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firstname.lastname@liu.se

Abstract—We present a Mixed-Integer Programming frame-
work for the design of aircraft arrival routes in a Terminal
Maneuvering Area (TMA) that guarantee temporal separation
of aircraft. The output routes constitute operationally feasible
merge trees, and guarantee that the overall traffic pattern in the
TMA can be monitored by air traffic controllers; in particular,
we ensure that all aircraft on the arrival routes are separated in
time and all merge points are spatially separated. We present a
proof of concept of our approach, and demonstrate its feasibility
by experiments for arrival routes during one hour at Stockholm
TMA.

Index Terms—Aircraft Arrival Routes, Automatic Separation,
Integer Programming

I. INTRODUCTION

An air traffic controller (ATCO) is responsible for guar-
anteeing safe separation of aircraft at all times. Traffic is
particularly dense in the airspace surrounding one or several
aerodromes, a so called Terminal Maneuvering Area (TMA).
At most airports redesigned standard routes for departure
and arrival are established. Currently, these Standard Instru-
ment Departures (SIDs) and Standard Terminal Arrival Routes
(STARs) are designed manually. This design is based on the
airspace layout and incorporates constraints like avoidance of
no-fly zones, manageability by ATCOs, and others. However,
depending on the current traffic load, these routes may result
in a high ATCO workload to obtain the required separation,
especially at merge points of routes.

As air transportation experienced significant growth over the
last decades, and the International Air Transport Association
(IATA) projected that the number of passengers will double
to reach 7 billion/year by 2034 [2], the workload connected
to the safe aircraft separation in the TMA will only increase.
Thus, designing arrival procedures that already guarantee safe
separation at all points for normal, that is, planned, operation,
can be a significant contributor to keep the workload at an
acceptable—a safe—level.

Thus, we suggest an optimization framework for daily ar-
rival routes in a TMA: we take the arrival times at entry points
of all aircraft during a day into account, and compute arrival
routes that ensure safe separation from the entry point to the
runway along the entire routes. In particular, we apply Integer
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Programming to generate operationally feasible, separation-
guaranteeing, dynamic merge trees of curvature-constrained
demand-weighted routes with minimum total length of the
tree. The output routes guarantee that the overall traffic pattern
in the TMA can be monitored by air traffic controllers; in
particular, we keep arriving aircraft well separated at merge
points.

Our previous work [3], in which we introduced a grid-
based MIP approach for finding aircraft arrival routes with
limited turning angle, builds the basis for this work. The novel
component of this paper is the dynamic design that adjusts
the route w.r.t. the demand and the temporal distribution of
demand, i.e., aircraft arrival times.

Apart from the aircraft arrival times to the TMA, we are
given the locations of the TMA entry points, and the location
and direction of the airport runway. As in [3], we discretize
the search space by laying out a square grid in the TMA, and
snapping the locations of the entry points and the runway onto
the grid. The side of the grid pixel is equal to our lower bound
on the distance between route vertices—this ensures that the
merge point separation is satisfied by any path in the grid.
Every grid node is connected to its 8 neighbors. In the output
we seek an arrival tree that merges traffic from the entries to
the runway, i.e., a tree that has the entries as leaves and the
runway as the root, optimized w.r.t. the traffic demand during
the given period. Our objective is to minimize the total length
of the routes from the entry points to the runway. We consider
a weighted version, which takes the number of aircraft using
each route into account, that is, we consider the demand-
weighted total length of the routes. For this first result, we
simplify and assume a unit speed along all edges.

Our model is a mixed-integer program (MIP). We use the
AMPL modeling language and the GUROBI solver to model
and solve the MIP. We feed the model with real flight data
samples (from EUROCONTROL’s Demand Data Repository
(DDR)). We extract the data for Stockholm Arlanda arrival
flights and compare the resulting arrival routes for different
sets of arrivals during a day with high traffic load. The result-
ing arrival tree illustrates a set of optimal demand-weighted
aircraft trajectories which yield improved predictability of
traffic path planning.

The model under development was discussed with opera-
tional experts in LFV (Luftfartsverket, the Swedish ANSP) to
provide realistic operational constraints on the route design.



The designed framework is flexible and can be applied to other
airports and variable arrival traffic demands.

