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We present a mixed-integer programming approach to compute aircraft arrival routes

in a terminal maneuvering area that guarantee temporal separation of all aircraft arriving

within a given time period, where the aircraft are flying according to the optimal continuous

descent operation speed profile with idle thrust. The arrival routes form a merge tree that

satisfies several operational constraints, e.g., all merge points are spatially separated. We detail

how the continuous descent operation speed profiles for different route lengths are computed.

Experimental results are presented for calculation of fully automated continuous descent

operation-enabled arrival routes during one hour of operation on a busy day at Stockholm

terminal maneuvering area.

Nomenclature

Ab = set of all aircraft arriving at entry point b

a = aircraft

b = TMA entry point

ce = |Γe |

D = aerodynamic drag

E = set of edges

e = edge

f = nominal fuel flow

fa = dynamic constraints

fidle = idle fuel flow

fe = flow on edge e
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G = bidirectional graph; (V, E)

g = gravity acceleration

h = altitude

ha = path constraints

h f = altitude at the metering fix

J = cost function

`i j = length of edge (i, j)

L = distance threshold

La = Lagrange term of the cost function

L = set of vertices in a path

m = mass

N(i) = neighbors of i in graph G

P = set of entry points

p = speed profile

pa = time-independent parameters

Q = large number

r = runway

S(a) = set of aircraft speed profiles

s = distance to go

s f = distance to go at the metering fix

T = time interval

Tidle = idle thrust

t = time

U = maximum number of differing edges

u = control vector

ua = time unit

ua,p,k = time that aircraft a using speed profile p needs to cover segment number k

V = set of grid nodes

v = true airspeed

vCAS = calibrated airspeed

vCAS,min = minimum operative calibrated airspeed

vcruise = cruise true airspeed
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v f = true airspeed at the metering fix

w = wind

wb = number of aircraft entering the TMA via b

x = state vector

x0 = initial conditions

xe = binary indicator for edge e participating in the arrival tree

xe,b = binary indicator for edge e participating in the route from entry point b

x f = state vector at the metering fix

ya, j,t = binary indicator for aircraft a occupying vertex j at time t

ya, j,p,n,t = binary indicator for aircraft a using speed profile p occupies n-th vertex (on a route from b) at time t

za, j,k,b,t = product of xe and ya, j,t

β = weighting coefficient used in the convex combination of the paths length and tree weight objectives

Γe = the set of all outgoing edges from j that form an angle ≤ γ with e

γ = angle threshold

γa = flight path angle

γa,min = minimum descent gradient

λ = upper bound on the number of vertices

λL = first vector of Lagrange multipliers

µL = second vector of Lagrange multipliers

σ = time separation between any pair of aircraft at all vertices

φ = Mayer term of the cost function

ψa = terminal constraints

I. Introduction
Over the last decades, air transportation experienced significant growth, and the International Air Transport

Association (IATA) projected that the number of passengers will reach 7 billion/year by 2034 [1]. On the one hand, this

is desirable for a growing global economy, on the other hand, the higher air traffic volume comes with a drastically

heightened environmental impact and a dramatically increased complexity for air traffic control officers (ATCOs).

Particularly, the area surrounding one or more neighboring aerodromes, the terminal maneuvering area (TMA), is

affected by congestion. Hence, it becomes critically important to design arrival and departure procedures in the TMA

that mitigate the environmental impact and lessen the ATCO workload, while allowing for a high throughput.

Today, more sophisticated satellite-based navigation systems become available, which enable aircraft to follow routes
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with a high level of accuracy while following an optimized flight profile. The International Civil Aviation Organization

(ICAO) [2] identified continuous descent operations (CDOs) as a promising solution to mitigate the environmental

impact by executing optimal engine-idle descents. Eurocontrol [3] states that CDOs “allow aircraft to follow a flexible,

optimum flight path that delivers major environmental and economic benefits—reduced fuel burn, gaseous emissions,

noise and fuel costs—without any adverse effect on safety”, cf. also [4, 5].

Furthermore, ICAO has published guidance material [2] to support air navigation service providers (ANSPs) in the

design of CDO approach procedures, suggesting vertical corridors within which all the descending aircraft trajectories

must be contained. This approach provides separation from conflicting air traffic flows in the vicinity. However, as

reported in [6], the suggested criteria have been established without explicitly considering the aircraft type, assuming

international standard atmosphere (ISA) conditions and with coarse assumptions regarding the aircraft gross mass and

performance data. This results in very restrictive flight corridors, which limit the fuel-saving capabilities of CDOs in

real operations.

At most airports standard routes for departure and arrival, standard instrument departures (SIDs) and standard

terminal arrival routes (STARs), are designed manually. ATCOs are responsible for guaranteeing safe separation of

aircraft along the suggested static routes. Separation is provided at merge points (typically for arriving traffic) and also

can be provided by crossing flows at different altitudes (typically for arriving traffic conflicting with departure traffic).

These crossings are typically done at constant altitude and require level-offs, impeding CDOs and Continuous Climb

Operations (CCOs). Separation of the aircraft arriving from different directions require special attention of the ATCO,

especially at the merge points. It is a demanding task for a controller even with a moderate amount of traffic, and when

air traffic volume increases, ATCOs often face situations with very high, or even unmanageable, workload. Hence,

automation tools that help them to secure the necessary separation along the routes and especially at the merge points,

are required.

