A Step Towards Remote Tower Center Deployment: Optimizing Staff Schedules

Billy Josefsson Tatiana Polishchuk Valentin Polishchuk <u>Christiane Schmidt</u>

Remote Tower Center (RTC)

- provides ATS remotely to small airports
- replaces local tower with cameras and sensors
- increases efficiency: HR and ATS costs are split between several airports

Remote Tower Center concept

- <u>in Sweden</u>: LFV + SAAB
- within SESAR Joint Undertaking
- RTC in Sundsvall
 - operates 2 airports remotely
 - + 5 airports in development

Main question

- How the total workload from several airports is distributed over several controller working positions?

Problem description Given:

1. Example schedules IFR traffic schedules for 1 day (movement = arrival + departure flights) for five swedish airports

2. Specifications of additional special traffic at these airports (military, school, hospital etc.)

Goal:

Propose optimal assignment of the airports to RTC modules

Constraints

- 1. Number of airports assigned to one module <= mA
- 2. Total number of movs within a module <=maxMov
- 3. One airport assigned to only one module
- 4. All scheduled traffic from 5 airports is handled
- 5. All opening hours at 5 airports are covered

Objectives

- 1. Minimize the number of remote tower modules in use
- 2. Balance workload between the modules
- 3. Minimize assignment switches

Experimental evaluation

1. Data analysis of example schedules and extra traffic specifications for 2 example weeks in 2016 for 5 Swedish airports

- -> extract 1-day data samples (the days with highest traffic)
- 2. Solved MIP using AMPL CPLEX 12.6 solver
- -> example solutions with different objectives

3. Post-processing: avoid potential conflicts in schedules within one module

- 4. Include special airport traffic
- 5. Residual system capacity estimation

Initial assumptions (conservative)

- 1. Max # airdromes/module = 2 (relaxed for the estimation of upper bound)
- 2. Max movs per module / hour= 10 (if >10 movements are initially scheduled at some airport, reduce to 10 wlog)

Tatiana Polishchuk

Minimizing the number of modules in use

Schema 1: lower bound (>2 airs allowed per module)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	1	1	0	0	0	0	0	1
AP2	1	2	1	1	2	1	3	9	10	6	4	3	3	5	2	0	5	6	5	7	2	6	4	1
AP3	0	0	0	1	1	0	0	2	1	6	3	1	5	2	0	3	6	3	4	4	4	2	2	1
AP4	0	0	0	0	0	0	3	2	4	3	2	1	2	2	1	0	3	1	3	1	0	3	1	0
AP5	0	0	0	0	0	0	3	2	0	4	1	0	3	0	0	1	3	1	2	2	1	2	1	0

Tatiana Polishchuk

Minimizing the number of modules in use Schema 2: <=2 airs per module

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	1	1	0	0	0	0	0	1
AP2	1	2	1	1	2	1	3	9	10	6	4	3	3	5	2	0	5	6	5	7	2	6	4	1
AP3	0	0	0	1	1	0	0	2	1	6	3	1	5	2	0	3	6	3	4	4	4	2	2	1
AP4	0	0	0	0	0	0	3	2	4	3	2	1	2	2	1	0	3	1	3	1	0	3	1	0
AP5	0	0	0	0	0	0	3	2	0	4	1	0	3	0	0	1	3	1	2	2	1	2	1	0

Balancing the load

Schema 2 – not balanced in the number of movements per module

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	1	1	0	٥	0	0	0	1
AP2	1	2	1	1	2	1	3	9	10	6	4	3	3	5	2	0	5	6	5	7	2	6	4	1
AP3	0	0	0	1	1	0	0	2	1	6	3	1	5	2	þ	3	6	3	4	4	4	2	2	1
AP4	0	0	0	0	0	0	3	2	4	3	2	1	2	2	1	0	3	1	3	1	þ	3	1	0
AP5	0	0	0	0	0	0	3	2	0	4	1	0	3	U	0	1	3	1	2	2	1	2	1	0

Balancing the load

Schema 3 – better balanced -> more assignment switches

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	1	1	0	0	0	0	0	1
AP2	1	2	1	1	2	1	3	9	10	6	4	3	3	5	2	0	5	6	5	7	2	6	4	1
AP3	0	0	0	1	1	0	0	2	1	6	3	1	5	2	0	3	6	3	4	4	4	2	2	1
AP4	0	0	0	0	0	0	3	2	4	3	2	1	2	2	1	0	3	1	3	1	0	3	1	0
AP5	0	0	0	0	0	0	3	2	0	4	1	0	3	0	0	1	3	1	2	2	1	2	1	0

Minimize the number of switches

Schema 4 – less assignment switches -> not balanced

Observations

We observed clear trade-offs between the 3 objectives:

- Minimize the number of modules in use
- Improve balancing
- Minimize switches

What can we do?

