GP examples

- consider the problem

$$
\begin{array}{ll}
\operatorname{maximize} & x / y \\
\text { subject to } & 2 \leq x \leq 3 \\
& x^{2}+3 y / z \leq \sqrt{y} \\
& x / y=z^{2}
\end{array}
$$

- it can be reformulated as a standard GP

$$
\begin{array}{ll}
\operatorname{minimize} & x^{-1} y \\
\text { subject to } & 2 x^{-1} \leq 1, \quad(1 / 3) x \leq 1 \\
& x^{2} y^{-1 / 2}+3 y^{1 / 2} z^{-1} \leq 1 \\
& x y^{-1} z^{-2}=1
\end{array}
$$

GP examples

- consider the problem

$$
\begin{array}{ll}
\text { minimize } & p(x) /(r(x)-q(x)) \\
\text { subject to } & r(x)>q(x)
\end{array}
$$

where p, q are posynomials and r is monomial

- it can be reformulated as a standard GP

$$
\begin{array}{ll}
\text { minimize } & t \\
\text { subject to } & p(x) \leq t(r(x)-q(x)) \\
& (q(x) / r(x))<1 \\
& \\
\text { minimize } & t \\
\text { subject to } & (p(x) / t+q(x)) / r(x) \leq 1 \\
& (q(x) / r(x))<1
\end{array}
$$

जصPR?

- power control for S interfering links (MIMO-MU, Ad-hoc,etc.)
- SINR for link i

$$
\gamma_{i}=\frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\ k \neq i}} G_{i k} P_{k}} \quad i=1, \ldots, S
$$

- P_{i} power allocated to link i
- $G_{i k}$ power gain from TX of link k to RX of link i
- maximization of the min-SINR under sum-power constraint

$$
\begin{aligned}
\text { maximize } & \min _{i} \frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\
k \neq i}}^{S} G_{i k} P_{k}} \\
\text { subject to } & \sum_{i=1}^{S} P_{i} \leq P_{\max } \\
& \text { (other constraints can be added) }
\end{aligned}
$$

GP examples

$$
\begin{array}{ll}
\text { minimize } & \max _{i} \frac{\sigma_{i}^{2}}{G_{i i}} P_{i}^{-1}+\sum_{k=1}^{S} \frac{G_{i k}}{G_{i i}} P_{k} P_{i}^{-1} \\
\text { subject to } & \sum_{i=1}^{S} P_{i} \leq P_{\max }
\end{array}
$$

$\operatorname{maximize} \min _{i} \frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\ k \neq i}}^{S} G_{i k} P_{k}}$
subject to $\sum_{i=1}^{S} P_{i} \leq P_{\max }$
minimize $\quad t$
$\begin{array}{ll}\text { subject to } \quad \max _{i} \frac{\sigma_{i}^{2}}{G_{i i}} P_{i}^{-1}+\sum_{\substack{k=1 \\ k \neq i}}^{S} \frac{G_{i k}}{G_{i i}} P_{k} P_{i}^{-1} \leq t \\ & \sum_{i=1}^{S} P_{i} \leq P_{\max }\end{array}$
minimize t
subject to $\frac{\sigma_{i}^{2}}{G_{i i}} P_{i}^{-1}+\sum_{\substack{k=1 \\ k \neq i}}^{S} \frac{G_{i k}}{G_{i i}} P_{k} P_{i}^{-1} \leq t, \quad i=1, \ldots, S$

$$
\sum_{i=1}^{S} P_{i} \leq P_{\max }
$$

GP examples

- It can be also cast as a generalized linear fractional program

$$
\begin{array}{lll}
\text { maximize } \min _{i} \frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\
k \neq i}} G_{i k} P_{k}} & \text { minimize } & \max _{i} \frac{\sigma_{i}^{2}+\sum_{\substack{k=1 \\
k \neq i}}^{S} G_{i k} P_{k}}{G_{i i} P_{i}} \\
\text { subject to } \sum_{i=1}^{S} P_{i} \leq P_{\max } & \text { subject to } & \sum_{i=1}^{S} P_{i} \leq P_{\max }
\end{array}
$$

- and solved via bisection

जصPR?

- power control for S interfering links (MIMO-MU, Ad-hoc,etc.)
- SINR for link i

$$
\gamma_{i}=\frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\ k \neq i}} G_{i k} P_{k}} \quad i=1, \ldots, S
$$

- P_{i} power allocated to link i
- $G_{i k}$ power gain from TX of link k to RX of link i
- weighted sum-rate maximization in high SINR (low interference)

$$
\begin{gathered}
R_{i}=\log \left(1+\gamma_{i}\right) \approx \log \gamma_{i} \\
\mathrm{WSR}=\sum_{i=1}^{S} w_{i} R_{i} \approx \sum_{i=1}^{S} w_{i} \log \gamma_{i}=\log \prod_{i=1}^{S} \gamma_{i}^{w_{i}}
\end{gathered}
$$

GP examples

- the WSRM problem can be formulated as

$$
\begin{array}{ll}
\text { maximize } & \log \prod_{i=1}^{S} \gamma_{i}^{w_{i}} \\
\text { subject to } & \gamma_{i}=\frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\
k \neq i}}^{S} G_{i k} P_{k}}, i=1, \ldots, S \\
& \sum_{i=1}^{S} P_{i} \leq P_{\max }
\end{array}
$$

- which is equivalent to

$$
\begin{array}{ll}
\operatorname{maximize} & \prod_{i=1}^{S} \gamma_{i}^{w_{i}} \\
\text { subject to } & \gamma_{i} \leq \frac{G_{i i} P_{i}}{\sigma_{i}^{2}+\sum_{\substack{k=1 \\
k \neq i}}^{S} G_{i k} P_{k}}, i=1, \ldots, S \\
& \sum_{i=1}^{S} P_{i} \leq P_{\max }
\end{array}
$$

GP examples

- which is further equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \prod_{i=1}^{S} \gamma_{i}^{-w_{i}} \\
\text { subject to } & \gamma_{i} \sigma_{i}^{2} G_{i i}^{-1} P_{i}^{-1}+\sum_{k \neq i}^{S=1} \gamma_{i} G_{i k} P_{k} G_{i i}^{-1} P_{i}^{-1} \leq 1, i=1, \ldots, S \\
& \sum_{i=1}^{S} P_{i} P_{\max }^{-1} \leq 1
\end{array}
$$

References:

- S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, "A tutorial on geometric programming," Optimiz. Eng., vol. 8, no. 1, pp. 67-127, Mar. 2007.
- Codreanu M, Tölli A, Juntti M \& Latva-aho M (2007) Joint design of Tx-Rx beamformers in MIMO downlink channel. IEEE Transactions on Signal Processing 55(9): 4639-4655