In this work we design an optimization framework for computing aircraft arrival routes at a pre-tactical level that

guarantee temporal separation of all aircraft arriving to TMA within a given time period, incorporating realistic CDO

speed profiles. In particular, for each aircraft, based on its type, we compute optimized continuous descent speed profiles

for different feasible route lengths. These are then input to a mixed integer programming (MIP) formulation. We output

arrival routes that ensure safe separation from the entry point to the runway along the entire routes, with each aircraft

following an optimized continuous descent profile. It is expected that this both will reduce ATCO workload (by enabling

automated separation tools) and environmental impact (by ensuring CDOs).

In the next section we review related work on this topic. In Section III we formally define our problem, and present

our grid-based MIP formulation in Section IV. In Section V we detail how we use the aircraft arrival time and aircraft

type to compute the optimized continuous descent speed profile for different route lengths. We present an experimental

study of our concept in Section VI, before we conclude in Section VII.
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II. Background
Various authors considered automatic design of arrival routes. However, to the best of our knowledge, prior to our

work the computation of optimal trees that take into account both the temporal separation and the turn constraints has

not been considered. Prior approaches either constructed the routes one-by-one instead of simultaneously, or did not

consider all our constraints, or they did not plan arrival routes at which aircraft are fully (temporally) separated at all

times.

Turn-constrained route planning for just a single path (that is, no merging of paths, and construction of trees) was

considered by Krozel et al. [7]. Similarly, Zhou et al. [8] constructed single, individual routes through weather-impacted

TMA; and Visser and Wijnen [9] constructed single routes that minimize noise impact. The temporal component,

however, was not considered by any of these works.

A few authors considered the scheduling problem along the arrival routes: Choi et al. [10] claimed that using

scheduling algorithms that are more efficient than the traditional first-come-first-served (FCFS) approach can increase

throughput in congested terminal airspace. They studied routes and scheduling together, and consider the impact of

different merge typologies on the aircraft scheduling. The location of merge points, or constraints like the limit on a turn

angle were not considered by Choi et al.

A lot of attention has been given to sequencing close to the runway, for example, re-categorization projects on both

sides of the Atlantic (see, e.g., [11]) aim to replace the current standard of using only a few aircraft categories, where

separation is determined by the category of leading and trailing aircraft, by a per-aircraft-type separation standard.

A MIP-based approach for automation of aircraft separation along the optimized arrival routes was presented in [12].

The authors took the arrival times at entry points of all aircraft during a day as an input, and computed arrival routes that

ensure safe separation from the entry point to the runway along the entire routes. They use the simplifying assumptions

that all aircraft (independently of the type) flew with the same speed. We extend this work by incorporating actual speed

profiles for different types of aircraft, using CDO to provide environmentally-friendly fuel-efficient arrivals.

III. Problem Description
In this paper, we present a mathematical programming framework for finding optimal dynamic aircraft arrival trees

that guarantee separation for all aircraft that fly according to their optimal CDO speed profiles. The arrival trees are

dynamic—compared to the standard, static STARs— , because our arrival route trees are recomputed for different time

periods. Thus, they change during the day to reflect the actual incoming traffic demand.

Our input consists of the position of entry points to the TMA; the location and direction of the runway; and arrival

time (within a given time interval T), arrival entry point, and aircraft type for all aircraft. We aim to output an arrival

tree that merges traffic from the entries to the runway—i.e., a tree that has the entries as leaves and the runway as the

root (here we slightly abuse notation twice, as directed trees are usually called arborescences, and these are usually
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directed from leaves to root)—such that all aircraft flying according to their optimal continuous descent speed profile for

the route length of the entry point-runway path along the tree are separated at all points of the arrival routes. These

speed profiles are computed separately, and provided as input to the MIP in the form of different speed profiles for

different arrival route lengths.

Our arrival tree must fulfill a set of operational constraints:

1) Temporal separation of all aircraft along the routes: Each pair of aircraft that—while moving along the entry

point-runway paths along the computed arrival tree—shares a subroute, is separated by a temporal distance of at

least σ along this subroute. Hence, if all aircraft arrive to the TMA entry points at the planned point in time, all

aircraft are guaranteed to be safely separated along the arrival routes.

2) No more than two routes merge at a point: ATCOs need to give heightened attention to merge points of routes.

Thus, traffic complexity around the merges should be as low as possible [13]. We can formulate this requirement

as a maximum in-degree of 2 for all vertices of the tree (vertices with in-degree 1 lie simply on a path, we need

to merge routes towards the runway, but we minimize the number of routes that may merge at any vertex).

3) Merge point separation: Operational constraint 2) could be circumvent by placing merge points arbitrarily close

to another—in practice, this would still result in a very small zone with high traffic complexity in terms of many

merging routes. Thus, we add the requirement of a minimum distance between any two merge points: it needs to

be larger than a given distance threshold L [13].

4) No sharp turns: Because of aircraft dynamics, an aircraft cannot turn at an arbitrarily acute angle: there is a a

limit on the angle at which the routes can turn (bank angle). Consequently, any turn from a route segment to

the consecutive route segment must be larger than a given angle threshold γ. Again, if we would allow to use

arbitrarily short edges, a sequence of many short edges with pairwise angles larger than γ could still lead to a too

sharp turn for the aircraft. So, it is the combination of the threshold γ with the lower bound on edge length, L,

which enforces the limited turning angle [7]. We assume that the runway is the last segment of every route: this

way, the turn onto the runway must also be larger than γ—the aircraft must align with the runway before the

touchdown.

5) Obstacle avoidance: We can mark a set of regions (e.g. no-fly zones, noise-sensitive areas, etc.) over which

routes may not pass.

