inactive
once it stops transmitting. In this model, the state transition probability from
either one state to the other is relatively much smaller than that of staying un-
changed, and this manifests itself to the said dependence of user (in)activities
across time.
Admittedly, MUD schemes accounting for this dependence must process the
aggregation of data vectors y obeying (195) across slots. With Ns denoting
the number of slots, the number of unknowns (KNs) can grow prohibitively
with Ns. One approach to cope with this “curse of dimensionality” is via
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dynamic programming, which can take advantage of the fact that correlation is
only present between two consecutive slots; see e.g., [288, Sec. 4.2]. However,
for M -ary alphabets, the resultant sequential detector requires evaluating per
symbol slot the path weights of all (M + 1)K possible symbol vectors. This
high computational burden is impractical for real-time implementations.
The proposed alternative to bypass this challenge stems from the observation
that for a given slot t the influence of all previous slots {t′}t−1

t′=0 on the S-MAP
detection rule is reflected only in the prior probability of each user being active
at time t; i.e., user k’s current (and time-varying) activity factor pa,k(t). The
natural means to capture this influence online is to track each user’s activity
factor using the recursive LS (RLS) estimator [254, Ch. 12], based on activity
factors from previous slots; that is,

p̂a,k(t)=arg min
p

t−1∑
t′=0

βt,t
′

k (p− |b̂k(t′)|0)2, t = 1, . . . (222)

where b̂k(t′) denotes user k’s detected symbol at time t′, and the so-called
“forgetting-factor” βt,t

′

k describes the effective memory (data windowing). A
popular choice is the exponentially decaying window, for which βt,t

′

k := βt−t
′

k

for some 0 � βk < 1. Accordingly, (222) can expressed in closed form,
recursively as

p̂a,k(t)= 1− βk
βk

(
t−1∑
t′=0

βt−t
′

k |b̂k(t′)|0

)
/(1− βtk)

= βk − βtk
1− βtk

p̂a,k(t− 1)+ 1− βk
1− βtk

|b̂k(t− 1)|0, t = 1, . . . (223)

where the last equality comes from back substitution of p̂a,k(t−1). The choice
of βk critically depends on the (in)activity correlation between consecutive
slots. In the extreme case where user (in)activities across slots are independent,
the infinite-memory window (βk = 1) is optimal, and (223) reduces to the
simple online time-averaging estimate p̂a,k(t) = 1

t

∑t−1
t′=0 |b̂k(t′)|0.

Adapting the user activity factors allows one to weigh entries of `0-norm
regularization which in turn affects the prior probability in the S-MAP detector
(199) through the coefficient λk(t) corresponding to p̂a,k(t) (cf. Remark 5).
Note that when the correlation across time is strong, it is possible that p̂a,k(t)
can approach 1, case in which λk(t) is not guaranteed to stay positive. This will
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cause problems to the relaxed S-MAP detectors of Section 9, as those schemes
rely on the convexity of the cost function in (201). However, the DDD and
SSD algorithms will remain operational, because they rely on enumeration per
symbol (in DDD) or per group of symbols within a sphere (in SSD). Note also
that with λ < 0 the regularization term in the minimization of (213) is non-
positive; hence, λ < 0 encourages searching over the non-zero constellation
points (and thus discourages sparsity), whereas λ > 0 promotes sparsity.

Under-Determined CDMA Systems

Minimal-size spreading sequences, even smaller than the number of users,
is well motivated for bandwidth and power savings. Without finite-alphabet
constraints on the wanted vector, results available in the CS literature guarantee
recovery of sparse signals from a few observations; see e.g., [46, 49] and
references therein. Specifically, [46] shows that if the vector of interest is
sparse (or compressible) over a known basis, then it is possible to reconstruct
it with very high accuracy from a small number of random linear projections
at least in the ideal noise-free case. For non-ideal observations corrupted
with unknown noise of bounded perturbation, [49] provides an upper bound
on the reconstruction error, which is proportional to the noise variance for a
sufficiently sparse signal. However, CS theory pertains to sparse analog-valued
signals. Moreover, the noise considered in a practical communication system
is typically Gaussian, or generally drawn from a distribution having possibly
unbounded support. Therefore, existing results from the CS literature do not
carry over to the present context.
Nevertheless, it is still interesting to consider extensions of all the (sub-
)optimal sparsity-exploiting MUD algorithms to an under-determined CDMA
system with N < K, where the observation matrix H becomes fat. Consider
first the two types of relaxed S-MAP detectors. The RD-MUD in (204) clearly
works when N < K, since the 2λI term inside the inversion renders the over-
all matrix full rank. However, since the RD is a linear detector, it is expected
to lose identifiability in the under-determined case, similar to the MMSE
detectors for the sparsity-agnostic MUD schemes. Similarly, the LD problem
(211) is also solvable for a fat H matrix, as the Lasso problem in CS. However,
neither of them accounts for the augmented finite-alphabet constraint present
in the original S-MAP problem (201).
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The S-MAP detectors with lattice search are challenging to implement when
N < K. The main obstacle is the QR decomposition of the fat matrix H,
which yields the upper triangular matrix R of the same dimension N ×K.
Instead of a single unknown symbol, now the sparse DDD must optimize
over the last (N − K + 1) symbols in b. However, apart from exhaustive
search there is no low-complexity method to solve the aforementioned problem
involving (N −K + 1) variables, because sub-optimal alternatives introduce
severe error propagation.
The same problem appears also with the SSD. To tackle the under-determined
case, the generalized SD in [80] fixes the last (N − K) symbols of b and
relies on the standard SSD to detect the remaining K symbols that minimize
a cost similar to the one in (217). Repeating this search for every choice of
the last (N −K) symbols, yields eventually the overall optimum vector. The
complexity of the latter is exponential in (N − K), regardless of the SNR.
Recently, an alternative SD approach to avoid this exponential complexity
has been developed for the under-determined case [75]. This algorithm takes
advantage of the fact that for constant-modulus constellations the usual LS
cost can be modified without affecting optimality, by adding the `2-norm bTb
constant for every vector in the alphabet. This extra term allows one to obtain
an equivalent full-rank system on which the standard SD algorithm can be
applied. This efficient method can be readily extended to handle non-constant
modulus constellations.
Interestingly, for our S-MAP detectors in (201) with lattice search of binary
transmitted symbols, the norm term needed for regularization comes naturally
from the Bernoulli prior. Specifically, with p = 2 the reformulated S-MAP
detectors in (201) can be equivalently written as

b̂MAP = arg min
b∈AKa

1
2[bT (HTH + 2λI)b− 2yTHb]

= arg min
b∈AKa

1
2‖ỹ

′ − R̃b‖22 (224)

where R̃ is the full rank K ×K upper triangular matrix such that R̃T R̃ =
HTH+2λI, and ỹ′ := R̃−THTy. Utilizing the metric of (224), the back sub-
stitution of DDD and the lattice point search of SSD can be implemented easily.
Hence, these S-MAP detectors can be readily extended to under-determined
systems. In this way, all the (sub-)optimal S-MAP detectors are applicable
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with less observations than unknowns in a CDMA system with low activity
factor, but their SER performance will certainly be affected. In Section 9,
we will provide simulated performance comparisons of the different opti-
mal and sub-optimal S-MAP algorithms proposed, for a variable number of
observations.

