
Exploring Biological Data: Mappings between Ontology- and
Cluster-Based Representations

Ilir Jusufi
Linnaeus University, Växjö,

Sweden

Andreas Kerren
Linnaeus University, Växjö,

Sweden

Falk Schreiber
Martin Luther University
Halle-Wittenberg & IPK
Gatersleben, Germany

Abstract

Ontologies and hierarchical clustering are both important tools in biology and medicine to study high-throughput
data such as transcriptomics and metabolomics data. Enrichment of ontology terms in the data is used to identify
statistically overrepresented ontology terms, giving insight into relevant biological processes or functional modules.
Hierarchical clustering is a standard method to analyze and visualize data to find relatively homogeneous clusters
of experimental data points. Both methods support the analysis of the same data set, but are usually considered
independently. However, often a combined view is desired: visualizing a large data set in the context of an ontology
under consideration of a clustering of the data. This article proposes new visualization methods for this task. They
allow for interactive selection and navigation to explore the data under consideration as well as visual analysis
of mappings between ontology- and cluster-based space-filling representations. In this context, we discuss our
approach together with specific properties of the biological input data and identify features that make our approach
easily usable for domain experts.

Keywords Gene Ontology, ontology, hierarchical clustering, visualization, mappings

1 Introduction

Ontologies play an important role in biology and
medicine to structure biological knowledge. An on-
tology is a set of controlled, relational vocabularies of
terms commonly used in particular areas of science.
Ontologies are used to structure and standardize bio-
logical knowledge to support data integration and infor-
mation exchange. Examples are Gene Ontology (GO—
to standardize gene and gene product attributes across
species), Molecular Interactions Ontology (PSI MI—to
standardize molecular interaction and proteomics data),
and Systems Biology Ontology (SBO—to standardize
terms commonly used in computational modeling and
systems biology). To access many ontologies in biol-
ogy the Ontology Lookup Service (OLS) [1] provides
a web service to query multiple ontologies from a sin-
gle location, providing a unified output format. Often
data obtained by biological experiments (experimental
data) is analyzed in the context of biological ontologies,
for example, by means of enrichment of ontology terms

to identify statistically overrepresented (inner) ontology
terms.

In particular, the Gene Ontology (GO) [2] is an on-
line resource that provides a set of structured vocabular-
ies (ontologies) for the annotation of genes, gene prod-
ucts and sequences. These vocabularies are used to de-
scribe the roles and properties of genes or gene products
in organisms and provide a consistent characterization
of gene products in various databases. Currently, there
are three independent vocabularies (or parts) that are
considered by the GO: molecular function, biological
process, and cellular component. Biologists use such
a vocabulary as a guide to answer meaningful ques-
tions, e. g., “if you were searching for new targets for
antibiotics, you might want to find all the gene prod-
ucts that are involved in bacterial protein synthesis, but
that have significantly different sequences or structures
from those in humans” [2]. In consequence, new dis-
coveries that change our understanding of these roles
are made daily, thus making GO a dynamic data set.

1

© SAGE Publications, 2013. This is a post-peer-review, pre-copyedit version of an article published in Information Visualization. The definitive publisher-authenticated version [Ilir Jusufi, Andreas Kerren, and Falk Schreiber. Exploring Biological Data: Mappings between Ontology- and Cluster-Based Representations. In Information Visualization, 12(3-4):291-307, 2013. SAGE Publications] is available online at: http://dx.doi.org/10.1177/1473871612468880

The GO terms are interconnected and form a directed
acyclic graph (DAG) [3, 4].

Hierarchical clustering is a standard method to ana-
lyze and visualize large-scale experimental data in the
life sciences [5]. It is a statistical method for finding
relatively homogeneous clusters, based on two steps:

1. computing a distance matrix containing the pair-
wise distances between the biological objects
(such as genes) and

2. a hierarchical clustering algorithm.

Clustering algorithms can either iteratively join the two
closest clusters or iteratively partition clusters starting
from the complete data set. After each clustering step,
the distance matrix between the new clusters and the
other clusters is recalculated.