IV. Grid-based MIP Formulation
Our MIP formulation is based on the MIP we presented in [12]: to simplify, we assumed there that covering a single

edge takes ua time units for all aircraft (independent of aircraft type and distance to runway). In this paper, we integrate

aircraft with different speed, and in particular the speed given by a continuous descent profile for the specific aircraft

type. Any other speed profile could be used.
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We start with a review of our prior MIP-formulation for optimal STAR merge trees with temporal separation [12]

(which is based on our formulation for static routes from [14]) in Subsection IV.A, we then describe how we integrate

different speed profiles in Subsection IV.B, in particular, we will use the speed profiles that stem from CDOs for the

different aircraft, see Section V for details of their computation.

A. Review of our Grid-based MIP for Dynamic Arrival Routes with Guaranteed Temporal Separation

We use a dicretization: we overlay the TMA with a square grid, and snap the location of both entry points and

runway to the grid. Let P denote the set of (snapped) entry points, and r the (snapped) runway. We use the threshold L

as side length of grid pixels, hence, we fulfill operational Constraint 3) with any path in the grid. Every grid node is

connected to its 8 neighbors (where N(i) = denotes set of neighbors of i, including i), resulting in a bidirectional graph

G = (V, E). That is, for any two neighbors i and j, both edges (i, j) and ( j, i) are included in E ; exceptions are the entry

points (they do not have incoming edges) and r (it does not have outgoing edges). Let `i j denote the length of an edge

(i, j) ∈ E .

In case we use operational Constraint 5), we delete the edges from the region that our routes may not pass from the

edge set E (as we build our arrival tree from grid edges no route will then cross any obstacle).

Our underlying STAR MIP formulation ([14]) is based on the flow MIP formulation for Steiner trees [15, 16]. We use

decision variables xe that indicate whether the edge e participates in the arrival tree. Moreover, we have flow variables:

fe gives the flow on edge e = (i, j) (i.e., the flow from i to j). The constraints are given in Equations (1)-(4):

∑
k:(k,i)∈E

fki −
∑

j:(i, j)∈E
fi j=



|P | i = r

−1 i ∈ P

0 i ∈ V \ {P ∪ r}

(1)

xe ≥
fe
Q

∀e ∈ E (2)

fe ≥ 0 ∀e ∈ E (3)

xe ∈ {0, 1} ∀e ∈ E (4)

where Q is a large number (e.g., Q = |P |).

Equation (1) ensures that a flow of |P | reaches the runway r , a flow of 1 leaves every entry point, and in all other

vertices of the graph the flow is conserved. Equation (2) enforces edges with a positive flow to participate in the STAR.

The flow variables are non-negative (Equation (3)), the edge variables are binary (Equation (4)).

In case we aim to minimize the sum of trajectory lengths flown by all arriving aircraft, where each path is counted as

many times as it is used by aircraft (instead of minimizing the length of paths from entry points to the runway), we
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can easily integrate this by changing the right-hand side of Equation (1) (and increase Q accordingly). Let wb be the

number of aircraft entering the TMA via entry point b ∈ P:

∑
k:(k,i)∈E

fki −
∑

j:(i, j)∈E
fi j=



∑
b∈P wb i = r

−wi i ∈ P

0 i ∈ V \ {P ∪ r}

(5)

We consider two objective functions: paths length and tree weight. These are given in Equations (6) and (7),

respectively:

min
∑
e∈E

`e fe (6)

min
∑
e∈E

`exe (7)

For this paper, we will consider convex combinations of these objective functions, that is:

min β
∑
e∈E

`exe + (1 − β)
∑
e∈E

`e fe (8)

1. Degree constraints

Equations (1)-(4) are standard MIP-constraints for a MinCostFlow Steiner tree formulation, (5) allows us to weigh

different paths in the resulting tree differently. However, we still need to add further equations to enforce the operational

constraints presented in Section III. For operational Constraint 2) we require that the out-degree of every node is at most

1 and that the maximum in-degree is 2:

∑
k:(k,i)∈E

xki ≤ 2 ∀i ∈ V \ {P ∪ r} (9)

∑
j:(i, j)∈E

xi j ≤ 1 ∀i ∈ V \ {P ∪ r} (10)

∑
k:(k,r)∈E

xkr = 1 (11)

∑
j:(i, j)∈E

xi j = 1 ∀i ∈ P (12)
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Equation (11) ensures that the runway r has one in-going edge, Equation (12) makes sure that each entry point has

one outgoing edge, the maximum indegree of 2 for all other vertices is given by Equation (9), the maximum outdegree

of 1 by Equation (10).

2. Turn angle constraints

The next operational constraint from Section III is Constraint 4): We require that for each edge e = (i, j) used in the

arrival tree, all outgoing edges at j must form an angle of at least γ with e. Let Γe be the set of all outgoing edges

from j that form an angle ≤ γ with e, i.e., Γe = {( j, k) : ]i j k ≤ γ, ( j, k) ∈ E}, and let ce = |Γe |. We add the following

constraint:

cexe +
∑
f ∈Γe

x f ≤ ce ∀e ∈ E (13)

By Equation (13) we can either use edge xe (which sets the left-hand side to ce, the upper bound provided by the

right-hand side, and prohibits the use of any other edge in Γe), or we may use any subset of the edges in Γe.

3. Auxilliary Constraints to Prevent Crossings

While route crossings at vertices are prevented by the degree constraints in Subsubsection IV.A.1, we may still

encounter routes crossing within a grid square, and we add auxiliary constraints to prevent this behavior. (Note that in

the trees that minimize the length without adding the temporal separation constraints such a crossing would never occur,

because uncrossing the routes would shorten them.)