- Place priorities according to current needs (e.g. balancing may have lower priority in the begining)
- Combine solutions (e.g.- first find the min number of modules, then apply the other 2 objectives)

Post-processing: avoid potential conflicts

Post-processing: avoid potential conflicts (cont.)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP2 self									8:10	9:20				13:30				17:20				21:15		
AP2_AP5									_	9:20								_						
AP2_AP3																	16:20							
AP2_AP4																						21:15		
				7/25				12-2		2	1010		100	1000000	1.52.042			141 200						7272
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	1	0
AP2	0	6	2	0	4	2	1	0	8	4	2	2	2	10	0	4	2	8	6	2	4	10	4	0
AP3	0	3	0	2	2	0	3	5	1	7	3	1	6	1	0	3	5	3	4	5	4	2	1	1
AP4	0	0	0	0	0	0	1	2	4	2	1	1	3	3	2	0	4	1	4	2	1	2	0	0
AP5	0	0	0	0	0	0	3	1	2	4	1	0	4	0	0	2	4	3	2	2	1	2	1	0
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	0	1	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	1	0
AP2	0	6	2	0	4	2	1	0	8	4	2	2	2	10	0	4	2	8	6	2	4	10	4	0
AP3	0	3	0	2	2	0	3	5	1	7	3	1	6	1	0	3	5	3	4	5	4	2	1	1
AP4	0	0	0	0	0	0	1	2	4	2	1	1	3	3	2	0	4	1	4	2	1	2	0	0
AP5	0	0	0	0	0	0	3	1	2	4	1	0	4	0	0	2	4	3	2	2	1	2	1	0

Changes: re-assign ESMS to a separate module during periods 8 and 9

17

Analysis of non-scheduled (VFR) traffic / day

18

		norm	worst case
kiruna	FM	3	10
	НКР	5	17
	Skol	1	3
	Special	2	5
	Övrigt	1	5
sturup	FM	1	3
	НКР	1	4
	Skol	5	20
	Special	14	60
	Övrigt	2	10
umeå	FM		
	НКР	4	12
	Skol	2	8
	Special	4	10
	Övrigt	4	4
visby	FM	6	125
	НКР	7	21
	Skol	4	10
	Special	2	10
	Övrigt		
Östersun	FM	8	20
	НКР	8	20
	Skol	3	8
	Special	4	12

3 types of model runs (modes)

- 1. Only regular scheduled traffic (no extra traffic)
- 2. Add moderate amount of extra traffic (normal)
- 3. Worst-case scenario with MAX load

Extra traffic in normal operation (schema 5)

Scheduled traffic vs. plus extra traffic (norm.)

Scheduled

Plus extra traffic (norm.)

Moderate amount of extra traffic added - 3 modules still suffice

Worst case: MAX load operation (Schema 6)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
AP1	0	0	0	0	0	6	10	0	0	0	0	0	5	5	0	0	0	0	0	0	0	0	10	10
AP2	6	8	8	6	8	6	7	6	8	8	8	8	8	10	6	9	7	8	9	6	6	10	8	6
AP3	0	4	0	4	2	0	3	5	5	7	6	5	6	6	0	6	5	6	6	5	6	3	3	3
AP4	0	0	0	0	0	0	10	10	10	10	10	10	10	10	10	0	10	10	10	10	10	10	0	0
AP5	0	0	0	0	0	0	7	5	6	8	6	0	8	0	0	6	7	7	6	6	7	7	6	0

Problem: max extra traffic may not fit into the schedule

Possible solutions:

- 1. Extend airdrome's open hours in some special situations (e.g. max military traffic at AP4)
- 2. Relax our conservative assumptions: Max mov / hour/module > 11? > 12?

Scheduled traffic vs. MAX extra traffic

Residual capacity of RTC with 3 modules

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	sum
AP1						10	9						8	8									9	10	54
AP2	10	4	8	10	6	8	9		2	6	8	8	8	0		6	8	2	4	8	6	0	6	10	137
AP3	10	7		8	8		7	5	9	3	7	9	4	9		7	5	7	6	5	6	8	9	9	148
AP4							9	8	6	8	9	9	7	7	8		6	9	6	8	9	8			117
AP5							7	9	8	6	9		6			8	6	7	8	8	9	8	9		108

Residual = Max Movs (10) – scheduled movs

Airport	Residual	MODE 2 (normal)	MODE 3 (worst-case)
AP1	54	12	40
AP2	137	23	97
AP3	148	24	34
AP4	117	19	166
AP5	108	23	60

Problem at AP4: max extra traffic exceeds the residual capacity

Conclusions

- ✓ Optimization framework for future staff planning at RTC is created
- ✓ Example solutions (schemes) proposed
- ✓ Provided new evidence of RTC efficiency
- ✓ Subject to reality checks and discussions

Future work

- ✓ Deeper EUROCONTROL data analysis for the year 2016
- ✓ Refine the model to reflect seasonal changes
- \checkmark Shift focus towards actual ATCO shifts
- ✓ Include ground traffic into consideration
- ✓ Re-consider the workload definition

Questions?

Questions?

Thank you!