Ontologies and hierarchical clustering are widely
used to support the analysis of molecular-biological
data obtained by high throughput technologies. These
technologies lead to an ever-increasing amount of data,
which delivers a snapshot of the system under inves-
tigation and allows for the comparison of a biological
system under different conditions / in different devel-
opmental stages / with different genetic background.
However both, ontologies as well as hierarchical clus-
tering, result in huge data sets of DAG- and tree-like
structures. To help analyzing this data, often both views
are desired: visualizing the data set (such as the expres-
sion levels of the genes in an organisms) in the context
of an ontology (such as the Gene Ontology) and in the
context of a clustering of the data (such as a hierarchical
clustering).

1.1 Background and Related Work
A typical example is transcriptomics data. The tran-
scriptome is the set of all RNA molecules in one cell or
a population of cells. It is measured by DNA microar-
rays or sequencing and gives a snapshot of the current
gene activity within the cell. Hierarchical clustering is a
typical method to identify and classify patterns of gene-
expression in this data. It results in an ordering of the
genes such that clusters of co-expressed genes are visu-
alized and can be used to infer gene function. Ontolo-
gies on the other hand give a functional annotation of
elements; in case of the gene ontology it gives a hier-
archical annotation of gene function. The combined in-
vestigation of gene activity in both—hierarchical clus-
tering and ontologies—can now help in better under-

standing the roles or functions of genes. If, for exam-
ple, a small cluster of genes is highlighted in the hierar-
chical clustering and the visual investigation of the cor-
responding genes in the GO shows that most of these
genes belong to the same subgroup within the ontol-
ogy, then this gives a strong indication that these genes
are not only assigned to the same function, but that this
function may be of particular importance (as the ac-
tivity of these genes behaves similarly). On the other
hand, if the genes of a cluster in the hierarchical clus-
tering belong to many different ontology concepts (as-
signed functions), then it may be also of interest to in-
vestigate these functions in more detail. Finally, the en-
richment of ontology terms in the data is used to iden-
tify statistically overrepresented ontology terms, giving
insight into relevant biological processes or functional
modules. If the respective genes also behave similarly
(belong to the same cluster in the hierarchical cluster-
ing), then this is again of interest to a biological user
as the enrichment or clustering has been obtained inde-
pendently with these two different methods. Therefore,
a typical user session would be browsing the data to in-
vestigate the relation between functional annotation in
the ontology and behavioral grouping of gene activity
in the clustering.

Related to our approach is the problem of compar-
ing two or more trees with the same set of leaves, for
example, commonly occurring during the comparison
of different phylogenetic trees. A usual way to repre-
sent such structures visually is to draw the two trees
side by side in opposite directions and to draw connec-
tors between the corresponding leaves. The problem of
computing good leave orderings and tree visualizations
has been studied extensively, see [6, 7, 8] for example.
However, the problem of comparing a tree (hierarchical
clustering) with a DAG (ontology) or two DAGs with
the same set of final (leave) nodes has only recently
come in the focus of research. Scornavacca et al. [9]
introduced the concept of tanglegrams for rooted phy-
logenetic networks. However, the approach still uses
the concept of drawing the two trees or networks side
by side in opposite directions and to draw connectors
between the corresponding leaves.

This article proposes a new method for the com-
bined visualization of an ontology (DAG) and a hier-
archical clustering (tree) of one data set and extends the
work [10] by a description of additional features, fu-
ture directions and more biological background. It is
structured as follows: in Section 2 the properties of the
input data are discussed, Section 3 presents our visual-

2

ization approach combining Gene Ontology (DAG) vi-
sualization and cluster tree visualization, and discusses
interaction techniques. Section 4 deals with technical
issues such as implementation aspects and the scalabil-
ity of the proposed method. Finally, Section 5 presents
a discussion of our tool’s utility including requirements
of biologists, and Section 6 concludes this work with
ideas for future work.