We define V ′ as the set of all grid nodes without those which belong to the last column and last row of the grid, that

is, V ′ = V \ {last row} \ {last column}.

xi,i+1+n + xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤1

∀i ∈ V ′ \ {P ∪ r} : i + 1 + n, i + n, i + 1 < {P ∪ r} (14)

Remember that entry points have no incoming edges. Hence, if one of the grid points in the considered grid square

is an entry point, one of the four edges considered in Equation (14) does not exist. Thus, we add Equations (15)-(18).
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xi,i+1+n + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i ∈ P (15)

xi,i+1+n + xi+1+n,i + xi+1,i+n ≤ 1 ∀i : i + 1 ∈ P (16)

xi,i+1+n + xi+n+1,i + xi+n,i+1 ≤ 1 ∀i : i + n ∈ P (17)

xi+1+n,i + xi+n,i+1 + xi+1,i+n ≤ 1 ∀i : i + n + 1 ∈ P (18)

4. Integration of Temporal Separation

So far, our MIP can compute an optimal (static) arrival tree (according to objectve function (8)). In this subsection

we review the temporal separation we described in [12]. The assumption there was that traversing any edge for any

aircraft takes a unit time of ua. We introduce new, binary variables ya, j,t that indicate whether aircraft a occupies vertex

j at time t. Additionally, apart from the indicator xe for an edge e participating in the routes, we introduce indicators

xe,b for the edge e participating in the route from entry point b to the runway (for all entry points b ∈ P). We set the

variables xe,b using Equations (19)-(22):

xe,b ≤ xe ∀b ∈ P, ∀e ∈ E (19)∑
j:(b, j)∈E

x(b, j),b = 1 ∀b ∈ P (20)

∑
j:(j,r)∈E

x(j,r),b = 1 ∀b ∈ P (21)

∑
i:(i, j)∈E

x(i, j),b −
∑

k:(j,k)∈E
x(j,k),b = 0 ∀ j ∈ V \ {P ∪ r},

∀b ∈ P (22)

We still need to set the new variables ya, j,t . We will set ya,b,tba = 1, because we know that aircraft a arrives at entry

point b at time tba , Equation (23). Additionally, we set various ya, j,t to zero: whenever we know that an aircraft cannot

occupy the vertex at all or certain points in time. Equation (24) ensures that an aircraft that does not arrive at entry point

b will occupy b at no point in time, Equation (25) yields that an aircraft arriving at b occupies this vertex at no time

apart from tba . Finally, Equation (26) ensures that any aircraft a can occupy a vertex j at any time t only if there exists an

in-going edge for j, that is, if j is located on a route. That is, if j is a grid vertex, but not a vertex on any route, no

aircraft a will occupy it at any time.

Let Ab be the set of all aircraft arriving at entry point b ∈ P, and A = ∪b∈PAb . Moreover let T = {0, . . . ,T} be

the considered time interval.
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ya,b,tba = 1 ∀b ∈ P, ∀a ∈ Ab (23)

ya,b,t = 0 ∀b ∈ P, ∀a ∈ A \ Ab, ∀t ∈ T (24)

ya,b,t = 0 ∀b ∈ P, ∀a ∈ Ab, ∀t ∈ T \ {tba } (25)

ya, j,t≤
∑
k∈V :
(k, j)∈E

x(k, j)∀b ∈ P, ∀a ∈ A, ∀ j ∈ V \ P, ∀t ∈ T (26)

We will then forward the information on the times at which a arrives at nodes along the route from b to the runway.

That is, while Equations (23)-(26) set the variable ya, j,t for entry points, we need to set the variable for other vertices

along the arrival tree. An aircraft a can reach vertex k at time t + u (ya,k,t+u = 1) only by traversing an edge from

another vertex j to vertex k (which takes ua time units by assumption). Hence, a must have occupied some vertex j at

time t (ya, j,t = 1), such that the edge ( j, k) exists in the path from b. If no such edge ( j, k) exists, or if a did not occupy

any such vertex at time t (ya, j,t = 0∀ j for which edge ( j, k) exists in the path from b), a cannot reach k at t + u, and we

set ya,k,t+u = 0.

We could achieve this by formulating

∑
j:(j,k)∈E

x(j,k),b × ya, j,t = ya,k,t+u

∀b ∈ P, ∀a ∈ Ab, ∀k ∈ V \ P, ∀t ∈ {0, . . . ,T − u} (27)

However, Equation (27) is not a linear constraint (we multiply two binary variables), which we cannot add to our

11



MIP. Hence, we define a new binary variable za, j,k,b,t as the product of x(j,k),b and ya, j,t using Equations (28)-(31):

za, j,k,b,t ≤ x(j,k),b ∀a ∈ A, ∀ j, k ∈ V, ∀b ∈ P,

∀t ∈ {0, . . . ,T − u} (28)

za, j,k,b,t ≤ ya, j,t ∀a ∈ A, ∀ j, k ∈ V, ∀b ∈ P,

∀t ∈ {0, . . . ,T − u} (29)

za, j,k,b,t ≥ x(j,k),b − (1 − ya, j,t ) ∀a ∈ A, ∀ j, k ∈ V, ∀b ∈ P,

∀t ∈ {0, . . . ,T − u} (30)

za, j,k,b,t ≥ 0 ∀a ∈ A, ∀ j, k ∈ V, ∀b ∈ P,

∀t ∈ {0, . . . ,T − u} (31)

With this we can reformulate Equation (27) as:

∑
j:(j,k)∈E

za, j,k,b,t − ya,k,t+u = 0

∀b ∈ P, ∀a ∈ Ab, ∀k ∈ V \ P, ∀t ∈ {0, . . . ,T − u} (32)

Finally, we ensure that temporal separation between any pair of aircraft along the routes is kept: we require a

minimum temporal separation of σ time units between all aircraft at all vertices:

t+σ−1∑
τ=t

∑
a∈A

ya, j,τ ≤ 1 ∀ j ∈ V, ∀t ∈ {0, . . . ,T − σ + 1} (33)

B. Integration of Different Speed Profiles for Aircraft

In order to transfer our approach to a real-world scenario we distinguish different aircraft types and consider their

optimal continuous descent speed profile for different route lengths.

