
Procedural GPU Shading Ready for Use
Stefan Gustavson1, Linköping University, Sweden and Ian McEwan2, Ashima Research, USA

A selection of procedural patterns, generated entirely on the GPU without any texture accesses. The left two spheres use Perlin simplex
noise by itself and in a fractal sum. The right two spheres use Worley cellular noise in different ways. The plane at the bottom shows
Perlin and Neyret's ”flow noise”, with rotating gradients. All these shaders are animated, have analytic derivatives that are easy to
compute, and are fast enough to be considered for routine use even on previous generation GPU hardware.

Procedural patterns have been a staple of software shad-
ing for decades. Perlin noise revolutionized the industry
and won an Academy award for technical achievement.
With the comparably recent introduction of programma-
ble shading in GPU architectures, hardware accelerated
procedural shading is now very straightforward and de-
serves to be considered a lot more than what seems to be
current practice.

Very recent work by us, submitted for publication elsewhere,
has provided open source GLSL implementations of many
classic noise algorithms in the form of fast, self-contained
functions [1]. To make the case for procedural shading, we
will show live demos using this work of ours to create visually
rich surface patterns. A cross platform demo, with full source
code, to render the animated scene in the figure above is on:
http://www.itn.liu.se/~stegu/gpunoise/
More examples and demos will be presented during the talk.
If you have a GLSL-capable laptop, bring it along.

Procedural shading has an inherent flexibility that cannot be
matched by sampled texture images. The initial effort of writ-
ing a good procedural shader is more complicated than draw-
ing a texture or editing a photographic image to suit your
needs, but with procedural shaders, the pattern and the
colors can be varied with a simple change of parameters. This
allows extensive re-use in many circumstances, as well as fine
tuning or even complete overhauls of the surface appearance
very late in a production process. A procedural pattern allows
for easy generation of a corresponding bump or normal map.
Procedural patterns can be rendered at an arbitrary resolu-
tion without jagged edges or blurring in close-up views,
which is particularly useful for real time applications where
the viewpoint is often unrestricted. There are no problems
with periodic tiling artifacts when a procedural texture is
applied to a large area. Procedural shading also lifts the
memory and tiling restrictions for 3D textures and animated
patterns, and enables analytic anisotropic antialiasing.

While all these advantages have made procedural shading
popular for offline rendering, real time applications have not
yet adopted this practice. One obvious reason is that the GPU
is a limited resource, and quality often has to be sacrificed for
performance. However, recent developments have given us
massive computing power even on typical consumer level
GPUs, and with the massively parallel architectures that are
employed, memory access has become a major bottleneck. A
modern GPU has an abundance of texture units and uses
caching strategies to reduce the number of accesses to global
memory, but many real time applications now have an im-
balance between texture bandwidth and processing band-
width, to the extent where you can sometimes consider that
”cycles are free”, in the meaning that if there is a lot of texture
access going on, computing instructions to augment the
image based textures with procedural elements can often be
executed in parallel to memory reads without any slowdown
at all. Even on low end hardware for mobile devices, texture
download and texture access both come at a considerable
cost which can be alleviated by procedural texturing.

Procedural methods are not limited to fragment shading.
With the ever increasing complexity of real time geometry
and the recent introduction of GPU-hosted tesselation, tasks
like surface displacements and ambient animations are best
performed on the GPU. The tight interaction between proce-
dural displacement shaders and procedural surface shaders
have proven very fruitful for creating complex and impressive
visuals in offline shading environments, and there is no rea-
son to assume that real time shading would be fundamental-
ly different in that respect.

For all these reasons, now is a good time to consider using
more of the GPU power for procedural texturing.

[1] http://github.com/ashima/webgl-noise
1) stefan.gustavson@liu.se, 2) ijm@ashimaarts.com

http://www.itn.liu.se/~stegu76/gpunoise/
mailto:ijm@ashimaarts.com
mailto:stefan.gustavson@liu.se
http://github.com/ashima/webgl-noise