A. Problem Description and Results

In this paper, we present a mathematical programming
framework for finding optimal dynamic aircraft arrival trees.
Our approach is dynamic in comparison to the standard, static
STARs, because our arrival route trees are recomputed for
different time periods. Thus, they change during the day to
reflect the actual incoming traffic demand.

As part of the input to the problem, we are given locations
of the entry points to the Terminal Maneuvering Area (TMA),
the location and direction of the airport runway, and the arrival
times of aircraft to the entry points within a given time interval
T . In the output we seek an arrival tree that merges traffic
from the entries to the runway, i.e., a tree that has the entries
as leaves and the runway as the root (contrary to the common
convention, we assume that the edges of this arborescence are
directed from leaves to root), such that all aircraft are separated
at all points of the arrival routes.

Our arrival route tree must fulfill a set of operational
constraints:

1) Temporal separation of all aircraft along the routes: Any
pair of aircraft moving along the computed arrival tree,
starting at their given arrival times at the entry point(s),
is separated by at least a temporal distance of S. That
is, if aircraft arrive to the TMA within at planned time,
all aircraft are safely separated along the arrival routes.

2) No more than two routes merge at a point: Merge
points of routes require an increased attention level from
controllers, hence, traffic complexity around the merges
should be kept at a minimum [18]. This translates to
the requirement that every vertex of the tree must have
in-degree less than or equal to 2.

3) Merge point separation: The constraint of only two
routes merging at a point could be circumnavigated for
all practical purposes by having merge points very close
to one another. This will again create a small zone with
several routes merging, which is undesirable for control.
Hence, in addition to the operational Constraint 2, we
require that the separation between any two merge points
is larger than a given distance threshold L [18].

4) No sharp turns: Aircraft dynamics impose a limit on
the angle at which the routes can turn (bank angle) [11,
p. 61]. Thus, the turn from a segment of a route to
the consecutive segment is required to never undercut
a given angle threshold γ. If arbitrarily short edges
could be used, a sharp turn could still be simulated by a
sequence of many short edges. Thus, the combination of
the parameter γ and the limit, L, on the minimum length
for any edge enforces the limited turning angle [13].
We assume that the runway is the last segment of every
route: this way, the turn onto the runway must also be
larger than γ—the aircraft must align with the runway
before the touchdown.

5) Obstacle avoidance: The routes should not pass over
a specified set of regions (we do not digress into the
specific nature of the obstacles—they may be no-fly
zones, noise-sensitive areas, etc.).

Objective functions: It is natural to seek arrival routes that
provide short flight routes for aircraft. Thus, one objective in
our optimization problem is the total length of the routes from
the entry points to the runway. Moreover, the arrival route tree
should ”occupy little space”—both from the ATCO perspective
(to minimize attention attraction area), and to avoid spreading
the noise and other environmental impact over a larger region.
This can be modeled by requiring that the produced tree has
small total length of the edges. We consider both objectives,
and call them paths length and tree weight, respectively, in
particular, we consider convex combinations of these two
objectives.

B. Roadmap

In the remainder of this section we review related work.
We describe our MIP formulation in Section II: we start
with a review of our grid-based MIP for static routes in
Subsection II-A, show how we integrate the temporal com-
ponent in Subsection II-B (we present the complete MIP for
our problem in the Appendix A). In Section III we give an
experimental study of our approach, both with a theoretical
proof of concept in Subsection III-A and experiments on the
arrival routes in Stockholm TMA in Subsection III-B. We
conclude in Section IV.

C. Related Work

Automatic design of STARs and arrival routes has been
studied earlier, but to the best of our knowledge, finding
optimal trees, taking into account the temporal component and
the turn constraints, has not been considered before. In prior
work, the routes have been constructed iteratively (one-by-one)
and/or did not adhere to the full set of our constraints and/or
did not route the traffic all the way to the runway and/or did
not plan arrival routes at which aircraft are fully (temporally)
separated at all times.