Group Lassoing Block Activity

The last generalization considered pertains to user (in)activity in a (quasi-
)synchronous block fashion, where during a block of Ns symbol slots, user
k remains (in)active independently from other users and across blocks. Con-
catenate the K user symbols across Ns time slots in the K × Ns matrix
B := [b(1) . . .b(Ns)], where b(t) collects the symbols of all K users at
slot t, and likewise for the receive-data matrix Y as well as the noise ma-
trix W, both of size N × Ns. With these definitions, the counterpart of
(195) for this block model is Y = HB + W. Letting the Ns × 1 vector
b̆k := [bk(1), . . . , bk(Ns)]T collect the Ns symbols of user k, it is useful
to consider it drawn from an augmented (due to possible inactivity) block
alphabet Aa,Ns := ANs

⋃
{0Ns}. Assuming again binary transmissions, the

S-MAP block detector will now yield

B̂MAP = arg min
b̆k∈Aa,Ns

1
2‖Y−HB‖2F +

K∑
k=1

λb√
Ns
‖b̆k‖0

= arg min
b̆k∈Aa,Ns

1
2‖Y−HB‖2F +

K∑
k=1

λb‖b̆k‖2 (225)

where λb := 1√
Ns

ln
(

1−pa
pa/2Ns

)
.

Similar to (201), the convex reformulation of the cost in (225) will lead to
what is referred to in statistics as Group Lasso [315], which effects group
sparsity on a block of symbols (b̆k in our case). This Group-Lasso based
formulation is particularly handy for under-determined CDMA systems. In
fact, the unconstrained version of (225) can be solved first to unveil the
nonzero rows (i.e., the support) of B, with improved reliability asNs increases.
Subsequently, standard sparsity-agnostic MUD schemes can be run on the
estimated set of active users. Note that such a two-step approach works in the
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Figure 47: SER vs. average SNR (in dB) for RD-MUD with N = 32 and K = 20 and
different quantization threshold θ’s.

under-determined case, and also reduces number of symbols to be detected
per time slot.

Simulations

We simulate a CDMA system with K = 20 users, each with activity factor
pa = 0.3. Random sequences with length N = 32 are used for spreading. We
consider non-dispersive independent Rayleigh fading channels between AP
and users, where the channel gain gk of the k-th user is Rayleigh distributed
with variance E[g2

k] = σ2. Thus, the average system SNR is set to be σ2 since
the AWGN w has unit variance.
Test Case 1 (Quantization thresholds for RD). First, we test the RD scheme
with different quantization thresholds θ in (203). The optimum threshold
for the k-th symbol is obtained as in (209) per channel realization H. The
resulting SER is compared for four choices of θ: 0.5, 0.35, 0.65, and θ̂k. The
theoretical minimum SER P̂RD

e,k in (210) using the optimum θ is also added
for comparison. Fig. 47 shows that the SER curve with θ = 0.5 comes very
close to the one of the optimal θ̂k, and thus constitutes a near-optimal choice
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in practice. Moreover, those two curves also coincide with the analytical
SER formulation corresponding to P̂RD

e,k , thus corroborating the closed-form
expression in (210).
Test Case 2 (S-MAP MUD algorithms). Next, the RD, LD, DDD, and SSD
MUD algorithms are all tested for both BPSK and 4-PAM constellations, and
their SER performance is compared. For LD, the quadratic program in (211)
is solved using the general-purpose SeDuMi toolbox [271]. The quantization
rule chooses the nearest point in Aa for both RD and LD. For comparison, we
also include the ordinary LS detector, which corresponds to the RD solution
in (204) with λ = 0.
Fig. 48(a) shows that the LS detector exhibits the worst performance. This is
intuitive since it neither exploits the finite alphabet nor the sparsity present in
b. The SSD exhibits the best performance at the price of highest complexity.
The LD outperforms the RD algorithm, as predicted. It is interesting to observe
that even at low SNR region the DDD algorithm is surprisingly competitive,
especially in view of its low complexity that grows only linearly in the number
of symbols K. The diversity orders for those detectors are basically the same.
This is reasonable since independent Rayleigh fading channels between AP
and users were simulated here. The corresponding curves for 4-PAM depicted
in Fig. 48(b) follow the same trend. However, compared to Fig. 48(a), the
RD algorithm degrades noticeably as its SER approaches the LS one. This
is because choices of quantization thresholds become more influential as the
constellation size increases. As expected, the LD exhibits resilience to this
influence. The DDD and SSD algorithms have almost identical performance
in high-SNR region.
Test Case 3 ((In)activity across symbols). In this case, the user (in)activity is
correlated across time slots. We model this random (in)activity process as a
two-state (active-inactive) stationary Markov chain. The state transition matrix
is P = [a (1− a); b (1− b)], where a is uniformly distributed over [0.8 0.85],
and b over [0.05 0.1], for each user. For this model, the expected number of
successive active slots is 1/(1− a), and 1/b for the inactive ones. Also, the
limiting probability for the “active” state becomes b/(1−a+ b), taking values
from the interval [0.2 0.4]. Note that the activity factor over time is still quite
low. We use the RLS approach to estimate p̂a,k(t) as in (223) using β = 0.5,
and test both the DDD and SSD algorithms in solving the resultant S-MAP
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Figure 48: SER vs. average SNR (in dB) of sparsity-exploiting MUD algorithms with N = 32
and K = 20 for (a) BPSK, and (b) 4-PAM alphabets.

detection problem. The empirical SER is plotted in Fig. 49 across time for
different SNR values. Clearly, the proposed scheme is effective in tracking
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Figure 49: SER vs. time t of sparsity-exploiting MUD algorithms with RLS estimation of the
activity factors.

the evolving time-correlated activity. For the same SNR value, it yields SER
performance similar to the independent case in Fig. 48(a).
Test Case 4 (Under-determined CDMA systems). We also test the S-MAP
MUD algorithms for under-determined systems, by varying N from 32 to 16
and 8. The results are depicted in Fig. 50. Since the RD is a simple linear
detector, it is expected that once N < K, it will lose identifiability, and
exhibits a considerably flat SER curve. At the same time, DDD still enjoys
almost full diversity with a moderate choice of N = 16. Being the optimum
detector, the SSD collects the full diversity even if N = 8; however, the other
two kinds of detectors exhibit flat SER curves, as expected.
The Group Lasso scheme for recovering block activity is also included for
the under-determined case. Fig. 51 illustrates the activity recovery error rate
for different values of N and Ns. The number of observations N affects the
diversity order, while the block size Ns influences the recovery accuracy.
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Figure 50: SER vs. average SNR (in dB) of sparsity-exploiting MUD algorithms with N =
32, 16, or 8 and K = 20.

