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Abstract—The amount of data produced in the world every
day implies a huge challenge in understanding and extracting
knowledge from it. Much of this data is of relational na-
ture, such as social networks, metabolic pathways, or links
between software components. Traditionally, those networks
are represented as node-link diagrams or matrix representa-
tions. They help us to understand the structure (topology) of
the relational data. However in many real world data sets,
additional (often multidimensional) attributes are attached to
the network elements. One challenge is to show these attributes
in context of the underlying network topology in order to
support the user in further analyses. In this paper, we present
a novel approach that extends traditional force-based graph
layouts to create an attribute-driven layout. In addition, our
prototype implementation supports interactive exploration by
introducing clustering and multidimensional scaling into the
analysis process.
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I. INTRODUCTION

The integration of multivariate data into complex networks
and their visual analysis is one of the big challenges not
only in visualization, but also in many application areas like
bioinformatics [1], social sciences, or software engineering.
Networks are usually modeled as graphs and represented
with the help of node-link diagrams (or simple matrix
representations). In social network analysis, for instance,
each person can be represented as a node and the friendship
between persons as an edge. A node could have a number of
different attributes, such as name, age, gender, interests, etc.
An edge might also have additional attributes, such as family
relations (mother, father, or sibling) or a friendship weight
(could be calculated based on the amount of activities,
such as chatting or sharing the same interests between two
persons). The most obvious challenge is now to show these
attributes in combination with the underlying graph in order
to allow the analyst to evaluate the meaning of the attributes
in context of the network topology. Therefore, when faced
with a data set that we want to better understand, some sort
of insight about the attribute data and graph topology is
necessary. Several questions could be important to answer
in such analyses: Is the topology of the underlying network
related to the values of particular attributes? Or, are specific
network objects similar to each other in context of their

attribute values? Answers to these questions could help
us understanding the structure of the dataset at hand and
possibly lead us in formulating new interesting questions
about the data.

In this work, we propose a novel approach that extends
traditional force-based graph layouts to create a so-
called attribute-driven layout. In addition, our prototype
implementation, called JauntyNets, supports the interactive
exploration by introducing clustering and multidimensional
scaling into the analysis process. It should be noticed that
we mainly focus on node attributes; edge attributes are
restricted to be one-dimensional, i.e., we only consider
traditional edge weights. The paper is structured as follows.
Next in this section, we provide some basic definitions
that we need to explain our approach. Section II gives
a brief overview on related work. In Section III, our
approach together with interaction possibilities is discussed.
We conclude with a short discussion and possible future
directions.

Definitions: In this paper, we distinguish between
graphs and multivariate networks. A (simple) graph G =
(V,E) consists of a finite set of vertices (or nodes) V

and a set of edges E ✓ {(u, v)|u, v 2 V ;u 6= v}.
Whereas, a multivariate network N consists of an underlying
graph G plus n additional attributes A = {A1, . . . , An}
that are attached to the nodes and/or edges. For node
attributes, Ai represents a column in a table of attributes
A = (aji) (j = 1 . . . |V | ; i = 1 . . . n) and contains one
attribute value per node (similar definition for edges). Thus,
a

u = (au1, . . . , aun) describes all attribute values for node
u given that there is no missing data.

Graph drawing algorithms compute the layout of nodes
and edges mainly based on node-link diagrams [2] which
play a fundamental role in network visualization. Applying
graph layout algorithms can give valuable insight into the
topology of a network if properly chosen and implemented.
Whereas our work focuses on node-link diagrams, there are
further possibilities to represent graphs, such as matrix repre-
sentations [3] or hybridizations between both approaches [4].

Force-based layout techniques are in the focus of this
paper, and a simple version using spring and electrical repul-
sion forces is introduced in the following. Here, the edges
are modeled as springs, and the nodes can be considered as

Andreas Kerren
© 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/IV.2013.3

Andreas Kerren
In Proceedings of the 17th International Conference on Information Visualisation (IV '13), pages 19-27, London, UK, 2013. IEEE Computer Society Press. 



charged particles that repel each other. For the x-component
of the force on a node v the following holds (y-component
analogous):
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In this formula, the first sum represents the spring force
between two nodes u and v connected with an edge and the
second sum the repulsion force between v and other nodes.
duv is the Euclidean distance between u and v, luv is the
zero-energy length of the spring between u and v (i.e., no
force if duv = luv), stiuv 2 [0, 1] is the stiffness of the
spring between u and v (i.e., the larger this parameter the
more the tendency for duv to be close to luv), and finally
repuv is the strength of the electrical repulsion between the
two nodes. Note, that x̂uv denotes the unit vector of (xv �
xu).

