Air Traffic Deconfliction Using Sum Coloring

Vincent Duchamp, ENAC Billy Josefsson, LFV Tatiana Polishchuk, LIU Valentin Polishchuk, LIU **Raúl Sáez, UPC**

Richard Wiren, Ericsson

Motivation

- There is a need to alleviate the ATCs workload and to avoid the unnecessary costs of solving conflicts that could have been anticipated
- In unmanned aviation, drones are expected to do numerous short flights, requiring a higher level of automation to solve conflicts
- <u>Objective</u>: Strategically solve conflicts with an optimal resource allocation method modelled as a weighted sum coloring problem

2

Minimum Sum Coloring Problem

- Graph vertex coloring involves assigning a color to each vertex so that two adjacent vertices feature different colors; the goal is finding the minimum number of colors needed to color the graph
- In the **Minimum Sum Coloring Problem** (MSCP) each color is identified with a **positive integer**, called the **cost** of the color, and the goal is to **minimize the total cost**

Deconfliction model (I)

- Input: set of aircraft entering the sector at the same time slot
- Graph **G=(V,E)** where **vertices** (V) are the **planes** and **edges** (E) are the **conflicts**
- Colors are assigned to the aircraft (time slots for the planes and vertical layers to the drones)
- Vertices connected by an edge cannot be assigned the same color $\rightarrow \mbox{ conflict}!!$

4

Deconfliction model (II)

- Users have **preferences** over colors (first time slot, particular layers,...)
- c, is the cost incurred by user v in the coloring of the graph (delay in ATM and cost of the layer in UTM)
- w_{ν} is the weight of each user $\nu \rightarrow$ value of time (i.e. cost of delay) in ATM and UTM

$$TotalDelay = \sum_{v \in V} c_v \qquad TotalCost = \sum_{v \in V} c_v w_v$$

Deconfliction model (III)

- An **Integer Programming** (IP) formulation of MSCP is used *
- The IP is solved using Gurobi on a server with two Intel(R) Xeon(R) Gold 6132 2.60GHz CPU nodes, 64 RAM and 2.59TB temporary disk space
- In all cases finding the **optimal IP solution** in one instance completed within **few minutes**

$$\min\sum_{v\in V}\sum_{c\in\mathbb{N}}w_vX_{vc}c$$

$$\sum_{c\in\mathbb{N}}X_{vc}=1\quad orall v\in V$$

$$X_{ic} + X_{jc} \le 1 \quad \forall (i,j) \in E, \forall c \in \mathbb{N}$$

$$X_{vc} \in \{0,1\} \quad \forall v \in V, \forall c \in \mathbb{N}$$

* F. Furini, E. Malaguti, S. Martin, and I.-C. Ternier, "ILP models and column generation for the minimum sum coloring problem," Electronic Notes in Discrete Mathematics, vol. 64, no. 1, pp. 215–224,2018

Cost of delay

Aircraft	Low scenario	Base scenario	High scenario
B733	2 280	3 200	4 370
B734	2 360	3 290	4 540
B735	2 130	2 950	4 040
B738	2 590	3 650	5 330
B752	3 110	4 210	5 640
B763	4 600	6 230	9 070
B744	8 890	10 950	14 030
A319	2 400	3 420	4 840
A320	2 480	3 490	5 090
A321	2 950	4 130	5 770
AT43	580	900	1 350
AT72	830	1 270	1 890
DH8D	1 110	1 630	2 420
E190	1 920	2 750	3 950
A332	5 330	7 220	10 470

- The financial values of time were used as weights for the sum coloring *
- Strategic cost of delay for different aircraft models
- Fuel costs → major source of cost in en-route phase
- UTM: random weights with most of drones having small weights (delay does not create high cost)

* A. Cook, "European airline delay cost reference values," University of Westminster, Tech. Rep., 2015.

7

Scenario (I)

- ATM: planes flying inside LOCCAOI sector during 1 hour (source: DDR2) → force same sector entry time
- UTM: stochastic traffic during one hour over Norrköping (source: Cal model*)

* V. Bulusu, R. Sengupta, and Z. Liu, "Unmanned aviation: To be free or not to be free?" in 7th International Conference for Research in Air Transportation (ICRAT), 2016

Scenario (II)

- **ATM**: 2 test cases:
 - Case 1: 02/06/2018 from 12am to 1pm, with 450 planes (vertices) and 1399 conflicts (edges)
 - Case 2: 06/06/2018 from 12am to 1pm, with 462 planes and 770 conflicts
- UTM: 2 test cases:
 - Case 1: 800 drones and 663 conflicts
 - Case 2: 1000 drones and 770 conflicts

Results (I)

- Pareto frontiers in ATM were computed with respect to the two objectives:
 - Minimizing total delay
 - Minimizing total cost

Results (II)

 Results were compared with 20 random orders and FCFS (First Come First Served) time slot attribution in ATM and vertical layer attribution in UTM

	ATM (case1/case2)	FCFS (case1/case2)	UTM (case1/case2)	FCFS (case1/case2)
Total delay	Pareto frontier	1423.9 / 1416	-	-
Total cost	Pareto frontier	4959.5 / 4450.8	1788 / 1791	8830.55 / 9430.85

UTM Payment mechanism¹²

- A market-based economic mechanism specifies how to allocate resources and how much every user has to pay for the allocation
- Resource allocation should maximize benefit to the society (finding optimal solution to the weighted MSCP)
- Drone operators report higher values of time (weights) → need for a truthful mechanism *
- Vickrey-Clarke-Groves (VCG) mechanism is used to determine the payments for the users **

$$p_v = \sum_{j \in V \setminus \{v\}} c_j^v w_j - \sum_{j \in V \setminus \{v\}} c_j^{V \setminus \{v\}} w_j$$

* T. Granberg and V. Polishchuk, "Socially optimal allocation of atm resources via truthful market-based mechanisms," in 2nd SESAR Innovation Days (SIDs), 2012

** N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, "Algorithmic game theory," in Cambridge University Press, 2007.

Cost of drone flights

- Figure below shows the **mean cost of a drone flight** as a function of the **number of drones** flying during **one hour**
- Average of 5 runs of traffic simulation, with 100m as the separation loss distance

BARCELONATECH

Cost of drone flights

 Results were compared with FCFS strategy, which involves no payments (but costs are higher!)

Conclusions

- Strategic deconfliction using sum coloring works better than the FCFS allocation
- Uncertainty is not considered (real-time adjustments might be needed)
- Unlimited number of layers is considered
- Computing time to get he payments in the VCG mechanism grows with the number of drones