Conclusions

The MUD problem of sparse symbol vectors emerging with CDMA systems
having low-activity factor was considered. Viewing user inactivity as aug-
menting the underlying alphabet, the a priori available sparsity information
was exploited in the optimal S-MAP detector. The exponential complexity
associated with the S-MAP detector was reduced by resorting to (sub-) optimal
algorithms. Relaxed S-MAP detectors (RD and LD) come with low complex-
ity but sacrifice optimality, because they ignore the finite-alphabet constraint.
The second kind of detectors (DDD and SSD), searches over a subset of the
alphabet and exhibits improved performance at increased complexity. The
performance was analyzed for the RD and DDD algorithms, and closed-form
expressions were derived for the corresponding symbol error rates.
S-MAP detectors were further generalized to deal with correlated user
(in)activity across symbols by recursively estimating each user’s activity factor
online; and also with under-determined (a.k.a. over-saturated CDMA) settings
emerging when the spreading gain is smaller than the potential number of

The version of record is available at: http://dx.doi.org/10.1561/2000000107



226 Exploiting Sparse User Activity in MUD
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Figure 51: Error rate for block activity vs. average SNR (in dB) of Group Lasso algorithm
with N = 16, 8 and Ns = 20, 10, 1.

users. Coping with the latter becomes possible through regularization with the
`0 norm prior, or, with the Group Lasso-based recovery of the active user set.
The numerical tests corroborated our analytical findings and quantified the
relative performance of the developed sparsity-exploiting MUD algorithms.
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10
Summary

As it was manifested, sparsity is present – either originally or after projecting
the signal onto an appropriate basis – in a plethora of natural signals and
practical communication systems. Accordingly, this monograph reviewed vari-
ous CS frameworks where the signal sparsity is used as the key attribute to
ameliorate the signal reconstruction/detection performance while conserving
the radio and energy resources by reducing the sampling rate, transmission
rate, and computational load. In the first part, advanced CS techniques based
on least-squares and Lasso were presented for sparsity-aware recursive real-
time estimation and signal reconstruction in a perturbed sensing setup. The
second part was dedicated to CS based environmental monitoring and lossy
compression techniques in wireless sensor networks. The third part addressed
spectrum sensing in cognitive radio communications and multi-user detection
in wireless networks. The numerical experiments of each framework demon-
strated that exploiting an inherent sparsity of the underlying signal provides
significant system performance gains. Thus, the principles of the presented
sparse signal processing techniques are worth taking into consideration when
striving for high performance in an application involving signal sparsity.
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A
Proof of Proposition 4

Define the vector χk := x̂OCD
N for N = kP , that is, the one containing the

iterates at the end of the kth cycle when each variable has been updated k
times. The proof that χk converges to xo as k → ∞ will proceed in five
stages. In the first one, Algorithm 1 is put in the form of a noisy vector-matrix
difference equation. The second and third stages prove that the corresponding
discrete-time dynamical system is exponentially stable, and that the sequence
{χk}∞k=1 is bounded. In the fourth stage, convergence to a limit point χ∞ is
proved. The proof concludes by showing that χ∞ = xo.

Dynamical System

Let R̄k denote the matrix with entries R̄k(p, q) := RkP+p(p, q)/(kP + p),
and r̄k the vector with entries r̄k(p) := rkP+p(p)/(kP + p). Conditions (r1)
and (r2) guarantee that R̄k

−→
k→∞ R∞ and r̄k −→

k→∞ r∞ w.p. 1. Consider the
decomposition R̄k = D̄k + L̄k + Ūk where D̄k is diagonal, and L̄k (Ūk) is
strictly lower (upper) triangular. Observe that L̄k 6= ŪT

k .
Dividing the cost function of the problem in (17) by kP + p yields

χk+1(p)=arg min
χ

[1
2

(
RkP+p(p, p)
kP + p

)
χ2−

(
rkP+p,p
kP + p

)
χ+
(

λ

kP + p

)
|χ|
]
.

(226)
The solution of this scalar minimization problem can be obtained in two steps.
First, solve the differentiable linear-quadratic part of (226) using the auxiliary
vector zk+1 to obtain

zk+1(p) = arg min
z

[
1
2

(
RkP+p(p, p)
kP + p

)
z2 −

(
rkP+p(p)
kP + p

−

∑
q<p

RkP+p(p, q)
kP + p

χk+1(q)−
∑
q>p

RkP+p(p, q)
kP + p

χk(q)
)
z

]
(227)

230
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where rkP+p,p was expanded according to its definition in (21) and divided in
two sums: the one already updated in the cycle k + 1 (q < p), and the second
one updated in the kth cycle (q > p). The second step to solve (226) is to pass
zk+1(p) through the soft-threshold operator

χk+1(p) = sgn (zk+1(p))
[
|zk+1(p)| − λkP+p

kP + p

]
+
. (228)

Using the decomposition of R̄k, (227) can be rewritten as

zk+1(p) = arg min
z

1
2D̄k(p, p) z2 −r̄k(p)−∑

q<p

L̄k(p, q)χk+1(q)−
∑
q>p

Ūk(p, q)χk(q)

 z
whose solution is obtained (after equating the derivative to zero) as

D̄k(p, p) zk+1(p) = r̄k(p)−
∑
q<p

L̄k(p, q)χk+1(q)−
∑
q>p

Ūk(p, q)χk(q).

(229)
Concatenating the latter with p = 1, . . . , P yields the matrix-vector difference
equation

D̄kzk+1 = r̄k − L̄kχk+1 − Ūkχk. (230)

The soft-thresholding operation in (228) can be accounted for by defining the
error vector εk := χk+1 − zk+1 in which case (230) can be re-written as

D̄k(χk+1 − εk) = r̄k − L̄kχk+1 − Ūkχk. (231)

Assuming that there exists a k? such that D̄k+L̄k is invertible for each k > k?,
(231) can be written as

χk+1 = Ḡkχk + (D̄k + L̄k)−1r̄k + (D̄k + L̄k)−1D̄kεk (232)

with Ḡk := (D̄k + L̄k)−1Ūk. The key point to be used subsequently is that
(228) guarantees that the entries of εk are bounded by a vanishing sequence.
Specifically, it holds that

|εk(p)| ≤
λkP+p
kP + p

, for p = 1, . . . , P (233)

since the input-output variables of the soft-threshold operator χ = sgn(z)[|z|−
λ]+ obey |χ− z| ≤ λ.
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Exponential Stability

Let Ḡ(l : k) :=
∏k
i=l Ḡi in (232) denote the product of the transition matrices

Ḡk. The goal of this stage is to prove that ||Ḡ(l : k)|| ≤ cρk−l+1, with ρ < 1.
The convergence of R̄k to R∞ implies convergence of Ḡk to G∞ := −(D∞+
L∞)−1U∞, where D∞, L∞ and U∞ are the diagonal, lower triangular, and
upper triangular parts of R∞, respectively. Since R∞ is positive definite,
the spectral radius of G∞ is strictly less than one, i.e., %(G∞) < 1 [127,
p. 512]. Furthermore, for every δ > 0 there exists a c(δ) constant w.r.t. k,
such that ||Gk

∞|| < c(δ)[%(G∞) + δ]k [127, p. 336]. Then, by selecting
δ = (1− %(G∞))/2, and defining ρ∞ := (1 + %(G∞))/2, it holds that

||Gk
∞|| < cρk∞, with ρ∞ < 1. (234)

Upon defining G̃k := Ḡk −G∞, the following recursion is obtained

Ḡ(1 : k) = ḠkḠ(1 : k − 1)
= G∞Ḡ(1 : k − 1) + G̃kḠ(1 : k − 1)

= Gk
∞ +

k∑
i=1

Gk−i
∞ G̃iḠ(1 : i− 1), Ḡ(1 : 0) := I.

Using (234), the latter can be bounded as

||Ḡ(1 : k)|| ≤ cρk∞ + c
k∑
i=1

ρk−i∞ ||G̃i||||Ḡ(1 : i− 1)||

which after multiplying both sides by ρ−k∞ yields

ρ−k∞ ||Ḡ(1 : k)|| ≤ c+
k∑
i=1

cρ−1
∞ ||G̃i||||Ḡ(1 : i− 1)||ρ−(i−1)

∞ (235)

and allows one to apply the discrete Bellman-Gronwall lemma (see e.g., [269,
p. 315]).