II. RELATED WORK

A traditional drawing algorithm will not solely solve our
problem to visualize all elements of a multivariate network.
There are several existing approaches that attempt to offer
a solution to this challenge. The remainder of this section
gives a brief introduction to these approaches. For a detailed
survey, we refer the reader to Chapter 3 of the thesis [5].

Multiple and Coordinated Views combine several views
and present them together. Usually, the views are coordi-
nated by linking or brushing [6]. This well-known approach
allows the use of the most powerful visualization techniques
for each specific view and data set [7], [8]. The main
drawback of this approach is that the displayed complex
data is split, because of the spatial separation of the visual
elements.

Integrated Approaches display attributes and the under-
lying graph in one view to provide a combined picture.
“Integrated views can save space on a display and may
decrease the time a user needs to find out relations; all data
is displayed in one place.” [7]. One example is described in
Borisjuk et al. [9] on the visualization of experimental data
in relation of a metabolic network. This approach provides
one view to all available information, but the embedding of
the visualizations into the nodes causes the nodes to grow in
size. This issue may affect the readability of the network due
to the overlaps that may appear when the number of nodes
and attributes is high [10]. Thus, it does not scale well.
However, the problem of space usage and clutter introduced
by such approaches can be avoided by using different focus
+ context techniques. An example of such an approach
visualizes the attributes inside nodes by using a magic lens.
Users can interactively build and combine various lenses by
specifying different attributes and selecting suitable visual
representations [11].

Semantic Substrates are used to avoid clutter in multivari-
ate network visualizations. They are non-overlapping regions
in which the node placement is based on the attributes of
nodes [12]. One drawback of Semantic Substrates is that
the underlying graph topology is not completely visible. A
further related example is PivotGraph [13] which uses a grid-
layout to show the relationship between (node) attributes
and links. Another approach was presented by Pretorius
and van Wijk [14]. They arrange edge labels in a list and
place rectangular regions containing source and target nodes
at each side. These regions are partitioned according to
the node attributes and connected via straight lines with
corresponding edge labels. Although the nodes “overlap”—
regions can be contained in or contain other regions de-
pending on the hierarchy level—they spatially remain in the
same non-overlapping positions. Similar works have been
presented by Archambault et al. in [15] and [16].

Attribute-Driven Layouts use the display of the network
elements to present insight about attached multivariate data
instead of visualizing the graph topology itself. While be-
ing similar to semantic substrates, this technique does not
necessarily place the nodes into specific regions. Instead,
it uses calculations based on node attributes to “steer” the
placement of a node in the graph layout. Examples are
GraphDice [17] or spherical Self-Organizing Maps [18].

Hybrid Approaches combine at least two of the previously
discussed techniques. The most common combinations are
multiple coordinated views with any of the integrated ap-
proaches. MobiVis [19] applies time charts to show temporal
data in one view and the underlying network as node-
link diagram in a separate view. Rohrschneider et al. [20]
integrate additional attributes of a biological network inside
the nodes and edges. They also use other visualization
metaphors for creating multiple coordinated views to show
time-related data of the network. Viau et al. [21] present
another work where several different techniques are tightly
integrated into one coherent hybrid approach.

III. JAUNTYNETS

In this section, we discuss our visualization method. First,
the creation of our sample data sets that are used for testing
the prototype and taking the screenshots will be described.
Afterwards, our visualization and interaction approach will
be presented. A brief discussion of the most important
implementation aspects will conclude this section.