First, we review the related work on arrival route/STAR
design. Pfeil [17] focuses on weather forecast and the redesign
or design of TMAs pertaining to different weather scenarios.
The author develops an IP model to optimally choose fix
locations and corresponding routes in fixed sectors, and to
renegotiate sector boundaries. For the TMA design from
scratch a two-step solution is presented: first optimal outer
fixes are selected with an IP, then 3D routes between fix-
runway pairs are chosen with a modified version of the A*
algorithm. This defines some first chosen routes as obstacles
for later routes, that is, the construction is sequential. All
algorithms are presented for the US model of a TMA: two
circles of different radii around the runway, where all merges
and maneuvers are assumed to be performed within the inner
circle and are not considered. The same TMA model is used
by Prete et al. [18].



Krozel et al. [13] considered turn-constrained route plan-
ning for a single path; trees and the merging of paths are
not considered. Zhou et al. [21], [22] also construct single,
individual routes (not arrival merge trees) through weather-
impacted TMA. Similarly, Visser and Wijnen [19] construct
single routes, the objective in their work is to minimize
noise impact. None of these authors considered a temporal
component.

The actual scheduling on routes has been considered in
a few papers. Choi et al. [5] claim that using scheduling
algorithms that are more efficient than the traditional FCFS ap-
proach can increase throughput in congested terminal airspace.
But as the route typologies play an important role in the TMA,
they aim to consider both routes and scheduling together.
They present results on STAR merging, testing the impact of
different merge typologies on scheduling of aircraft along the
routes; however, the actual location of merge points is not of
interest and turn constraints are not taken into account.

A huge body of work has been devoted to aircraft se-
quencing close to the runway in order to avoid wake vortex
effects. The latest work is related to the re-categorization
projects on both sides of the Atlantic (see, e.g., [14]) that strive
to define separation standards on per-aircraft-type basis, in
contrast to the current system where each aircraft is classified
into one of the few categories, and the separation is defined
based on the categories of the leading and trailing aircraft. A
recent paper [16] includes into the equation also the surface
movement of the aircraft. On the other end, extended Arrival
Management (AMAN) [10], [16] starts taking the separation
into account already while the plane is enroute. Our work ”fits
in the middle” between the Surface Management (SMAN)
and Cross-border Arrival Management (XMAN): we show
how to ensure the separation within the TMA by taking into
account the time component when designing the arrival routes.
Differently from [6]–[9] who studied speed variation for
airborne delay to adjust Calculated Time of Arrival (CTA) of
one flight, we use paths adjustment to coordinate the merge of
multiple aircraft trajectories. Our framework can be extended
to allow for variable speed; combining it with the work [6]–
[9] to account for aircraft dynamics is the subject of future
research.

Moreover, the idea of assigning not only routes, but also
times is known from a non-aviation context, in particular, from
dynamic vehicle routing, cp. Bertsimas and van Ryzin [4],
and—more general—from dynamic scheduling, see Ouelhadj
and Petrovic [15] for a survey on this topic.

II. GRID-BASED MIP FORMULATION

We start with a review of our prior MIP-formulation for
optimal STAR merge trees [3] in Subsection II-A, we then
describe how we integrate the temporal separation into this
framework in Subsection II-B.

A. Review of our Grid-based MIP for Static Routes

The problem formulation for the optimal STAR merge trees
is the same as the problem description in Subsection I-A

without the temporal component, that is, the arrival times of
aircraft are not part of the input, and we do not need to adhere
to the operational Constraint 1.

We discretize the search space by laying out a square grid
in the TMA, and snapping the locations of the entry points and
the runway onto the grid; let P denote the set of (snapped)
entry points, and r the runway. A grid pixel side has a length
of L, the lower bound on the distance between route vertices—
this ensures that the merge point separation (Constraint 3) is
satisfied by any path in the grid. Every grid node is connected
to its 8 neighbors (where N(i) = denotes set of neighbors of
i, including i), resulting in a bidirectional graph G = (V,E).
That is, for any two neighbors i and j, both edges (i, j) and
(j, i) are included in E; the only exceptions are the entry
points (they do not have incoming edges) and r (it does not
have outgoing edges). The length of an edge (i, j) ∈ E is
denoted by `ij . If we include operational Constraint 5, obstacle
avoidance, we delete the edges in that region from our edge
set E, and, hence, do not allow routes to include edges in the
region.