Lemma 5 (Bellman-Gronwall). If c, ξk, hk ≥ 0 ∀k satisfy the recursive
inequality

ξk ≤ c+
k∑
i=1

hi−1ξi−1 (236)
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then ξk obeys the non-recursive inequality

ξk ≤ c
k∏
i=1

(1 + hi−1). (237)

For ξk = ρ−k∞ ||Ḡ(1 : k)|| and hk = cρ−1
∞ ||G̃k+1||, (235) takes the form of

(236), so that (237) holds and (after multiplying both sides by ρk∞) results in

||Ḡ(1 : k)|| ≤ ρk∞c
k∏
i=1

(
1 + cρ−1

∞ ||G̃i||
)

= c
k∏
i=1

(
ρ∞ + c||G̃i||

)
. (238)

Raising both sides of (238) to the power of 1/k and applying the geometric-
arithmetic mean inequality, it follows that

||Ḡ(1 : k)||1/k ≤ c1/k 1
k

k∑
i=1

(
ρ∞ + c||G̃i||

)
which is readily rewritten as

||Ḡ(1 : k)|| ≤ c
(
ρ∞ + c

1
k

k∑
i=1
||G̃i||

)k
.

Since Ḡk
−→
k→∞ G∞ and ||G̃k|| −→k→∞ 0 w.p. 1, for every δ > 0 there exists

an integer k0 such that if k ≥ k0, then 1
k

∑k
i=1 ||G̃i|| ≤ δ w.p 1. Thus, if δ

is selected as (1 − ρ∞)/(2c), and ρ as (1 + ρ∞)/2, the following bound is
obtained

||Ḡ(1 : k)|| ≤ cρk, ρ < 1, k ≥ k0, w.p. 1.

It is clear, by inspection, that the proof so far carries over even if the product
of transition matrices starts at l > 1; that is

||Ḡ(l : k)|| ≤ cρk−l+1, ρ < 1, k ≥ k0, w.p. 1. (239)

Certainly, c, ρ, and k0 do not depend on l. However, k0 does depend on the
realization of the random sequence Ḡk, and its existence and finiteness are
guaranteed w.p. 1.

The version of record is available at: http://dx.doi.org/10.1561/2000000107



234 Proof of Proposition 4

Boundedness

Define vk := (D̄k + L̄k)−1(r̄k + D̄kεk), and rewrite (232) as

χk+1 = Ḡkχk + vk.

Using back substitution, χk+1 can then be expressed as

χk+1 = Ḡ(k0 : k)χk0 +
k−k0∑
i=1

Ḡ(k − i+ 1 : k)vk−i + vk.

Since D̄k, L̄k, r̄k, and εk converge, the random sequence vk converges too
w.p. 1; hence, it can be stochastically bounded by a random variable v; that is,
||vk|| < v, ∀k, w.p. 1. This, combined with the exponential stability ensured
by (239), guarantees that the realizations of the random sequence χk are
(stochastically) bounded; thus

||χk+1|| ≤ cρ−k+k0−1||χk0 ||+
k−k0∑
i=1

cρ−iv + v

≤ c||χk0 ||+ cv

( 1
1− ρ + 1

)
, w.p. 1. (240)

Convergence

Define the error D̃k := D̄k −D∞, and similarly L̃k := L̄k − L∞, Ũk :=
Ūk − U∞, and r̃k := r̄k − r∞. Using these new variables, (231) can be
rewritten in error form as

(D∞ + D̃k)(χk+1 − εk)=(r∞ + r̃k)− (L∞ + L̃k)χk+1 − (U∞ + Ũk)χk
(241)

and, after regrouping terms, as

χk+1 = −(D∞ + L∞)−1U∞χk + (D∞ + L∞)−1

×
(
r∞ + r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk

)
.

(242)

Equation (242) describes an exponentially stable linear time-invariant sys-
tem with transition matrix −(D∞ + L∞)−1U∞, and input uk := (D∞ +
L∞)−1[r∞ + r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk]. The input
can be divided into its limiting point u∞ := (D∞ + L∞)−1r∞, and the error
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ũk := (D∞ + L∞)−1[r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk]. As
k →∞, the vector ũk goes to zero almost surely because the sequence χk is
bounded, and the error r̃k, D̃k, L̃k and Ũk as well as εk, all go to zero w.p. 1.
With this notation and recalling the definition G∞ := −(D∞ + L∞)−1U∞,
(242) is rewritten as

χk+1 = G∞χk + u∞ + ũk

and back-substituting again the new expression for χk+1 yields

χk+1 = Gk
∞χ1 +

k∑
i=1

Gk−i
∞ u∞ +

k∑
i=1

Gk−i
∞ ũi. (243)

Convergence of this recursion will be established by showing that the first and
third terms in the right-hand side vanish as k →∞, while the surviving one
corresponds to a stable geometric series. Given that ∃ c > 0, ρ∞ < 1 such
that ∀n ||Gn

∞|| ≤ cρn∞, convergence of the first term to zero follows readily
from (234). The third term represents the limiting output value of a multiple
input-multiple output stable linear time-invariant system with vanishing input;
that is limi→∞ ũi = 0. As ∀k ||Gk

∞|| ≤ cρk∞, (234) implies that it is possible
to bound the sum under consideration as∥∥∥∥∥

k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ c
k∑
i=1

ρk−i∞ ||ũi|| . (244)

Since limi→∞ ũi = 0, it holds by the definition of the limit that for any
ε > 0 ∃N ∈ N so that ||ũi|| ≤ ε, ∀ i ≥ N . Using the latter along with (244),
it follows that for k ≥ N∥∥∥∥∥

k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ c
N−1∑
i=1

ρk−i∞ ||ũi||+ cε
k∑

i=N
ρk−i∞

= cρk−N∞

N−1∑
i=1

ρN−i∞ ||ũi||+ cε
k∑

i=N
ρk−i∞ . (245)

Because
∑N−1
i=1 ρN−i∞ ||ũi|| does not depend on k, the limit of the first summand

in (245) goes to zero; hence,

lim
k→∞

∥∥∥∥∥
k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ cε/(1− ρ∞) .
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236 Proof of Proposition 4

The last inequality holds ∀ε > 0; thus,

lim
k→∞

∥∥∥∥∥
k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ = 0

which establishes convergence to zero of the third sum in the right-hand side
of (243).