2 Properties of the Input Data
In general, any data set that can be connected to an
ontology and used for a hierarchical clustering is ap-
propriate input for our visualization approach. Here,
we employ a transcriptomics data set representing dif-
ferent expression levels of genes. The initial data set
has been reduced to genes which are significantly up-
or down-regulated, resulting in 7,312 genes. The re-
sult tree of the cluster analysis (called Cluster Tree in
the following) is a binary tree with 14,623 nodes and
14,622 edges. It has 7,311 (non-terminal) nodes and
7,312 leaves (terminal nodes). The Gene Ontology is a
DAG consisting of more than 34,000 inner nodes and
a substantial amount of leaf nodes depending on the
organism under consideration. We consider only the
nodes representing the 7,312 genes and those nodes,
which are on paths between the GO root node and leaf
nodes (genes). Therefore, the final GO data set consists
of 10,042 nodes and 24,155 edges. The graph has 1
root, 2,729 (non-terminal) nodes and 7,312 other nodes.
Not all of these are leaves of the GO. There is also a
considerable amount of unconnected nodes as not all
genes are assigned to GO terms and therefore do not
form part of the GO DAG.

Both of these graphs are independent from each other
from a developers point of view as they have differ-
ent node and edge IDs. However, the graphs have the
same label for terminal nodes (genes), indicating that
they “share” a specific part of nodes among each other.
This means that the relationship between these two data
sets can be mapped as indicated by Figure 1. To further
investigate the relations between GO DAG and Clus-
ter Tree, users should be able to find the cluster subtree
derived from any node in the GO. The main idea here
is that for each interactively selected node in the Gene
Ontology visualization, a corresponding subtree in the
Cluster Tree should be computed. Our own implemen-
tation of this mapping (Subgraph Extraction) is briefly
described in Subsection 4.1.

Figure 1: The light-blue part on the left represents a
part of the GO DAG. The grey part on the right repre-
sents the Cluster Tree, while the red nodes in the mid-
dle are shared between both of them. Note that this dia-
gram shows an idealized situation, because the common
leaves do not need to be neighbored.

3 Visualization Approach—
CluMa-GO

Due to the complexity and size of our input data, we
visualize the GO DAG and the Cluster Tree in two sep-
arated and coordinated views [11, 12]. The data is fed to
our tool by using two individual .gml files [13] (one for
the GO and one for the clustering) through a standard
dialog box. Representing large data sets on their own
is challenging, but our tasks became even more compli-
cated as we have to relate two such data sets of different
nature to each other: a DAG and a binary tree. We use
interaction techniques such as brushing [14, 15] to show
the mapping between both. If we draw the graphs by
using conventional graph drawing algorithms [16, 17],
problems such as clutter when showing the GO DAG
and long or wide cluster trees (depending on the cho-
sen tree drawing algorithm) would appear. This would
result in a lot of scrolling and panning actions [18], be-
cause zooming out would not be sufficient in case of
the Cluster Tree visualization (traditional tree drawing
algorithms produce much unused space). Another issue
with respect to the mapping is the cluster subtree de-
rived from a selected GO node as described in the pre-
vious section (and Figure 1). Here, the corresponding
parts of the subtree are often not sequentially mapped
and thus form “gaps” as common leaves in the mapping
do not need to be neighbored, see Section 4.1 for more
details. Those parts might be too far apart from each

3

Figure 2: GUI of CluMa-GO. On the left hand side (a), the used Gene Ontology is represented in the GO view
(Levels Layout). The layer numbers from 0 to 16 are displayed on the left margin. Layer 5 is highlighted with a
blue rectangle, and label (c) marks the selected node in layer 3. On the right hand side (b), the Cluster Tree view
is located.

other to be shown in a single view. As a consequence,
a user might miss some information. Nevertheless, we
offer the user an optional view to show the mapping by
standard node-link layouts in a separate window as de-
scribed in Subsection 3.3.