A. Sample Data
Our multivariate network data set D1 was created by using
a set of text documents (a bunch of scientific papers and
articles written by our research group). Another data set
D2 was created by using the collection of papers from two
different conferences. In both of these data sets, the nodes
of the network represent the documents themselves. Each
document owns a number of attributes that stand for the



Figure 1. The graph view on the left shows three attribute groups (based on data set D1). The green node has been highlighted after a mouse-over action,
and a tooltip displays the node label. The first-level neighbors of the selected node are shown with an orange halo. Attribute nodes act as bar charts for
the highlighted node, giving insight into the values it has for each attribute. The faded attribute glyphs were disabled by the user.

occurrences of specific words within the document. Stop
words, such as “a” or “the” were not included. The similarity
between the documents is calculated based on the co-
occurrence of the attribute set among the documents and is
represented as an undirected edge between the corresponding
nodes. The weight of an edge corresponds to the degree
of similarity calculated as the sum of the minimum values
of the attributes. This input data was filtered by setting a
specific threshold for the minimum occurrence of words and
for minimum edge weights.

Additionally, a Jigsaw data set D3 containing metadata
for every IEEE InfoVis and VAST conference paper from
1995 to 2011 was visualized by using our approach as
well [22]. Here, the links between nodes represent co-
authorship, i.e, if two papers share an author, then their node
representations are connected with an edge. The weight of an
edge corresponds to the number of shared authors. Concept
terms are metadata that were identified in titles and abstracts
of the papers. These terms are used as attributes for D3.
The conference where the paper has been published serves
as attribute as well. Keep in mind that for this data set, the
individual attributes only have two possible values: one and
zero.

B. Approach
Our idea could be described as a hybrid approach that
combines multiple coordinated views with attribute-driven
layout. The exploration of the networks is carried out
through a number of available interactions. Users can change
different parameters of our visualization tool in order to get
more insight into the data set. Additionally, data mining
techniques, such as clustering and multidimensional scaling,
were used to facilitate the visual analyses of multivariate
networks.

Extending Traditional Force-based Approaches: Our
main contribution in this paper is the extension of a force-
based approach as described in the introduction, so that
it produces an attribute-driven layout embedded into Jaun-
tyNets for the interactive visual analysis of multivariate
networks. The input graph G is placed in the center of the
main view (cf. Figure 1). Here, the natural edge length luv

is inversely proportional to the edge weight, i.e., the larger
the weight, the closer the nodes are positioned. This way,
more similar documents are placed closely together. The
attribute nodes Ai are placed on a circle around the network
to be visualized. The radius of the circle is interactively
adjustable by using a slider. Technically, attributes are nodes



Algorithm 1 Building Network Structure
Input: network with attributes N = (G,A) where G =

(V,E);
Output: extend N so that V  A

// Add attributes to vertices and mark them as attribute
vertices.

1: for all a in A do
// Create attribute vertex va 2 Va such that Va ✓ V

2: va  a;
3: V .add(va);

// Create edges from attribute vertices to graph ver-
tices and compute edge weights based on attribute
values.

4: for all v in N do
5: if v.attribute(va).hasValue() then
6: e = new Edge(v, va);
7: e.weight(v.attValue(va)); // Assign attribute

value to the edge weight.
8: E.add(e);
9: end if

10: end for
11: end for

Algorithm 2 Layout Algorithm
Input: network N such that Va ✓ V // cp. Algorithm 1.
Output: vertex placement p = (pv)v2V

// Perform initial placement of vertices.
1: placeAttributeNodesOnCircle(Va);

// Place vertices randomly inside the circle.
2: placeNodesInsideCircle(V � Va);

// Run force-based layout algorithm. Do not apply forces
to attribute nodes positions.

3: loop
4: for all v in (V � Va) do
5: Fv  Frep(v) + Fspring(v); // cp. Eq. (1)

// If a node is pushed over the circle radius, apply
force towards circle center.