Our STAR MIP formulation is based on the flow MIP
formulation for Steiner trees [12], [20]. We use decision
variables xe that indicate whether the edge e participates in the
STAR. In addition, we have flow variables: fe gives the flow
on edge e = (i, j) (i.e., the flow from i to j). The constraints
are given in Equations (1)-(4):

∑
k:(k,i)∈E

fki −
∑

j:(i,j)∈E

fij=


|P| i = r

−1 i ∈ P
0 i ∈ V \ {P ∪ r}

(1)

xe ≥ fe
Q

∀e ∈ E (2)

fe ≥ 0 ∀e ∈ E (3)
xe ∈ {0, 1} ∀e ∈ E (4)

where Q is a large number (e.g., Q = |P|).
Equation (1) ensures that a flow of |P| reaches the runway

r, a flow of 1 leaves every entry point, and in all other vertices
of the graph the flow is conserved. Equation (2) enforces edges
with a positive flow to participate in the STAR. The flow
variables are non-negative (Equation (3)), the edge variables
are binary (Equation (4)).

We might also choose to not only minimize the length of
paths from entry points to the runway, but consider a weighted
version that minimizes the sum of trajectory lengths flown by
all arriving aircraft. That is, each path is counted as many
times as it is used by aircraft. Hence, we minimize the demand-
weighted distance. We can easily integrate this by changing the
right-hand side of Equation (1) (and increase Q accordingly).
Let wb be the number of aircraft entering the TMA via entry
point b ∈ P:



∑
k:(k,i)∈E

fki −
∑

j:(i,j)∈E

fij=


∑
b∈P wb i = r

−wi i ∈ P
0 i ∈ V \ {P ∪ r}

(5)

We consider two objective functions: paths length and tree
weight. These are given in Equations (6) and (7), respectively:

min
∑
e∈E

`efe (6)

min
∑
e∈E

`exe (7)

For this paper, we will consider convex combinations of
these objective functions, that is:

min β
∑
e∈E

`exe + (1− β)
∑
e∈E

`efe (8)

1) Degree constraints: Equations (1)-(4) describe a stan-
dard MinCostFlow Steiner tree MIP. We add further equations
to enforce the constraints defined in Section I. For operational
Constraint 2 we require that the outdegree of every node is at
most 1 and that the maximum indegree is 2:

∑
k:(k,i)∈E

xki ≤ 2 ∀i ∈ V \ {P ∪ r} (9)

∑
j:(i,j)∈E

xij ≤ 1 ∀i ∈ V \ {P ∪ r} (10)

∑
k:(k,r)∈E

xkr = 1 (11)

∑
j:(r,j)∈E

xrj ≤ 0 (12)

∑
k:(k,i)∈E

xki ≤ 0 ∀i ∈ P (13)

∑
j:(i,j)∈E

xij = 1 ∀i ∈ P (14)

Equations (11) and (12) ensure that the runway r has one
ingoing and no outgoing edges, respectively; Equations (14)
and (13) make sure that each entry point has one outgoing
and no ingoing edge, respectively; the maximum indegree of
2 for all other vertices is given by Equation (9), the maximum
outdegree of 1 by Equation (10).

2) Turn angle constraints: Next we take care of operational
Constraint 4: If an edge e = (i, j) is used, all outgoing edges
at j must form an angle of at least γ with e . Let Γe be the set
of all outgoing edges from j that form an angle ≤ γ with e,
i.e., Γe = {(j, k) : ]ijk ≤ γ, (j, k) ∈ E}, and let ce = |Γe|.
Equation (15) enforces that we may either use edge xe (which
sets the right-hand side to ce, the upper bound), or we may
use any subset of the edges in Γe.

cexe +
∑
f∈Γe

xf ≤ ce ∀e ∈ E (15)

3) Auxilliary Constraints to Prevent Crossings: While route
crossings at vertices are prevented by the degree constraints in
Subsubsection II-A1, we may still encounter routes crossing
within a grid square, and we add auxiliary constraints to
prevent this behavior. (Note that in the trees that minimize
the length without temporal constraint such a crossing would
never occur, because uncrossing the routes would shorten
them.) We define V ′ as the set of all grid nodes without
those which belong to the last column and last row, that is,
V ′ = V \ {last row} \ {last column}.

xi,i+1+n + xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤1

∀i ∈ V ′ \ {P ∪ r} : i+ 1 + n, i+ n, i+ 1 6∈ {P ∪ r} (16)