Limit Point

Once convergence is established, it is possible to take the limit as k →∞ in
(241) to obtain

D∞(χ∞ − ε∞) = r∞ − L∞χ∞ −U∞χ∞, w.p. 1. (246)

Recalling that ||ε∞|| ≤ limN→∞
λN
N = 0, (246) reduces to

(D∞ + L∞ + U∞)χ∞ = r∞, w.p. 1 (247)

and since D∞ + L∞ + U∞ = R∞, it holds that

χ∞ = (R∞)−1r∞ = xo, w.p. 1 (248)

which concludes the proof.
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B
Construction of Matrix Ψ′ in (76)

The matrix Ψ′ in (76) can be expressed as

Ψ′ = Ψ′T ⊗ΨS
(a)= (I′TΨT)⊗ΨS
(b)= (I′TΨT)⊗ (INΨS)
(c)= (I′T ⊗ IN )(ΨT ⊗ΨS)
(d)= (I′T ⊗ IN )Ψ
(e)= [ψ1 · · · ψN(W−1)]T

(249)

where (a) follows from defining a binary sparse matrix
I′T , [IW−1 0(W−1)×1] ∈ B(W−1)×W that performs a row selection
of ΨT as Ψ′T = I′TΨT; (b) follows because ΨS = INΨS; (c) fol-
lows from AB⊗CD = (A⊗C)(B⊗D); (d) follows from (69);
(e) follows from performing a row selection of Ψ via a binary
sparse matrix I′T ⊗ IN = [IN(W−1) 0N(W−1)×N ] ∈ BN(W−1)×NW as
(I′T ⊗ IN )Ψ = [ψ1 · · · ψN(W−1)]T, which is the desired result.
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C
MMSE Orthogonality Principle for (125)

In order to show the equality E
[
‖Xs − Zs + Zs − X̂s‖22

]
=

E
[
‖Xs − Zs‖22

]
+ E

[
‖Zs − X̂s‖22

]
in step (a) of (125), we show that

the associated cross-term E
[
(Xs − Zs)T(Zs − X̂s)

]
is zero. This term can be

written as

E
[
(Xs − Zs)T(Zs − X̂s)

]
= E

[
ZT
s(Xs − Zs)

]
− E

[
X̂T
s(Xs − Zs)

]
. (250)

By the law of total expectation, the first term of (250) can be written as

E
[
ZT
s(Xs − Zs)

]
= E

{
E
[
ZT
s(Xs − Zs)|Ys

]}
= E

{
ZT
s(E[Xs|Ys]− Zs)

}
(a)= E

{
ZT
s(Zs − Zs)

}
= 0

(251)

where (a) follows from (123). Similarly, the second term of (250) can be
written as

E
[
X̂T
s(Xs − Zs)

]
= E

(
E
{
E
[
X̂T
s(Xs − Zs)|Xs,Ys

]∣∣Ys

})
= E

(
E
{
E
[
X̂s|Xs,Ys

]T(Xs − Zs)
∣∣Ys

})
(a)= E

(
E
{
E
[
X̂s|Ys

]T(Xs − Zs)
∣∣Ys

})
= E

(
E
[
X̂s|Ys

]T(E{Xs|Ys
}
− Zs

))
(b)= E

(
E
[
X̂s|Ys

]T(Zs − Zs
))

= 0

(252)

where (a) follows because Xs → Ys → X̂s forms a Markov chain, and (b)
follows from (123). By (251) and (252), E

[
(Xs − Zs)T(Zs − X̂s)

]
= 0.
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D
MMSE Estimation Error in (126)

The average MMSE estimation error in (125) can be expressed as

DZ|bs = N−1E
[
‖Xs − Zs‖22

]
(a)= N−1E

[
‖Xs − Zs‖22

]
= N−1Tr

{
E
[
(Xs − Zs)(Xs − Zs)T

]}
= N−1Tr

{
E
[
XsXT

s −XsZT
s − ZsXT

s + ZsZT
s

]}
= N−1Tr

{
ΣXs −ΣXsZs −ΣT

XsZs + ΣZs

}
(253)

where (a) follows from removing the zero parts of Xs and Zs (see (121) and
(124)), and the cross-covariance matrix ΣXsZs ∈ RK×K is

ΣXsZs = E[Xs(FsYs)T] = ΣXsYsFT
s = ΣXsYsΣ−1

Ys
ΣT

XsYs

= ΣZs .
(254)

Substituting (254) into (253) results in DZ|bs = N−1Tr
(
ΣXs −ΣZs

)
.
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E
The Proof of Theorem 1

Using the equivalence Rrem
X|bs(Ds) = Rdir

Z|bs(D
′
s) of Proposition 6, and

D′s = Ds −DZ|bs ≥ 0 in (129), the conditional remote RDF in (119) can
be recast as

Rrem
X|B(D) = min∑(NK)

s=1 p(bs)[D′s+DZ|bs ]=D
D′s≥0, s=1,...,(NK)

∑(NK)
s=1 p(bs)Rdir

Z|bs(D
′
s) (255)

with optimization variables D′s, s = 1, . . . ,
(N
K

)
. Let D′s,k ≥ 0,

k = 1, . . . ,K, s = 1, . . . ,
(N
K

)
, be auxiliary variables for (255). Insert-

ing the new variables with constraint
∑
k=1D

′
s,k = D′s, and substituting

DZ|B =
∑(NK)
s=1 p(bs)DZ|bs in (133) and the expression of Rdir

Z|bs(D
′
s) in

(131), Rrem
X|B(D) in (255) can be equivalently expressed as

Rrem
X|B(D) = min∑(NK)

s=1 p(bs)D′s=D−DZ|B∑K

k=1 D
′
s,k=D′s, s=1,...,(NK)

D′s≥0, s=1,...,(NK)
D′s,k≥0, k=1,...,K, s=1,...,(NK)

N−1∑(NK)
s=1 p(bs)

∑K
k=1 max

{
0, 1

2log λs,k
D′s,k

}

(256)
with optimization variables D′s, and D′s,k, k = 1, . . . ,K, s = 1, . . . ,

(N
K

)
. Fi-

nally, eliminating the variables D′s, s = 1, . . . ,
(N
K

)
, by substituting the second

set of equality constraints into the first one yields the expression for Rrem
X|B(D)

in (134).

Remark E.1. A valid distortion is D ≥ DZ|B ≥ 0 because the distortion
criterion must be non-negative.

Remark E.2. For all distortion criteria D ≥ 1
N

∑(NK)
s=1 p(bs)Tr

(
ΣXs

)
,

Rrem
X|B(D) = 0; if the encoder sends no information (i.e., R = 0),
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then the decoder can set X̂ = 0N , resulting in an admissible dis-
tortion because E

[
d(X, X̂)

]
= 1

NE
[
‖X− X̂‖22

]
= 1

NE
[
‖X‖22

]
=

1
N

∑(NK)
s=1 p(bs)Tr

(
ΣXs

)
≤ D.

Combining the above derivations with Remarks E.1 and E.2, Rrem
X|B(D) has

the characterization of Theorem 1, which concludes the proof.
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F
The Conditional Direct RDF

The conditional direct RDF Rdir
X|B(D) determines the minimum achievable

rate R for distortion D ≥ 0 in the compression scheme, where the encoder
observes X directly (i.e., without CS), and B is available as SI at the encoder
and decoder. It is defined as (cf. (118))

Rdir
X|B(D) = min

{f(x̂|x,bs)}|B|s=1:E[d(X,X̂)]≤D

1
N
I(X; X̂|B) (257a)

where the optimization is over the conditional PDFs f(x̂|x,bs),
s = 1, . . . , |B|. The conditional mutual information between X and X̂ given
B is

I(X; X̂|B) =
∑|B|
s=1 p(bs)I(X; X̂|B = bs)

=
∑|B|
s=1 p(bs)

∫
x

∫
x̂
f(x|bs)f(x̂|x,bs)logf(x̂|x,bs)

f(x̂|bs)
dxdx̂
(257b)

and the average MSE distortion between X and X̂ is

E
[
d(X, X̂)

]
=
∑|B|
s=1 p(bs)E

[
d(X, X̂)|B = bs

]
=
∑|B|
s=1 p(bs)

∫
x

∫
x̂
f(x|bs)f(x̂|x,bs)d(x, x̂)dxdx̂.