6: if pv .isOutsideRadius() then
7: Fv  Fv + Fgravity(v);
8: end if
9: end for

10: for all v in (V � Va) do
11: pv  pv + ✏ · Fv;
12: end for
13: end loop

as well, movable on the circle only by user interaction;
they are called attribute nodes (Va) in the remainder of
this paper. The main difference to a traditional force-based
layout method is that we do not apply forces on attribute
nodes (therefore, they are not moved to new positions by
the incremental layout algorithm). Additionally, we have
embedded another gravitational force that is triggered when
a normal node crosses the circle perimeter in order to prevent
it from leaving the circle due to the repulsion forces between
the nodes (so-called position constraint). Only nodes that
have attribute values over a specific threshold are linked to
attribute nodes via so-called node-to-attribute edges. Simi-
larly, only edges with weights over a user-defined threshold
are shown. All these thresholds, including the stiffness
stiuv of normal edges and node-to-attribute edges, can be
set up by using the corresponding sliders. The “Enforce
ABL” (Attribute Based Layout) slider is used to control
the stiffness of node-to-attribute edges and its function is
to affect node positions based on their attribute values. The
“Enforce graph structure” slider controls the stiffness of
the graph (node-to-node) edges and is used to enforce the
graph topology. By in- and/or decreasing these two values,
users can choose to preserve graph topology, gain insight
into attribute values or try to balance both. Please compare
Algorithm 1 to see how the attributes are transformed and
appended to the underlying graph. Algorithm 2 shows the
details of the extension compared to the work of Eades [23].
As previously mentioned, the positions of the attribute nodes
Va are not affected by our algorithm. Therefore, they are
excluded in line 4 from the loop and no further forces are
being applied on them. Another extension of the algorithm
happens in lines 6-8 where another force Fgravity(v) is being
applied that pulls the nodes towards the center of the circle
in case they tend to move away as a result of interactions
with other nodes.

Figure 2 shows the initial view after sample network
D1 has been loaded to the system. Notice that nodes are
highly connected to each other, because the sample network
represents a selection of 24 research papers in total written
by members of our research group. Thus, all of these
documents are fairly related to each other. At this point,
users might want to perform a number of interactions with
JauntyNets in order to analyze the data set further.

Visualization and Interaction: As already mentioned in
Subsection III-A, edges can be filtered out by using a slider
if their weight is below a certain threshold. The weights
are represented by the thickness of the edges. A user can
drag and move the attribute nodes to control their position
on the circle. Inner nodes will then automatically move
based on the attribute position they are linked to. Users
can disable certain attributes by first selecting the attribute
node(s) and pressing the key “A”, in case they consider
them as unnecessary for the analysis process. Furthermore,
one can create groups of attributes that share some kind of



Figure 2. This screenshot shows the initial visualization after the data
D1 has been loaded. The orange blocks placed on a circle represent the
attributes of the network. Green nodes in the middle represent the text
documents.

meaning, i.e., they can be subsumed under a superordinate
concept. Document nodes that correlate with a group of
attributes will then move towards that group. Of course,
the edges between the documents themselves will affect the
positioning. Our tool also supports the grabbing of an entire
group and moving it around the circle, instead of moving
the desired members individually.

Similar interaction steps have been performed to our
initial data set D1 as shown in Figure 1. Edges of the graph
that show weak relations among different documents have
been filtered out. The stiffness parameter stiuv for node-to-
attribute edges is increased by using a slider. Nodes which
have a higher value of a certain attribute are thus moved
towards the corresponding attribute. Next, three attribute
groups have been created in our screenshot example: vi-
sualization, networks, and code. To create a group, users
can select multiple attributes with a right-click and press
“G” on the keyboard. To add more attributes to a specific
group, one can move the attribute inside the group region
and press “G” again. The group is initially labeled with the
name of the first attribute added to the group. Later, the
name can be changed through a context menu. The final
groups should be distributed evenly around the circle. In
our concrete sample data set in Figure 1, we see that the
node positions with respect to the groups correspond to the
major topics described in the input documents. Thus, we
have gained insight into the content of these documents.

If a user places the mouse cursor over a node, JauntyNets
highlights the corresponding node and displays a tooltip with
the node label as displayed in the center of Figure 1. The
attribute nodes connected to the selected node mimic bar
charts showing the concrete values of the attributes. The
direct neighbors of the node are highlighted too. Similarly,
if the user places a cursor over a specific attribute node, all
nodes that have a node-to-attribute edge to the attribute will
be highlighted. This way, users can see which documents
contain that particular attribute (keyword in this case). Keep
in mind that only the attributes that pass a certain threshold
are considered. It is also possible to change the visualization
parameters, such as the radius of the attribute circle or the
transparency value of the attribute-to-node edges, as well as
to zoom-in/-out or to pan the view.