However, if one of the grid points in the grid square is an
entry point, one of the four edges crossing the square does not
exist (remember, that entry points have no incoming edges).
Hence, we need to add Equations (17)-(20). Figure 1 illustrates
the four cases depending on the location of the entry point.

xi,i+1+n + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i ∈ P (17)
xi,i+1+n + xi+1+n,i + xi+1,i+n ≤ 1 ∀i : i+ 1 ∈ P (18)
xi,i+1+n + xi+n+1,i + xi+n,i+1 ≤ 1 ∀i : i+ n ∈ P (19)
xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i : i+ n+ 1 ∈ P

(20)

Fig. 1. Four cases with entry point (marked in red) in a grid square: missing
edges are shown in red. The figures in order refer to Equations (17), (18), (19)
and (20), respectively.

B. Integration of Temporal Separation

We introduce new, binary variables ya,j,t that indicate
whether aircraft a occupies vertex j at time t. Moreover,
instead of having only an indicator for the edge e participating
in the routes, xe, we have additional indicators xe,b for the
edge e participating in the route from entry point b to the
runway (for all entry points b ∈ P). We set the variables xe,b
using Equations (21)-(24):



xe,b ≤ xe ∀b ∈ P,∀e ∈ E

(21)∑
j:(b,j)∈E

x(b,j),b = 1 ∀b ∈ P (22)

∑
j:(j,r)∈E

x(j,r),b = 1 ∀b ∈ P (23)

∑
i:(i,j)∈E

x(i,j),b −
∑

k:(j,k)∈E

x(j,k),b = 0 ∀j ∈ V \ {P ∪ r},

∀b ∈ P (24)

Now we can turn our attention to the ya,j,t’s: we will set the
values according to the arrival time of aircraft a at entry point
b, tba, we will make sure that all times are set accordingly
for the vertices along the route to the runway, and we will
make sure that sufficient temporal separation is kept at all
vertices. Let Ab be the set of all aircraft arriving at entry
point b ∈ P , and A = ∪b∈PAb. Moreover let T = {0, . . . , T}
be the considered time interval.

ya,b,tba = 1 ∀b ∈ P,∀a ∈ Ab (25)

ya,b,t = 0 ∀b ∈ P,∀a ∈ A \ Ab,∀t ∈ T (26)

ya,b,t = 0 ∀b ∈ P,∀a ∈ Ab,∀t ∈ T \ {tba}
(27)

ya,j,t ≤
∑
k∈V :

(k,j)∈E

x(k,j) ∀a ∈ A,∀j ∈ V \ P,∀t ∈ T (28)

Equation (25) ensures that aircraft a occupies entry point b
at its arrival time tba at this vertex. Equation (26) yields that
no aircraft that does not arrive at b occupies this vertex at any
time, Equation (27) yields that an aircraft arriving at b occupies
this vertex at no time apart from tba. Finally, Equation (28)
ensures that any aircraft a can occupy a vertex j at any time
t only if there exists an ingoing edge for j, that is, if j is
located on a route.

We have set the variable ya,j,t for entry points, but we still
need to forward this time information for an aircraft a through
its route from the entry point b. When can we set ya,k,t+u = 1,
that is, when is aircraft a at vertex k at time t + u? Aircraft
a needs to reach k by traversing an edge from some vertex
j to k, this traversal takes, by our assumption, u time units.
So, if the aircraft a was at t at some vertex j from which k
can be reached on the path from b, it can reach k at t+ u. If,
however, no edge to k exists, or if a was not at some vertex j
at time t, it can not reach k at t+u, and we set ya,k,t+u = 0.

We could achieve this by formulating

∑
j:(j,k)∈E

x(j,k),b × ya,j,t = ya,k,t+u

∀b ∈ P,∀a ∈ Ab,∀k ∈ V \ P,∀t ∈ {0, . . . , T − u} (29)