(257c)
Following the steps analogous to those for Rrem

X|B(D), the conditional direct
RDF is given as (cf. (134))

Rdir
X|B(D) = min∑|B|

s=1 p(bs)
∑K

k=1 Ds,k=D
Ds,k≥0, k=1,...,K, s=1,...,|B|

N−1∑|B|
s=1 p(bs)

∑K
k=1 max

{
0, 1

2log λ̄s,k
Ds,k

}

(258)
where Ds,k, k = 1, . . . ,K, s = 1, . . . , |B|, are the optimization vari-
ables; λ̄s,1 ≥ . . . ≥ λ̄s,K > 0 are the eigenvalues of covariance matrix
ΣXs = Q̄sΛ̄sQ̄T

s , where the columns of Q̄s ∈ RK×K are the eigenvectors of
ΣXs ∈ SK++, and Λ̄s , diag(λ̄s,1, . . . , λ̄s,K).
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G
Proof of Proposition 7

A stationary point P̄, Q̄ and Ē of (P2) must satisfy the following first-order
optimality conditions [34]

0Nx×Ny ∈ ∂Ef(P̄, Q̄, Ē) = (259){
f̃(P̄Q̄T , Ē) +µβ̄

[
sgn(Ē) + Ẽ

] ∣∣∣∣Ē� Ẽ = 0, ‖Ẽ‖∞ ≤ 1
}

∇Pf(P̄, Q̄, Ē) = f̃(P̄Q̄T , Ē)Q̄ + λβ̄P̄ = 0Nx×ρ (260)

∇QT f(P̄, Q̄, Ē) = P̄T f̃(P̄Q̄T , Ē) + λβ̄Q̄T = 0ρ×Ny (261)

where � denotes the element-wise (Hadamard) product. Through post-
multiplying (260) by P̄T and pre-multiplying (261) by Q̄, one can see that

f̃(P̄Q̄T , Ē) = −µβ̄(sgn(Ē) + Ẽ)

tr
(
f̃(P̄Q̄T , Ē)Q̄P̄T

)
= −λβ̄tr(P̄P̄T ) = −λβ̄tr(Q̄Q̄T ). (262)

Define now κ(R1,R2) := 1
2 (tr(R1) + tr(R2)), and consider the following

convex problem

(P4) min
L,E∈RNx×Ny ,
R1∈RNx×Nx ,
R2∈RNy×Ny

T∑
τ=1

βT−τ c(τ)(L,E) + λβ̄ κ(R1,R2) + µβ̄ ||E||1

subject to R :=
(

R1 L
LT R2

)
� 0 (263)

which is equivalent to (P1). Equivalence can be easily inferred by minimizing
(P4) with respect to {R1,R2} and noting an alternative characterization of
the nuclear norm given by [245]

‖L‖∗ = min
R1,R2

κ(R1,R2)

subject to R � 0. (264)

243

The version of record is available at: http://dx.doi.org/10.1561/2000000107



244 Proof of Proposition 7

In what follows, the optimality conditions of the conic program (P4) are
explored. Introducing a Lagrange multiplier matrix M ∈ R(Nx+Ny)×(Nx+Ny)

associated with the conic constraint in (263), the Lagrangian is first formed as

L(L,E,R1,R2; M) =
T∑
τ=1

βT−τ c(τ)(L,E)

+ λβ̄ κ(R1,R2) + µβ̄ ||E||1 − 〈M,R〉. (265)

For notational convenience, partition M as

M :=
(

M1 M2
M4 M3

)
(266)

in accordance with the block structure of R in (263), where M1 ∈ RNx×Nx
and M3 ∈ RNy×Ny . The optimal solution to (P4) must satisfy: (i) the station-
arity conditions

∇LL(L,E,R1,R2; M) = f̃(L,E)−M2 −MT
4 = 0 (267)

0 ∈ ∂EL(L,E,R1,R2; M) ={
f̃(L,E) + µβ̄

[
sgn(E) + Ẽ

] ∣∣∣∣E� Ẽ = 0, ‖Ẽ‖∞ ≤ 1
}

(268)

∇R1L(L,E,R1,R2; M) = λβ̄

2 INx −M1 = 0 (269)

∇R2L(L,E,R1,R2; M) = λβ̄

2 INy −M3 = 0 (270)

(ii) complementary slackness condition 〈M,R〉 = 0; (iii) primal feasibility
R � 0; and (iv) dual feasibility M � 0.
Using the stationary point P̄, Q̄ and Ē of (P2), construct a candidate solution
for (P4) as L̂ := P̄Q̄T , Ê := Ē, R̂1 := P̄P̄T , and R̂2 := Q̄Q̄T , as well as
M̂1 := λβ̄

2 INx , M̂2 := 1
2 f̃(P̄Q̄T , Ē), M̂3 := λβ̄

2 INy , and M̂4 := M̂T
2 . After

substituting these into (267)–(270), it can be readily verified that condition (i)
holds. Condition (ii) also holds since

〈M̂, R̂〉 = 〈M̂1, R̂1〉+ 〈M̂2, L̂〉+ 〈M̂3, R̂2〉+ 〈M̂4, L̂T 〉

= λβ̄

2 tr(P̄P̄T + Q̄Q̄T ) + tr
(
f̃(P̄Q̄T , Ē)Q̄P̄T

)
= 0 (271)
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where the last equality follows from (262). Condition (iii) is met since R can
be rewritten as

R =
(

P̄P̄T P̄Q̄T
Q̄P̄T Q̄Q̄T

)
=
(

P̄
Q̄

)(
P̄
Q̄

)T
� 0. (272)

For (iv), according to the Schur complement condition for positive semidefinite
matrices, M � 0 holds if and only if

M̂3 − M̂4M̂−1
1 M̂2 � 0 (273)

which is equivalent to λmax(M̂T
2 M̂2) ≤ (λβ̄/2)2, or ||f̃(P̄Q̄T , Ē)|| ≤

λβ̄. �
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H
Proof of Proposition 8

The proof uses the technique similar to the one employed in [199], where
the convergence of online algorithms for optimizing objectives involving non-
convex bilinear terms and sparse matrices was established in the context of
dictionary learning.
In order to proceed with the proof, three lemmata are first established. The
first lemma concerns some properties of g(X, ξ(t)) := g1(X, ξ(t)) + g2(X),
and ǧ(X,X(t−1), ξ(t)) := ǧ1(X,X(t−1), ξ(t)) + g2(X).
Lemma 4: If the assumptions (a1)–(a5) in Proposition 8 hold, then

(p1) ǧ1(X,X(t−1), ξ(t)) majorizes g1(X, ξ(t)), i.e.,
ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) ∀X ∈ X ′;

(p2) ǧ1 is locally tight, i.e., ǧ1(X(t−1),X(t−1), ξ(t)) = g1(X(t−1), ξ(t));

(p3) ∇ǧ1(X(t−1),X(t−1), ξ(t)) = ∇g1(X(t−1), ξ(t));

(p4) ǧ(X,X(t−1), ξ(t)) := ǧ1(X,X(t−1), ξ(t)) + g2(X) is uniformly
strongly convex in X, i.e.,
∀(X,X(t−1), ξ(t)) ∈ X × X × Ξ , it holds that