For each aircraft a we are given a set of speed profiles, S(a), which contains speed profiles, p, of different lengths

(that is, the speed profile is optimized for different route lengths), see Section V for the computation of these speed

profiles. The speed profile determines the time to cover the first, second.... segment of the route.

We need to substitute the binary variables ya, j,t (that indicate whether aircraft a occupies vertex j at time t) by

binary variables ya, j,p,n,t that indicate whether aircraft a using speed profile p occupies the n-th vertex (on a route from

b) j at time t. Why do we need to add two new indices, and do not simply add p? For each speed profile the time it
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takes to cover an edge depends on which edge it is, that is, a profile p has a time for covering the first edge, another for

covering the second edge etc.. Hence, we need to know what number of edge we cover (which we will deduct from the

number of the vertex along the route). Let λ be an upper bound on the number of vertices in any path, L = {1, . . . , λ}.

We substitute Equations (23)-(26) by (and extend the set of constraints that set variables to zero):

∑
p∈S(a)

ya,b,p,1,tba = 1 ∀b ∈ P, ∀a ∈ Ab (34)

ya,b,p,k,tba = 0 ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a), ∀k , 1 ∈ L (35)

ya,b,p,1,t = 0 ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a), ∀t ∈ T \ {tba } (36)

ya,b′,p,k,t = 0 ∀b′ , b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a), ∀k ∈ L, ∀t ∈ T (37)

ya′,b,p,1,tba = 0 ∀b ∈ P, ∀a′ , a ∈ Ab, ∀p ∈ S(a) (38)

ya, j,p,k,t ≤
∑
i∈V :
(i, j)∈E

x(i, j) ∀ j ∈ V \ P, ∀a ∈ A, ∀p ∈ S(a), ∀k ∈ L, ∀t ∈ T (39)

ya, j,p,1,t = 0 j ∈ V \ P, ∀a ∈ A, ∀p ∈ S(a), ∀t ∈ T (40)∑
p∈S(a)

ya, j,p,k,t ≤ 1 j ∈ V, ∀a ∈ A, ∀k ∈ L, ∀t ∈ T (41)

We add a constraint, which, for each entry point, computes the length of the path from entry point to runway in the

arrival tree:

`(b) =
∑
(i, j)∈E x(i, j),b (42)

Now, we need to make sure that for each aircraft arriving at entry point b, we pick the speed profile from S(a) that

has length `(b). That is, we want ya,b,`(b),1,tba = 1 and ya,b,p,1,tba = 0∀p , `(b). However, as `(b) is a variable, we

cannot use it as an index, and we use two auxiliary binary variables ψb,a,p and φb,a,p to achieve the desired result. We

will make sure that:

ψb,a,p=


0 p = `(b)

1 p , `(b)
(43)

Then we set:

ya,b,p,1,tba = 1 − ψb,a,p ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a) (44)

Together with Equation (34) this ensures that for at least one profile (the one of correct length) the variable y is set to
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one. We ensure Equation (43) by adding Equations (45)-(48) to the MIP:

− ψb,a,p ≤ (`(b) − p +
1
2
)/λ + λ · φb,a,p ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a) (45)

ψb,a,p ≤ − `(b) + p +
1
2
+ λ · φb,a,p ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a) (46)

ψb,a,p ≤ (`(b) − p) +
1
2
+ λ(1 − φb,a,p) ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a) (47)

− ψb,a,p ≤ (−`(b) + p +
1
2
)/λ + λ(1 − φb,a,p) ∀b′ , b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a) (48)

Finally, we need to reformulate the constraints for forwarding the arrival time information along the arrival path

from entry point to runway (Equations (28)-(30) and (27); (31) is not necessary for a binary variable), and the separation

constraint (Equation (33)). We add indices to our auxiliary binary variable za, j,i,b,t to za, j,i,b,p,k,t , which will now

represent the product of x(j,i),b and ya, j,p,k,t . Let ua,p,k be the time that aircraft a using speed profile p needs to cover

segment number k on its route from entry point to runway.

za, j,i,b,p,k,t−ua,p,k
≤ x(j,i),b ∀b ∈ P, ∀a ∈ Ab, ∀( j, i) ∈ E, ∀k ∈ L, ∀t ∈ {ua,p,k + 1, . . . ,T + 1} (49)

za, j,i,b,p,k,t−ua,p,k
≤ ya, j,p,k,t−ua,p,k

∀b ∈ P, ∀a ∈ Ab, ∀( j, i) ∈ E, ∀k ∈ L, ∀t ∈ {ua,p,k + 1, . . . ,T + 1} (50)

za, j,i,b,p,k,t−ua,p,k
≥ x(j,k),b − (1 − ya, j,p,k,t−ua,p,k

) ∀b ∈ P, ∀a ∈ Ab, ∀( j, i) ∈ E, ∀k ∈ L, ∀t ∈ {ua,p,k + 1, . . . ,T + 1}

(51)