Unfortunately, Equation (29) contains a multiplication of
two binary variables, which we may not include in our MIP. To
circumnavigate this, we define a new binary variable za,j,k,b,t
as the product of x(j,k),b and ya,j,t using Equations (30)-(33):

za,j,k,b,t ≤ x(j,k),b ∀a ∈ A,∀j, k ∈ V,∀b ∈ P,
∀t ∈ {0, . . . , T − u} (30)

za,j,k,b,t ≤ ya,j,t ∀a ∈ A,∀j, k ∈ V,∀b ∈ P,
∀t ∈ {0, . . . , T − u} (31)

za,j,k,b,t ≥ x(j,k),b − (1− ya,j,t) ∀a ∈ A,∀j, k ∈ V,∀b ∈ P,
∀t ∈ {0, . . . , T − u} (32)

za,j,k,b,t ≥ 0 ∀a ∈ A,∀j, k ∈ V,∀b ∈ P,
∀t ∈ {0, . . . , T − u} (33)

With this we can reformulate Equation (29) as:

∑
j:(j,k)∈E

za,j,k,b,t − ya,k,t+u = 0

∀b ∈ P,∀a ∈ Ab,∀k ∈ V \ P,∀t ∈ {0, . . . , T − u} (34)

Finally, we can require a minimum separation of S time
units between all aircraft at all vertices:

t+S−1∑
i=t

∑
a∈A

ya,j,i ≤ 1 ∀j ∈ V,∀t ∈ {0, . . . , T − S} (35)

C. The Complete MIP

To enhance readability, we present the complete MIP in the
Appendix A.

III. EXPERIMENTAL STUDY

The experimental study for our framework is twofold: we
present a proof of concept using an artificial instance that
highlights the concept, and is of limited size. In addition, we
consider arrival routes for aircraft in Stockholm TMA, that is,
we apply our framework to real-world instances, and show its
feasibility.

We solve our MIP using Gurobi server installed on a
LUNARC Aurora server [1], utilizing the nodes with two 10-
core Intel E5-2650v3 2.3 GHz CPUs (Haswell), 64 RAM and
1.7 TB temporary disk space.

A. Proof of Concept

In this subsection, we start from presenting an artificial
example that highlights how the optimal dynamic aircraft
arrival route that guarantee temporal separation differ from the
optimal static routes without this condition, and how different
aircraft arrival times influence the route structure. Then we
also show how we integrate the capacities of the flows from
different entry points.



Time Separation: We are given locations for four entry
points and a runway for an artificial TMA with a 10x10 grid
laid out on top of it. The runway is located at the center of the
TMA, at the point with coordinates (4,4), and the four entry
points are placed at the following grid locations: (0,6), (3,9),
(6,9), and (9,6). We choose the parameter S of Equation (35)
as one time unit, that is, S = 1.

Figure 2 shows the configurations of arrival trees that
change depending on the aircraft arrival time sequences to
provide automatic time separation. The aircraft arriving from
the entry point at (0,6) are scheduled at the times 1, 3, 6 and
9, and the aircraft from the entry point located at (3,9) are
arriving at 2, 5, 8 and 11. Tracking the times of all aircraft
arrivals at the merge points in the resulting arrival trees (merge
points for the routes corresponding to the given two entry
points are at (3,6) and (4,5)), we confirm that there are no
conflicts and all aircraft are separated by at least 1 time unit.

In Figure 2(b) we give an example that shows the resulting
optimal arrival tree changes to avoid conflicts. We change
the arrival time sequences for the same two entry points as
follows: four aircraft arrive from the entry point located (0,6)
at times 1, 3, 5 and 7, and four aircraft arrive from the entry
point located at (3,9) at times 2, 4, 6 and 8.

(a) (b)

Fig. 2. Arrival route trees calculated for the following arrival time
sequences: (a) four aircraft arrive from (0,6) at times 1, 3, 6 and 9,
and four aircraft arrive from (3,9) at times 2, 5, 8 and 11; (b) four
aircraft from (0,6) at times 1, 3, 5, 7 and four aircraft from (3,9) at
times 2, 4, 6 and 8.

Capacity-Driven Arrival Routes: The following example
shows how the arrival route trees adapt to the amount of traffic
arriving from different entry directions.

We position four entry points in the same 10x10 grid at
(0,9), (4,9), (9,9), and (4,0). Figure 3 demonstrates how the
configurations of the arrival trees change depending on the
amount of scheduled traffic from different entry points.

First, we schedule 10 aircraft arriving from the entry point
located at (0,9) and one aircraft arriving from each of the
other three entry points. Figure 3(a) shows that in the resulting
arrival tree the direction from where the majority of the
aircraft arrive is prioritized by providing the shortest path from
the entry point (0,9). Figure 3(b) supports this concept by

demonstrating how the other direction with the largest amount
of arriving traffic is prioritized, when we schedule 10 aircraft
arriving from (9,9) and one from each of the remaining entry
points.