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

≥ ǧ′(X,X(t−1), ξ(t); D) + ζ

2 ||D||
2
F

where ζ > 0 is a constant and ǧ′(X,X(t−1), ξ(t); D) is a directional
derivative of ǧ at X along the direction D;

(p5) g1 and ǧ1, their derivatives, and their Hessians are uniformly bounded;

(p6) g2 and its directional derivative g′2 are uniformly bounded; and

(p7) there exists ḡ ∈ R such that |ǧ(X,X(t−1), ξ(t))| ≤ ḡ.
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Proof: For (p1), let us first show that ∇Pg1(P,Q,E, ξ(t)),
∇Qg1(P,Q,E, ξ(t)), and∇Eg1(P,Q,E, ξ(t)) are Lipschitz continuous for
X := (P,Q,E) ∈ X ′ and ξ(t) ∈ Ξ. For arbitrary X1 := (P1,Q1,E1),
X2 := (P2,Q2,E2) ∈ X ′, the variation of ∇g1 in (177) can be bounded as

‖∇Pg1(P1,Q,E, ξ(t))−∇Pg1(P2,Q,E, ξ(t))‖F

=
∥∥∥∥∥
M∑
m=1
〈W(t)

m , (P1 −P2)QT 〉W(t)
m Q

∥∥∥∥∥
F

(i1)
≤

M∑
m=1
|〈W(t)

m , (P1 −P2)QT 〉|‖W(t)
m Q‖F

(i2)
≤

M∑
m=1
‖P1 −P2‖F ‖W(t)

m Q‖2F

where (i1) and (i2) are due to the triangle and Cauchy-Schwarz inequalities,
respectively. Since X ′ and Ξ are assumed to be bounded,

∑M
m=1 ‖W

(t)
m Q‖2F

is bounded. Therefore, there exists a positive constant LP such that

‖∇Pg1(P1,Q,E, ξ(t))−∇Pg1(P2,Q,E, ξ(t))‖F ≤ LP‖P1 −P2‖F
(274)

meaning that∇Pg1(P,Q,E, ξ(t)) is Lipschitz continuous with constant LP.
Similar arguments hold for ∇Qg1(P,Q,E, ξ(t)) and∇Eg1(P,Q,E, ξ(t)) as
well, with Lipschitz constants LQ and LE, respectively. Then, upon defining
‖X‖∆ :=

√
L2

P‖P‖2F + L2
Q‖Q‖2F + L2

E‖E‖2F , it is easy to verify

‖∇g1(X1, ξ
(t))−∇g1(X2, ξ

(t))‖F ≤ ‖X1 −X2‖∆. (275)

On the other hand, the proof of the Descent Lemma [29] can be adopted to
show

g1(X, ξ(t))− g1(X(t−1), ξ(t))

≤ 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉+
∫ 1

0
‖X−X(t−1)‖F

× ‖∇g1(X(t−1) + α(X−X(t−1)), ξ(t))
−∇g1(X(t−1), ξ(t))‖Fdα. (276)

Note that
‖X‖F ≤

1
Lmin

‖X‖∆ (277)
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248 Proof of Proposition 8

where Lmin := min{LP, LQ, LE}. Then, substitution of (275) into (276)
with X1 = X(t−1) + α(X−X(t−1)) and X2 = X(t−1) yields

g1(X(t−1), ξ(t)) + 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉

+ 1
2Lmin

‖X−X(t−1)‖2∆ ≥ g1(X, ξ(t)) (278)

which completes the proof by the construction of ǧ1, provided that η(t)
i ≥

L2
i /Lmin for all i ∈ {P,Q,E}.

To show (p2) and (p3), let us first denote

∇g1(X, ξ(t)) =
(
∇Pg1(X, ξ(t)),∇Qg1(X, ξ(t)),∇Eg1(X, ξ(t))

)
(279)

∇ǧ1(X,X(t−1), ξ(t)) =
(
∇Pg1(X, ξ(t)) + η

(t)
P (P−P(t−1)),

∇Qg1(X, ξ(t)) + η
(t)
Q (Q−Q(t−1)),

∇Eg1(X, ξ(t)) + η
(t)
E (E−E(t−1))

)
. (280)

Then, it suffices to evaluate ǧ1(X, ξ(t)) and ∇ǧ1(X,X(t−1), ξ(t)) at X(t−1)

to see that (p2) and (p3) hold.
To show (p4), let us first find ǧ′1 and g′2. Along a direction
D := (DP,DQ,DE) ∈ X ′, it holds that ǧ′1(X,X(t−1), ξ(t); D) =
〈∇ǧ1(X,X(t−1), ξ(t)),D〉 since ǧ1 is differentiable. Similarly, g′2(X; D) =
λ(〈P,DP〉+〈Q,DQ〉)+µh′(E; DE) where h(E) := ‖E‖1, dE := vec(DE)
with its l-th entry being dE,l, and

h′(E; DE) := lim
t→0+

h(E + tDE)− h(E)
t

= lim
t→0+

∑
l,el 6=0(|el + tdE,l| − |el|) +

∑
l,el=0 |tdE,l|

t

=
∑
l,el 6=0

sgn(el)dE,l +
∑
l,el=0

|dE,l|. (281)

On the other hand, the variation of ǧ can be written as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

= ǧ′1(X,X(t−1), ξ(t); D) +
∑

i∈{P,Q,E}

η
(t)
i

2 ‖Di‖2F + g2(X + D)− g2(X).

(282)
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Note that
∑
i
η

(t)
i
2 ‖Di‖2F ≥

Lmin
2 ||D||

2
F since η(t)

i ≥ L2
i /Lmin by algorithmic

construction. Furthermore, g2(X + D) − g2(X) ≥ g′2(X; D) since g2 is
convex [226]. Then, the variation of ǧ in (282) can be lower-bounded as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

≥ ǧ′(X,X(t−1), ξ(t); D) + Lmin
2 ||D||2F (283)

where ǧ′(X,X(t−1), ξ(t); D) = ǧ′1(X,X(t−1), ξ(t); D) + g′2(X; D). There-
fore, (p4) holds for a positive constant ζ ≤ Lmin.
By the compactness ofX and boundedness of Ξ by (a3), (p5) is automatically
satisfied since g1 and ǧ1 are continuously twice differentiable in X [242]. In
addition, one can easily show (p6) since g2 and g′2 are also uniformly bounded
by the compactness of X .
LetK1 andK2 denote constants where |ǧ1| ≤ K1 and |g2| ≤ K2, respectively,
by (p5) and (p6). Then, (p7) readily follows since

|ǧ(X,X(t−1), ξ(t))| = |ǧ1(X,X(t−1), ξ(t)) + g2(X)|
≤ |ǧ1(X,X(t−1), ξ(t))|+ |g2(X)|
≤ K1 +K2 =: ḡ. � (284)

The next lemma asserts that a distance between two subsequent estimates
asymptotically goes to zero, which will be used to show limt→∞ Č1,t(X(t))−
C1,t(X(t)) = 0, almost surely.
Lemma 5: If (a2)–(a5) hold, then ||X(t+1) −X(t)||F = O(1/t).
Proof: See [242, Lemma 2]. A proof of Lemma 5 is omitted to avoid du-
plication of the proof of [242, Lemma 2]. Hence, it suffices to mention that
Lemma 4 guarantees the formulation of the proposed work satisfying the
general assumptions on the formulation in [242]. �
Lemma 5 does not guarantee convergence of the iterates to the stationary point
of (P2). However, the final lemma asserts that the overestimated cost sequence
converges to the cost of (P2), almost surely. Before proceeding to the next
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lemma, let us first define