We implemented specific representations for the GO
DAG and Cluster Tree that address the aforementioned
challenges. First, we will present the approaches to vi-
sualize both the GO DAG and Cluster Tree and describe
the supported interaction techniques later in order to
distinguish between visual representations and interac-
tion concepts. A complete overview of the GUI of our
prototype implementation, called CluMa-GO [19, 10],
is shown in Figure 2.

3.1 GO (DAG) Visualization
As already described in Section 2, the used GO DAG
consists of more than 10,000 nodes and 24,000 edges,
even if we use a subset of the entire GO. The vi-
sualization of such a graph by using standard node-

link approaches would not scale without some kind of
filtering or aggregation. Our challenge was to show
all data in one view. We got inspiration from pixel-
based approaches, which usually cope with large data
sets [20, 21, 22, 23]. In our case, GO nodes are repre-
sented by colored pixels, whereas edges are hidden to
avoid clutter. We call those pixels node pixels in the re-
mainder of this paper. Choosing the right color theme
was another challenge due to the use of pixel-based ap-
proaches. CluMa-GO supports an arbitrary color set-
ting of the different elements of the visualization, such
as color of the non-terminal and terminal node pix-
els, background, etc. In the default setting, all graph-
ical elements can be easily distinguished and identified
on a computer screen. But in order to write this arti-
cle, we found a good working compromise for both the
computer display and for print outs. ColorBrewer [24]
turned out to be a great help for doing this.

Red node pixels represent leaf or unconnected nodes
and light-blue node pixels non-terminal nodes. DAGs
can be hierarchically layered and have a “flow direc-

4

Figure 3: Zoomed-in view using the Levels Layout approach. Layers 4-6 are shown. The red nodes represent leaf
nodes (e.g., genes); the light-blue nodes represent non-terminal nodes (e.g., terms). This view provides insight
into the distribution of leaf nodes in a specific DAG level. The orange nodes represent the calculated subgraph
(mapping).

tion” as there are no cycles. This allows us to place the
nodes into several layers, which provide some insight
into the topology of the GO graph as shown on the left
hand side of Figure 2. This method produces results
that have some similarity with the semantic substrates
approach presented by Shneiderman and Aris [25, 26].
However, the placing of the nodes in layers in our ap-
proach is solely based on the graph topology, while in
the semantic substrates approach, they are placed in re-
gions (resembling our layers) based on specific node at-
tributes. The layers are denoted by layer numbers and
small line segments in the GO view to give a cue to the
spatial area of the particular layers. Our GO data set
has a quite big number of unconnected nodes. In this
particular view, those unconnected nodes are placed in
layer number 0 as shown in Figure 2 on the left. We can
immediately notice that it is the most dense layer. We
have implemented two layering approaches that mainly
differ in the way how leaves and unconnected nodes are
positioned. These approaches are discussed in the fol-
lowing two paragraphs.

The first layering approach is called Levels Layout
and places the leaves (red node pixels) and non-terminal
nodes (light-blue node pixels) into their corresponding
layer depending on their graph-theoretic distance [27]
from the source node (root). Moreover, leaf nodes are
distributed in the left part of their assigned layer; all
other nodes are arranged on the right. This feature gives
us further insight into the topology of a specific layer by
gaining information about the distribution of leaf nodes
and non-terminal nodes on a particular layer. Figure 2
shows an example of this layout strategy in the GO view
on the left hand side, whereas Figure 3 displays the situ-
ation if the user zooms in the view. Although the result-
ing visualization looks to mimic bar charts, the number
of leaves cannot be precisely compared between differ-
ent layers, as the area the red node pixels (leaves) cover
is not proportional to the total number of leaves in each
layer. But, it is proportional to the sum of nodes in that
particular layer. In other words, the covered area de-
pends on the specific layer density. Unconnected nodes
are placed in the top layer number 0. The spatial ar-

5

Figure 4: GO View with visible (bundled) edges based on the Bottom Layout. The tool highlights the selected
node in layer 3 with a green circle.

rangement of the node pixels within a layer, except the
placing of leaves and non-terminal nodes in specific re-
gions, is random.