(a) (b)

Fig. 3. Arrival route trees, prioritizing the routes with larger capac-
ities. In (a) 10 aircraft arrive from the entry point located at (0,9)
and one aircraft from each of the other three entry points; in (b) 10
aircraft are arriving from the entry point located at (9,9) and one
aircraft from each the other three entry points.

B. Arlanda Airport
In this subsection, we consider arrival routes for Stockholm

TMA. That is, we use the aircraft arrival times at TMA entry
points during one hour of airport operation as input, and
compute the dynamic arrival routes with guaranteed temporal
separation for this time interval.

We have chosen data samples for October 4, 2017, one of
the busiest days of that year with 432 aircraft arrivals. We
use data samples of one hour per experiment. The resulting
arrival trees are presented in Figure 4. Figure 4 (a)-(f) shows
arrival trees for different hours during that day, and Figure 4
(g) depicts a family of all arrival trees during that day. We
observe that when the trees need to be recomputed, they do
not differ completely. This may be an advantage for actual
operation.

We use a 10x10 grid, which automatically guarantees sep-
aration of about 9-10 nm, which is more than the common
standard of 6 nm. In fact, with our current setup we could not
solve the problem for some time periods with higher number
of aircraft arrivals. For example, for the current grid there was
no feasible solution for the time slot between 5 am and 6
am. The current computational resources did not allow to use
a finer grid with smaller cells, but in the future we plan to
continue our experiments on more powerful servers.

Figure 5 shows an arrival tree for 10 aircraft entering
Stockholm TMA between 6 am and 7 am. Locations of the
three merge points are marked by M1, M2 and M3. We track
how each aircraft progresses along the tree and consider the
simulated arrival times at entry points, merge points and the
runway, Table I presents these times for all aircraft. Several
aircraft arriving simultaneously at a merge point would be a
conflict, which our approach excludes.



(a) (b) (c) (d)

(e) (f)

(g)

Fig. 4. Arrival route tree calculated for one hour of Stocholm Arlanda operation in October 4th, 2017, optimized for aircraft arrived at the
following times: (a) 6 am to 7 am, (b) 7 am to 8 am (c) 8 am to 9 am, (d) 12 am to 1 pm, (e) 3 pm and 4 pm, (f) 4 pm to 5 pm. (g) shows
all computed arrival trees in one figure.

Fig. 5. Arrival route tree calculated for one hour of Stocholm Arlanda
operation in October 4th, 2017, for aircraft arriving between 6 am
and 7 am. Entry points and merge points are reference points for the
time schedule presented in Table I.

TABLE I
EXAMPLE TIME SCHEDULE FOR 10 AIRCRAFT ARRIVED BETWEEN 6 AM

AND 7 AM AT STOCKHOLM TMA ON OCTOBER 4, 2017.

Arrivals Simulated time
Aircraft Entry point Entry M1 M2 M3 RWY
a1 south 1 7 10 x 11
a2 south 9 15 18 x 19
a3 south 10 16 19 x 20
a4 north 1 x 4 3 5
a5 north 11 x 14 13 15
a6 east 27 x 30 29 31
a7 east 1 x 6 5 7
a8 west 18 19 22 x 23
a9 west 23 24 27 x 28
a10 north 30 x 33 32 34

IV. CONCLUSION AND DISCUSSION

We presented a MIP-based approach to compute arrival
routes that guarantee temporal separation of aircraft at all
times for normal, that is, planned, operation. This can be



an important contributor to keep the ATCO workload at an
acceptable level at all times. We gave a proof of concept and
applied our framework to the arriving aircraft in Stockholm
TMA.

Currently, we assume a unit speed on all edges, that is, we
do not incorporate the slow-down of the aircraft, we plan to
integrate this in future work—we plan to combine our work
with [6]–[9] to account for aircraft dynamics.

We compute the set of trees for consecutive time periods
during the day, hence, the tree suggested by the control system
will switch from period to period. Sliding time windows may
be applied in the future to handle aircraft movements that span
two periods.