C1,t(X) := 1
t

t∑
τ=1

g1(X, ξ(τ)) (285)

Č1,t(X) := 1
t

t∑
τ=1

ǧ1(X,X(τ−1), ξ(τ)) (286)

and C2(X) := g2(X). Note also that Čt(X)− Ct(X) = Č1,t(X)− C1,t(X).
Lemma 6: If (a1)–(a5) hold, Čt(X(t)) converges almost surely, and
limt→∞ Č1,t(X(t))− C1,t(X(t)) = 0, almost surely.
Proof: See [242, Lemma 1]. A proof of Lemma 6 is omitted to avoid du-
plication of the proof of [242, Lemma 1]. Instead, a sketch of the proof is
following. It is firstly shown that the sequence {Čt(X(t))}∞t=1 follows a quasi-
martingale process and converges almost surely. Then, the lemma on positive
converging sums (see [199, Lemma 8]) and Lemma 3 are used to claim that
limt→∞ Č1,t(X(t))− C1,t(X(t)) = 0, almost surely. �
The last step of the proof for Proposition 8 is inspired by [242]. Based
on Lemma 6, it will be shown that the sequence {∇Č1,t(X(t)) −
∇C1,t(X(t))}∞t=1 goes to zero, almost surely. Together with C ′2, it follows
that limt→∞C

′
t(X(t); D) ≥ 0 ∀D, a.s. by algorithmic construction, imply-

ing convergence of a sequence {X(t)}∞t=1 to the set of stationary points of
C(X).
By the compactness of X , it is always possible to find a convergent sub-
sequence {X(t)}∞t=1 to a limit point X̄ ∈ X . Then, by the strong law of
large numbers [116] under (a1) and equicontinuity of a family of functions
{C1,t(·)}∞t=1 due to the uniform boundedness of ∇g1 in (p5) [35], upon re-
stricting to the subsequence, one can have

lim
t→∞

C1,t(X(t)) = Eξ[g1(X̄, ξ)] =: C1(X). (287)

Similarly, a family of functions {Č1,t(·)}∞t=1 is equicontinuous due to the
uniform boundedness of ∇ǧ1 in (p5). Furthermore, {Č1,t(·)}∞t=1 is point-
wisely bounded by (a1)–(a3). Thus, Arzelá-Ascoli theorem (see [35, Cor. 2.5]
and [96]) implies that there exists a uniformly continuous function Č1(X)
such that limt→∞ Č1,t(X) = Č1(X) ∀ X ∈ X and after restricting to the
subsequence

lim
t→∞

Č1,t(X(t)) = Č1(X̄). (288)
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Furthermore, since ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) as in (p1), it follows
that

Č1,t(X)− C1,t(X) ≥ 0 ∀X. (289)

By letting t → ∞ on (289) and combining Lemma 6 with (287) and (288),
one deduces that

Č1(X̄)− C1(X̄) = 0, a.s. (290)

meaning that Č1,t(X)− C1,t(X) takes its minimum at X̄ and

∇Č1(X̄)−∇C1(X̄) = 0, a.s. (291)

by the first-order optimality condition.
On the other hand, the fact that X(t) minimizes Čt(X) by algorithmic con-
struction and g′2 exists (so does C ′2), yields

Č1,t(X(t)) + C2(X(t)) ≤ Č1,t(X) + C2(X) ∀X ∈ X (292)

and limt→∞ Č1,t(X(t)) + C2(X(t)) ≤ limt→∞ Č1,t(X) + C2(X) ∀X ∈ X ,
which implies

lim
t→∞
〈∇Č1,t(X(t)),D〉+ C ′2(X(t); D) ≥ 0 ∀D. (293)

Using the result in (291), (293) can be re-written as 〈∇C1(X̄),D〉 +
C ′2(X̄; D) ≥ 0 ∀D, a.s. or

C ′(X̄; D) ≥ 0 ∀D, a.s. (294)

Thus, the subsequence {X(t)}∞t=1 asymptotically coincides with the set of
stationary points of C(X). �
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Proof of (215)

To solve the optimization problem (214), consider first the unconstrained
solution to the LS part of the cost, which can be written as

bLS
k :=

(
y′k −

∑K
`=k+1Rk`b̂

DDD
`

)
/Rkk. (295)

The detected symbol in (214) can be equivalently expressed as

b̂DDD
k = arg min

bk∈Aa
f(bk),

f(bk) :=
(
bLS
k − bk

)2
+ (2λ/R2

kk)|bk|0. (296)

The solution b̂DDD
k can be obtained by comparing f(0) with minbk∈A f(bk).

Specifically, as the cost f(bk) is quadratic for bk ∈ A, the minimum is
achieved at f(bbLS

k e), by quantizing bLS
k to the nearest point in A. Thus,

b̂DDD
k = 0 only if f(0) ≤ f(bbLS

k e), or equivalently, after using the definition
of f(·), if 2bLS

k bbLS
k e − bbLS

k e2 − 2λ/R2
kk ≤ 0. This completes the proof of

(215).
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Proof of (216)

When M = 2, the DDD solution (215) reduces to

b̂DDD
k = sign(bLS

k )11(2|bLS
k | − 1− 2λ/R2

kk > 0) (297)

due to the fact that bbLS
k e = sign(bLS

k ) ∈ {±1}.
Recalling that b̌ denotes the transmitted vector, and substituting y = Hb̌ + w
yields

y′ := QTy = Rb̌ + u (298)

where u := QTw is zero-mean Gaussian with identity covariance matrix.
Supposing that there is no error propagation, the bLS

k term in (297) becomes
[cf. (295)]

bLS
k =

 K∑
`=k

Rk`b̌` + uk −
K∑

`=k+1
Rk`b̂

DDD
k

/Rkk

= b̌` + uk/Rkk (299)

where uk denotes the k-th entry of u.
To analyze the error probability for the detector in (297) consider the following
three cases.
a) b̌k = 0 is sent: under this case, bLS

k = uk/Rkk and a detection error emerges
when b̂DDD

k = 1 or −1. With the closed-form DDD detector (297) in mind,
such an error occurs only if both bLS

k 6= 0 and 2|bLS
k | − 2λ/R2

kk − 1 > 0
hold. The first case corresponds to uk 6= 0 and the second one is equivalent
to |uk| > |Rkk|/2 + λ/|Rkk|, which is included in the event uk 6= 0. Hence,
to evaluate the error probability it suffices to consider only the case |uk| >
|Rkk|/2 + λ/|Rkk|.
b) b̌k = 1 is sent: following the analysis in a), an error occurs if sign(Rkk)uk ≤
−|Rkk|/2 + λ/|Rkk|.
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c) b̌k = −1 is sent: following the analysis in a), an error occurs if
sign(Rkk)uk ≥ |Rkk|/2− λ/|Rkk|.
Given that the Gaussian distributed uk has variance 1, the overall SER for the
k-th entry bk becomes

PDDD
e,k =

∑
i=0,±1 P (error|b̌k = i)P (b̌k = i)

= 2(1− pa)Q
( |Rkk|

2 + λ

|Rkk|

)
+ paQ

( |Rkk|
2 − λ

|Rkk|

)
. (300)
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