Figure 3 represents the visualization of the Jigsaw data
set D3. Only a predefined number of the concept terms
have been preloaded. These terms are related to the field of
“geovisualization” and as such have been grouped together,
as seen in the lower part of the screenshot. Two other at-
tributes stand for the conferences where the papers have been
published. Blue nodes represent InfoVis, while the red ones
represent VAST papers. At this point users can play with the
sliders. They might choose to enforce the graph topology,
or they might want to enforce the attribute values in which
case the nodes will be moved towards attributes for those
they have the highest values. Figure 3 represents balanced
parameters, i.e., neither topology nor attribute values have
a higher coefficient. This example gives us an overview of
the paper distribution between the two conferences. Certain
cliques can be noticed immediately. Such network structures
usually mean that one specific author has written all those
papers, or there is a group of authors who often cooperate.
We see that one such clique is placed relatively close to
our “geovisualization” group (Figure 3 marked by “A”).
Therefore, we may decide to investigate further. Upon going
through the papers from that clique, we identify one common
author (MacEachren). We also discover that only one of
those papers is not related to “geovisualization” as none of
the attributes of the “geovisualization” group is connected
to it. This can be visualized with the mouse-over function
on either attributes or papers as described earlier. In contrast
to this, another clique marked by label “B” only comprise
papers published at the InfoVis conference. Upon further
investigation, we notice more than one common author. By
filtering out those edges that have less than two authors (edge
weight), the analyst is able to see that the clique remains
again although two nodes have been separated. Therefore,
we can conclude that these authors (Dykes, Slingsby and
Wood) have worked closely together, and published their
work at the InfoVis conference (Figure 4). However, half of
their papers are not related to “geovisualization”. This shows
that the authors of clique “B” are not mainly focused on one
domain of information visualization, in contrast to the author



Figure 3. The screenshot displays papers from InfoVis and VAST conference (data set D3). Two cliques marked with A and B are interesting as they are
related to the created attribute groups.

of the clique “A”. With such an exploratory approach, we
can discover if certain parts of the network structure are
related to particular network attributes.

As discussed in Section II, there are different approaches
of attribute-driven layout for multivariate networks. How-
ever, most of these tools affect the network layout drastically.
Our aim is to preserve the graph topology as much as
possible, i.e., to interfere less with the traditional force-
based layout algorithms. However, we are aware that this
approach alone would not produce extensive analysis results.
Therefore, several other (standard) views and techniques are
added to enable a more in depth exploration of the data.

Clustering: In order to further facilitate the exploration
process, a possibility to cluster the nodes has been added
to JauntyNets. Figure 5 shows a more complex network
(data set D2) with 421 nodes and 55 attributes where
the nodes have been clustered using a k-means clustering
algorithm [24]. This data set consists of various articles
published in the VisWeek1 and INTERACT2 conference

1http://visweek.org/
2http://www.interact2013.org/

proceedings from 2009 to 2010. To initiate the cluster
process, a user just needs to choose “Cluster” from the
toolbar menu and has to select the desired number of
clusters. The clustering of the nodes is done based on their
attribute values. We use an external library to perform the
clustering (cp. Subsection III-C) which offers an option to
choose between several clustering algorithms. In our case,
three clusters have been created (see Figure 5). The color
coding of the clusters has been done using ColorBrewer’s
categorical color map [25]. Note that those attribute groups
(i.e., “interaction” and “mobile”) comprising HCI-related
keywords attract mainly nodes from the blue cluster, which
is primarily consisting of nodes (papers) from the INTER-
ACT conference that focuses on HCI. The clustering is
additionally used for automatic attribute group creations. In
this case, attributes are clustered based on the node values
for a particular attribute. This speeds up the attribute group
creation process. Additionally, it could give insight into how
different attributes relate to each other for specific data sets.
However, users might want to shuffle the attributes between
the groups to achieve optimal grouping.



Figure 4. A cut-out of the data represented in Figure 3. It shows that
clique B is still highly connected even after filtering out all edges with
weight 1.