The new version of Equation (32) is:

∑
j:(j,i)∈E

za, j,i,b,k,t−ua,p,k
− ya,i,p,k+1,t = 0 ∀b ∈ P, ∀a ∈ Ab, ∀p ∈ S(a), ∀k ∈ L, ∀i ∈ V \ P, ∀t ∈ {ua,p,k + 1, . . . ,T} (52)

For the separation—we again require a minimum temporal separation of σ time units between all aircraft at all

vertices—we add:

t+σ−1∑
τ=t

∑
a∈A

∑
p∈S(a)

∑
k∈L

ya, j,p,k,τ ≤ 1 ∀ j ∈ V, ∀t ∈ {0, . . . ,T − σ + 1} (53)
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C. Consistency between Trees of Different Time Periods

Additionally, we may aim for trees for consecutive time periods that do not differ a lot. Here, we measure consistency

in terms of number of different edges used for the routes in the trees. Let xi j and xoldi j denote the edge indicator

variable for the current and previous period, respectively. We define a variable, axi j , that determines |xi j − xoldi j | in

Equations (54)-(55), and then limit the number of differing edges in Equation (56) by parameter U:

axi j ≤ xi j − xoldi j ∀( j, i) ∈ E (54)

axi j ≤ xoldi j − xi j ∀( j, i) ∈ E (55)∑
(i, j)∈E

axi j ≤ U (56)

D. The Complete MIP

To enhance readability, we give the list of all constraints in the complete MIP. We use objective function (8).

As constraints we use: (2), (5), (9), (10), (11), (12), (13), (14), (15)-(18), (19)-(22), (34)-(41), (42), (44), (45)-(48),

(49)-(51), (52), and (53). Additionally, we of course set the range of binary and non-negative variables (like presented

in Equations (3), (4)).

V. Computation of CDO Speed Profiles
In this paper, we compute several descent trajectories for each aircraft arriving at the studied airport and for each

possible route length within the TMA. We assumed CDOs for all the descents, with no additional thrust (only idle thrust)

nor speed-brakes usage allowed.

Given a known route (route length), and consequently a fixed distance to go, the optimization of the vertical profile

(altitude and speed) can be formulated as an optimal control problem, which aims at computing the control time history

of a system, here the aircraft, such that a cost function is minimized while satisfying some dynamic and operational

constraints [17].

Further in Subsection V.A, we present the generic optimal control problem and in Subsection V.B we focus on the

trajectory optimization itself—applied to aircraft descents.
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A. Trajectory Optimization: Generic Optimal Control Problem

A generic optimal control problem is defined as [18]:

min
u(t)

Jocp := φ
(
x(t f )

)
+

∫ t f

t0

La (x(t), u(t), pa) dt

s.t x(t0) = x0

Ûx(t) = fa (x(t), u(t), pa)

ha (x(t), u(t), pa) ≤ 0

ψa
(
x(t f )

)
= 0

(57)

Where x ∈ Rnx is the state vector, with fixed initial conditions x0; u ∈ Rnu is the control vector; and the vector

pa ∈ R
np includes all the time-independent parameters of the model; La : Rnx × Rnu × Rnp → R and φ : Rnx → R

are the Lagrange and Mayer terms of the cost function, respectively. The dynamics of the state vector are expressed

by a set of non-linear equations fa : Rnx × Rnu × Rnp → Rnx ; ha : Rnx × Rnu × Rnp → Rnh and ψa : Rnx → Rnψa

represent applicable path and terminal constraints, respectively. Note that if the time interval is not fixed, t f becomes a

new decision variable.

The Hamiltonian of the optimal control problem (57) is:

H = La + λL
T fa + µL

T ha (58)

where λL and µL are vectors of Lagrange multipliers. The set of necessary conditions for J to be stationary optimum

is [19]:

Ûλ = −

(
∂H
∂x

)
0 =

(
∂H
∂u

)
λ(t f ) =

(
∂φ

∂x
+ νT

∂ψ

∂x

)T
t=t f

0 =
[(
∂φ

∂x
+ νT

∂ψ

∂x

)
f + La

]
t=t f

µ =


≥ 0 if h = 0

= 0 if h < 0

(59)
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B. Optimal Control Problem for Aircraft Descents

In this paper, the state vector has been chosen as x = [v, h, s], where v is the true airspeed (TAS), h the altitude of

the aircraft, and s the distance to go. In order to obtain environmentally friendly trajectories, idle thrust is assumed and

speed-brakes use is not allowed throughout the descent. In such conditions, the flight path angle is the only control

variable in this problem (u = [γa]), which is used to manage the energy of the aircraft and achieve different times of

arrival at the metering fix with minimum fuel consumption and noise nuisance.

The dynamics of x are expressed by the following set of ordinary differential equations (ODE), considering a

point-mass representation of the aircraft reduced to a “gamma-command" model, where vertical equilibrium is assumed

(lift balances weight). In addition, the cross and vertical components of the wind are neglected, and the aerodynamic

flight path angle is assumed to be small (i.e.,sin γa ' γa and cos γa ' 1):

fa =



Ûv

Ûh

Ûs


=



Tidle−D
m − gγa

vγa

v + w


(60)

where Tidle : Rnx → R is the idle thrust; D : Rnx×nu → R is the aerodynamic drag; g is the gravity acceleration; w is

the wind and m the mass, which is assumed to be constant because the fuel consumption during an idle descent is a

small fraction of the total m [20].