Uncertainties due to changing weather conditions or devi-
ating aircraft arrival times are planned to be incorporated into
the model in later stages as well. This could include varying
aircraft speed for different possible weather scenarios. We plan
to use robust optimization to make our model adaptable to
deviating aircraft arrival times.

Our current model can incorporate static obstacles, e.g.,
no-fly zones. In future work we plan to integrate flexible
obstacles, which can be recomputed dynamically together with
the resulting arrival routes.

Moreover, currently we consider 2D routes with a temporal
component, we plan to extend our study to 3D routes with a
temporal component: 4D routes.
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APPENDIX

A. Complete MIP

min β
∑
e∈E

`exe + (1− β)
∑
e∈E

`efe 0 ≤ β ≤ 1 (8)

s.t.

∑
k:(k,i)∈E

fki −
∑

j:(i,j)∈E

fij =


∑

b∈P wb i = r

−wi i ∈ P
0 i ∈ V \ {P ∪ r}

(5)

xe ≥
fe

Q
∀e ∈ E (2)∑

k:(k,i)∈E

xki ≤ 2 ∀i ∈ V \ {P ∪ r} (9)

∑
j:(i,j)∈E

xij ≤ 1 ∀i ∈ V \ {P ∪ r} (10)

∑
k:(k,r)∈E

xkr = 1 (11)

∑
j:(r,j)∈E

xrj ≤ 0 (12)

∑
k:(k,i)∈E

xki ≤ 0 ∀i ∈ P (13)

∑
j:(i,j)∈E

xij = 1 ∀i ∈ P (14)

cexe +
∑

f∈Γe

xf ≤ ce ∀e ∈ E (15)

xi,i+1+n + xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i ∈ V ′ \ {P ∪ r} : i+ 1 + n, i+ n, i+ 1 6∈ {P ∪ r} (16)

xi,i+1+n + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i ∈ P (17)

xi,i+1+n + xi+1+n,i + xi+1,i+n ≤ 1 ∀i : i+ 1 ∈ P (18)

xi,i+1+n + xi+n+1,i + xi+n,i+1 ≤ 1 ∀i : i+ n ∈ P (19)

xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i : i+ n+ 1 ∈ P (20)

xe,b ≤ xe ∀b ∈ P, ∀e ∈ E (21)∑
j:(b,j)∈E

x(b,j),b = 1 ∀b ∈ P (22)

∑
j:(j,r)∈E

x(j,r),b = 1 ∀b ∈ P (23)

∑
i:(i,j)∈E

x(i,j),b −
∑

k:(j,k)∈E

x(j,k),b = 0 ∀j ∈ V \ {P ∪ r}, ∀b ∈ P (24)

y
a,b,tba

= 1 ∀b ∈ P, ∀a ∈ Ab (25)

ya,b,t = 0 ∀b ∈ P, ∀a ∈ A \ Ab, ∀t ∈ T (26)

ya,b,t = 0 ∀b ∈ P, ∀a ∈ Ab, ∀t ∈ T \ {tba} (27)

ya,b,t ≤
∑

k∈V :(k,j)∈E

x(k,j) ∀a ∈ A, ∀j ∈ V \ P, ∀t ∈ T (28)

za,j,k,b,t ≤ x(j,k),b ∀a ∈ A, ∀j, k ∈ V, ∀b ∈ P, ∀t ∈ {0, . . . , T − u} (30)

za,j,k,b,t ≤ ya,j,t ∀a ∈ A, ∀j, k ∈ V, ∀b ∈ P, ∀t ∈ {0, . . . , T − u} (31)

za,j,k,b,t ≥x(j,k),b − (1− ya,j,t) ∀a ∈ A, ∀j, k ∈ V, ∀b ∈ P, ∀t ∈ {0, . . . , T − u} (32)∑
j:(j,k)∈E

za,j,k,b,t − ya,k,t+u = 0 ∀b ∈ P, ∀a ∈ Ab, ∀k ∈ V \ P, ∀t ∈ {0, . . . , T − u} (34)

za,j,k,b,t ≥ 0 ∀a ∈ A, ∀j, k ∈ V, ∀b ∈ P, ∀t ∈ {0, . . . , T − u} (33)

xe ∈ {0, 1} ∀e ∈ E (4)

fe ≥ 0 ∀e ∈ E (3)
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