Further Coordinated Views: As mentioned at the begin-
ning of this section, our approach uses multiple coordinated
views to support the exploration of multivariate networks.
The first additional view shows the number of nodes that a
certain attribute has an edge to. The view changes accord-
ingly, based on the specified threshold, and uses a simple
bar chart metaphor as shown in Figure 1, down to the right.
It is helpful in such cases when we have attribute outliers
with too many connections, i.e., such attributes might be
too general to be considered useful for exploration with our
approach. Thus, we might try to disable them to achieve
a better positional result as done with “display” in the
interaction group of Figure 5, for instance.

Another view displays a multidimensional scaling (MDS)
visualization. Here, multivariate network nodes have been
projected into the two-dimensional plane based on their
attribute values. Similarity between nodes is represented as
distance, i.e., the closer two nodes are, the more similar
their content is. Figure 6 shows the projection based on
the network in Figure 5. This view is related to the graph
view as it shows similar interaction possibilities in terms of
highlighting, zooming and panning. A selected node in one
view will be highlighted in the other view as well. Thus, the
user can track the position of the nodes in both views. It is
interesting to notice that the clustering results complement
the spatial positioning of the MDS. We perceive a dense
area of the nodes in the upper-left corner belonging to the
blue cluster. With further interactions, it can be discovered
that these nodes (articles) mainly belong to the INTERACT
proceedings. This finding is in accordance with the results
from Figure 5 as described earlier. Therefore, the MDS view
could be helpful for answering questions on the similarity
of the network objects in context to their attribute values.

C. Implementation

Our prototype has been implemented in Java together
with the Processing [26] graphic library using OpenGL.
For implementing the multidimensional scaling feature, we
have used the MDSJ library [27]. Thus, we only had to
compute the dissimilarity matrix as input. Clustering has
been performed by using the trickl-cluster library. This
library offers several clustering algorithms that could be used
alternatively [28]. Additionally, the giCentre Utilities [29]
libraries provide color maps for our clustering based on
ColorBrewer [25]. We extended the traditional force-based
layout algorithm by including static nodes as attributes
(Algorithm 1), edge weights, and position constraints as
presented in Algorithm 2.

IV. CONCLUSION AND FUTURE WORK

Multivariate relational data sets are common in several appli-
cation domains. They are important foundations to explore
different processes, such as protein-protein interactions in
the life sciences or interpersonal activities in social sciences.
Although these fields may appear diverse, one can generalize
problems pertaining to multivariate networks across different
domains. With this in mind, we presented an approach that
enables the interactive exploration of such data.

Our main contribution is the extension of a force-based
graph layout approach to act as an attribute-based layout
system. With this extension, we managed to affect the graph
topology so that each node’s position is related to the
corresponding attributes’ values. By doing so, users are able
to gain insight into the overall multivariate network structure.
The interaction techniques and the visualization approach
allow users to focus on the topology, or attribute values and
even to achieve a balance between both by tweaking differ-
ent parameter values thus exploring the data interactively.
Furthermore, we added clustering and multidimensional
scaling features to support the analysis process [30].

Future Work: Adding more visualization views and
techniques that focus on certain types of data visualization
will be an important future work. For instance, parallel co-
ordinates could be used for a separate attribute visualization
which could be helpful for filtering the data set.

There are cases when some nodes are unconnected from
the network as a consequence of filtering. Currently, these
nodes are positioned inside the circle and their positioning
is random. To avoid any ambiguity regarding the positioning
of these nodes, they should be placed outside the circle in a
(possibly separated) region. Additionally, inactive attribute
nodes create visual overload. This problem could be solved
in a similar manner by placing them inside of a separate
region of the screen. Users can reactivate them again if
necessary. We also plan to perform an evaluation with
different domain experts, which will help us to improve the
existing approach.



Figure 5. The screenshot displays a network of 421 nodes with 55 attributes (data set D2). The nodes are colored differently, because they have been
clustered based on their attribute values.

Figure 6. MDS view (data set D2). The highlighted node shows a tooltip with the node label “yi.pdf”, and the first-level neighbors are displayed with
an orange halo. The node colors reflect the results of a previous clustering step.
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