In this paper, the trajectory is divided in two phases: the latter part of the cruise phase prior the top of descent

(TOD), and the idle descent down to the metering fix. Assuming that the original cruise speed will not be modified after

the optimization process, the two-phases optimal control problem can be converted into a single-phase optimal control

problem as follows:

J =
f

vcruise
+

∫ t f

t0

( fidle + CI) dt (61)

where f : Rnx×nu → R and fidle : Rnx → R are the nominal and idle fuel flow, respectively; and CI is the cost index,

which is a parameter chosen by the airspace user that reflects the relative importance of the cost of time with respect to

fuel costs [21].

In addition to the dynamic constraints f , the following set of path constraints are enforced to ensure that the aircraft

airspeed remains within operational limits, and that the maximum and minimum descent gradients are not exceeded:
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ha =



vCAS,min − vCAS

vCAS − VMO

M −MMO

γa

γa,min − γa



≤



0

0

0

0

0



(62)

where vCAS : Rnx → R is the calibrated airspeed (CAS) and M : Rnx → R is the Mach number, both functions of

the state vector; vCAS,min and VMO are the minimum and maximum operative CAS, respectively; MMO is maximum

operative Mach; and γa,min is the minimum descent gradient.

Different alternatives can be used to model the aircraft performance functions Tidle, D, f and fidle and their

respective parameters. Here, we adopt EUROCONTROL’s base of aircraft data (BADA) v4 model [22].

Finally, terminal constraints fix the final states vector:

ψa =



v − v f

h − h f

s − s f


=



0

0

0


(63)

where x f =
[
v f , h f , s f

]
is the state vector at the metering fix.

In the formulation presented herein, there is only one control variable, which appears linearly in the equations

describing the dynamics of the system as well in the cost function to be minimized. Consequently, the Hamiltonian of

the system (58) is also linear with respect to the control, leading to a singular optimal control problem which can be

solved semi-analytically from the implicit formulation of optimal singular arcs [23].

Since the initial and final states of the trajectory are fixed, the optimal trajectory will be of a “bang-singular-bang"

type. These solutions are composed by three arcs: one initial bang arc with the control variable at its maximum or

minimum value to go from x0 to the singular arc; a singular arc where the optimal control is given as a function of the

sates vector; and a final bang arc to go from the singular arc to the final state.

The analytical expression of the optimal control in the singular arc for the above model, and the steps to generate an

optimal trajectory semi-analytically can be found in [23].

1. Speed profile

As an example, Fig. 1 shows the optimal speed profile for an Airbus A320, in international standard atmospheric

(ISA) conditions and no wind. The cost index used to compute the optimal trajectory was 42 kg min−1. It can be
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observed how the optimal speed profile lies in between the boundaries delimited by vCAS,min and MMO/VMO. Also

note that since these maximum and minimum speeds are given in terms of CAS and Mach, the corresponding TAS

changes with altitude. The earliest and latest trajectories would correspond to the vCAS,min and MMO/VMO speed

profiles, respectively.

Fig. 1 Example of an Airbus A320 optimal speed profile

2. Input data

We obtained the flight traffic data needed to generate the trajectories from EUROCONTROL’s data demand repository

(DDR2) [24], which contains information about the trajectories flown every day. To generate the optimum trajectories,

we use five parameters: aircraft model; cruise altitude; distance to go, i.e., the distance remaining to the metering fix by

following a given route; speed, i.e., the true airspeed of the aircraft in cruise, obtained from the segment length and time

from DDR2; and the cost index.

Moreover, we needed the aircraft performance model, which was obtained from EUROCONTROL’s BADA V4 (see

Subsection V.B). In the case the aircraft model did not correspond to any of the BADA models, a comparable aircraft in

terms of performance and dimensions was used.

For any given flight, the number of trajectories generated corresponds to the number of possible routes the aircraft

can fly. In this case, path lengths within the TMA from 36 to 90 NM were considered, with segment lengths of 6 NM.

This means that for every flight 10 trajectories were computed. Furthermore, all those trajectories were generated to

ensure the same time at the TMA entry point, which meant that different cost index values were used for each trajectory.

Finally, we also obtained the entry point for each flight form DDR2.
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VI. Experimental Study: Arlanda Airport
In this section, we apply our framework to a real-world instance aiming at showing its feasibility by considering

arrival routes in Stockholm TMA. We use the aircraft arrival times at TMA entry points during one hour of airport

operation as input (taken from EUROCONTROL’s DDR2), and compute the dynamic arrival routes with guaranteed

temporal separation for this time interval. We have chosen a data sample for October 3, 2017, one of the busiest days of

that year with in total 432 aircraft arrivals. We use β = 0.1, that is, we prioritize weighted shortest path in the objective

function. We set a temporal separation of at least 2 minutes (σ = 2 min).

We solve our MIP using Gurobi optimization software installed on a very powerful Tetralith server [25], utilizing

the Intel HNS2600BPB computer nodes with 32 CPU cores, 384 GiB, provided by the Swedish National Infrastructure

for Computing (SNIC).

We use an 11x15 grid, which automatically guarantees merge point separation of about 6 nm (parameter L). In

current operations, a separation of 5 nm is used, that is, we yield results in the operational separation range (Using a finer

14x19 grid, which would result in a 5 nm separation, makes the problem computationally too expensive). We simulated

realistic full CDO speed profiles for all aircraft in the experiment assuming no wind and taking into account aircraft

model, current altitude and true airspeed at the top of descent, as well as distance to go (which defines which exact speed

profile the aircraft is taking). An example of a set of speed profiles for an aircraft A320 is shown in figure 2. Every

curve corresponds to the flight speed profile along the path followed inside the TMA, whose length varies depending on

the tree configuration and could take values from 36 NM up to 90 NM.