Our second layering approach Bottom Layout is simi-
lar to the first one in terms of placing the nodes into cor-
responding layers based on the distance from the source
node and random distribution of the node pixels within
each layer. However, all leaves are placed into one sin-
gle layer together with unconnected nodes at the bottom
of the GO view, i. e., in the layer with the highest num-
ber (Figure 4). Unconnected nodes can be filtered out
if necessary. This approach gives insight into the dis-
tribution of nodes among different layers without the
distraction of the leaves, thus enriching the perception
of the graph topology.

Edges are not shown by default in the initial view
since clutter will occur otherwise. They are shown op-
tionally in case the user selects a particular GO term
(non-terminal node) for further exploration. We also
implemented a simple edge bundling algorithm to re-
duce clutter, i. e., only paths outgoing from a selected
node that end up in the same layer are bundled together.
Figures 2 and 4 show the edge bundling of the cal-
culated subgraph in the GO view based on the Levels
Layout and Bottom Layout approaches. This facilitates
the differentiation of layers accessed by a specific node.
Furthermore, placing the nodes on layers makes the use
of arrows for showing the edge direction obsolete, as
the flow in longest path layered DAGs is from lower
layers to higher ones, i. e., from top to bottom in our

6

Figure 5: Sample cluster tree t. Yellow color represents
the calculated backbone.

case. Also, there cannot be an edge between terms in
the same layer.

3.2 Cluster Tree Visualization

We have to address similar problems with respect to the
Cluster Tree visualization as we had to do with the GO
representation. The tree is usually huge and any tradi-
tional type of visualization would not scale. The appli-
cation of conventional tree drawing algorithms would
produce rather high tree drawings or wide ones, if we
would choose to draw the entire binary tree as a den-
drogram. Therefore, we developed a novel visual rep-
resentation for the Cluster Tree. We have noticed that
the trees in our data sets at hand are particularly high
and unbalanced with not so deep branches (subtrees)
and decided to take this disadvantage of typically space-
consuming drawings and turn it into an advantage when
dealing with trees of such nature.

Figure 5 displays how a part of such a tree might
look like. We decided to use those nodes and edges

that form the longest path that connects all branches as
a “backbone” for our Spiral Tree Layout. We represent
this backbone as a spiral, thus preserving space and giv-
ing us a possibility to show the complete tree in one
view. We implemented this space-filling tree visualiza-
tion approach which is particularly suitable for the rep-
resentation of unbalanced binary trees. This prevents
us to perform repetitive scrolling to browse or navigate
the elements [28, 29]. The direction of the flow in the
spiral is counter-clockwise from the center towards out,
i. e., the closer the subtrees (see below) are to the center
of the spiral the closer to the Cluster Tree root they are.
For instance, the sample tree t in Figure 5 visualized by
using our Spiral Tree Layout would look like the one
shown in Figure 6.

Figure 6: Spiral Tree Layout of t. The drawing algo-
rithm was inspired by standard spiral layouts that are
mostly used to represent time-series, such as [30, 31].

The subtrees connected to the backbone are aggre-
gated as the data set is too large. Thus, we allow a
specific amount of abstraction in our visualization ap-
proach: each small box glyph in Figure 6 corresponds
to one subtree branching out from the backbone with
an angle of 135� from the vertical. The size of a box
glyph represents the number of nodes of the corre-
sponding subtree. For instance, the subtree marked with
the brown ellipse in Figure 5 is visualized by the box
glyph marked with the brown circle in Figure 6. The
highlighted subtree with five nodes is one of the largest
ones; therefore, the box in the spiral is proportionally
enlarged by the drawing algorithm. In the current ver-
sion of CluMa-GO, the space between the “spiral arms”
of the backbone is constant and not influenced by the
size of the subtrees. Therefore, the box representing the
subtree is normalized based on the maximum number
of elements a particular subtree has.