Fig. 2 Example of an Airbus A320 speed profiles for several path lengths within Stockholm TMA

In figure 3(a) we show arrival trees computed for two half hours within a one-hour period of operation. An arrival

tree for 10 aircraft entering Stockholm TMA between 3:00 and 3:30 pm is shown in solid black, an arrival tree generated
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for 7 aircraft arriving to the TMA between 3:30 and 4:00 pm is shown in dashed blue. For the second tree we add

Equations (54)-(56) and set U = 23. This yields consistency between the trees, which we believe is an advantage for

actual operation. The execution time for computation of such arrival trees was between 3 and 7 hours and memory

usage around 55%. Figure 3 (b) illustrates the real trajectories flown by aircraft at Arlanda during the same period

(3-4 pm that day), obtained from the Historical Database of the OpenSky Network [26]. As expected, for each entry

point aircraft do not follow fixed paths, probably due to path stretching instructions issued by the ATC in order to avoid

possible conflicts. With our method, however, there will be no need for such instructions, as the proposed trees ensure

enough separation between all the incoming aircraft.

(a)
(b)

Fig. 3 a) Arrival route trees calculated using optimization framework for one hour of Stockholm Arlanda operation in
October 3, 2017, for aircraft arriving during the periods: black solid line 3:00-3:30 pm, blue dashed line 3:30-4:00 pm. Entry
points and merge points are reference points for the time schedule presented in Table 1. b) Real aircraft trajectories during
the same time period obtained from Historical Database of the OpenSky Network.

Table 1 presents at which time the aircraft reach the marked points (merge points M1-M3 and entry points Ent1-Ent4).

More than one aircraft arriving at any point within an interval of 2 minutes would be a conflict, which our MIP excludes.

Time separation at M3 provides the separation at the runway. Aircraft a16 and a17 did not arrive to any of the merge

points by the end of the simulated hour and will reach these in the next half hour.
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Table 1 Time schedule example for 17 aircraft arriving between 3 pm and 4 pm at Stockholm TMA onOctober
3, 2017.

Arrivals Simulated time [min]
Aircraft Entry point Entry M1 M2 M3
a1 Ent1 (North) 3 9 11 15
a2 Ent2 (West) 8 - - 13
a3 Ent3 (East) 13 15 16 18
a4 Ent4 (South) 4 - 18 22
a5 Ent4 18 - 30 32
a6 Ent2 17 - - 25
a7 Ent1 17 20 21 23
a8 Ent1 21 24 25 27
a9 Ent2 19 - - 29
a10 Ent3 28 30 32 34
a11 Ent4 34 45 46 48
a12 Ent3 41 43 44 46
a13 Ent2 32 - - 37
a14 Ent1 39 - 42 44
a15 Ent1 49 - 55 59
a16 Ent4 53 - - -
a17 Ent2 57 - - -

VII. Conclusions and Future Work
We presented a MIP-based framework for the computation of arrival route trees that fulfill several operational

constraints and guarantee temporal separation of all aircraft arriving to TMA within the considered time interval. The

aircraft fly according to their optimal CDO speed profiles for the entry point–runway path length in the tree. Our

approach has the potential to both reduce the environmental impact (CDOs) and the workload of ATCOs in planned

operations. We proved the feasibility of our framework by presenting experiments for calculation of the arrival routes

for one hour of operation on a busy day at Stockholm TMA.

Our current implementation is quite sensitive to the number of aircraft. With our setup we could not solve the

problem for all 22 scheduled aircraft for the given hour, the current grid only allowed a feasible solution for 17 arrivals.

This discrepancy in aircraft number is not due to computational limits of our framework (or server), but is rooted in the

input data: If aircraft have less than two minutes separation in the entry point, this would result in an infeasible problem,

hence, we filter out aircraft to obtain a feasible input. Moreover, if an aircraft with higher speed follows an aircraft

with lower speed—depending on the distance—the optimal speed profile might lead to the faster aircraft overtaking the

slower aircraft along the route. This is not feasible, and for this paper, we decided to filter out the problematic aircraft.

In future work, we aim to also handle these cases. One approach can be to include en-route traffic and to adapt the

speed profile on the en-route segment of the flight, such that the faster aircraft arrives at the entry point with enough
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temporal distance to the leading aircraft for both aircraft to remain separated along the routes when both apply the

CDOs. Alternatively, we can impose a non-optimal speed profile on aircraft in these conflict cases. According to our

experiments this would be necessary for about 15-20% of the aircraft, which we deem feasbile.

The proposed approach is also sensitive to the length of the time period. The program did not yield feasible solutions

for time windows of more than 30 minutes. Yet, computing trees for longer periods may not be needed. Each tree

is optimized with respect to the current traffic situation. The routes often get stretched for the purpose of conflict

resolution. But when the aircraft in conflict pass the merge point, following aircraft continue flying along sub-optimal

routes. Adjusting the tree configuration every 20-30 minutes, which is about the time aircraft spend in TMA on average,

will keep them optimized for the actual traffic situation. Keeping parameter U at minimum will provide consistency

between the trees, preventing extra workload because of switching.

Finally, in the future we also plan to integrate dynamic re-planning for weather avoidance into our framework.
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