7

Figure 7: This screenshot shows the zoomed-in GO view (with the three layers 7-9) on the left hand side and the
Cluster Tree view with opened subtree widget on the right hand side.

This approach helps to identify interesting patterns
of distributions of subtree branches in the Cluster Tree.
For example, if we look at the Cluster Tree view in Fig-
ure 2, we notice that the biggest branches appear far
away from the root node of the tree. To support a deeper
analysis, the user can explore the details of each sub-
graph visualized in the spiral. This is done by clicking
on a box glyph. CluMa-GO displays then the tree vi-
sualization widget (Figures 9 and 10) as described in
Section 3.3. Here, the user has the choice between two
different dendrogram layouts. The mapping between
the two parts, GO DAG and Cluster Tree respectively,
is realized by using brushing techniques. These and
other interaction techniques are described in the follow-
ing subsection.

3.3 Interaction Techniques and Addi-
tional Views

Biologists browse the data set randomly to find or inves-
tigate interesting patterns, or have a specific GO term in

mind. They can either select or search for that specific
term in a list that is shown in a dialog box called from
the menu, or they can directly click on a particular node
in the GO view. A mouse-over action on a node will dis-
play the name of that node with the help of a tool-tip.
This supports the users to browse the GO and to select
a node for further exploration. The GO view displays
the nodes as single pixels as already explained earlier
in this paper. It is pretty hard to perceive a single high-
lighted pixel by using color coding only. Therefore, we
allow double-coding and draw a circle around the se-
lected node in the GO view, as seen in the third layer
of the GO view in Figure 4. This feature makes it also
easier to identify the layer the currently selected node
belongs to.

After the node has been selected by clicking, the sub-
graph consisting of all reachable nodes will be calcu-
lated. These related nodes, as explained in Subsec-
tion 4.1, will be highlighted in orange in the GO view.
Optionally, the edges of the subgraph will be shown too.
At the same time, the corresponding cluster subtree will

8

be highlighted with the same color in the Cluster Tree
view reflecting the selection made in the GO view. In
this way, the user can easily identify the mapping be-
tween both views by comparing the orange colored el-
ements. Note that the closer the selected node is to the
GO root, the larger the number of nodes which can be
accessed from that particular node (the root node of the
GO DAG, for instance, has access to all nodes of the
DAG). This means that if the root node pixel is clicked,
the complete DAG is selected—which makes no sense
usually. In such cases, clutter cannot be avoided. There-
fore, users can choose the option to disable the visual-
ization of edges if needed.

The user can also zoom in on a specific layer in the
GO view by left-click (Figures 3 and 7). CluMa-GO
replaces the GO view by the zoomed-in view with the
selected layer in the center of its neighbored layers.
In case layer 0 is selected, the view displays the first
three layers of the DAG; if the last layer is selected,
the last three layers are shown. In addition, it is pos-
sible to scroll up or down between three layers simul-
taneously. The edges are not shown in the zoomed-in
view, because a lot of edges from other layers might
go through and in consequence introduce clutter. How-
ever, the nodes remain highlighted, and since we deal
with a fixed amount of layers and magnified node pix-
els, it is easier to discover connections than in zoomed-
out mode. The zoom-in mode is particularly helpful
for analyzing different elements of the subgraph, as it
is easier to select and interact with bigger node repre-
sentations. In order to leave the zoom-in mode, the user
has to perform a right-click inside the view.

Figure 2 (right part) displays a Cluster Tree visual-
ization with a calculated subtree highlighted in yellow,
which was triggered by selection of a specific GO term.
We can see that this particular GO term covers most
of the backbone of the cluster tree. Some subtree box
glyphs are not highlighted, while others are only par-
tially highlighted. This is due to the fact that not all
nodes in a subtree might be mapped to the selected GO
term. The area of the highlight is proportional to the
number of the nodes mapped in that particular branch.
Figure 8 displays a cut-out of a Cluster Tree view in
order to provide a more detailed view.

Users can further examine these subtrees by clicking
on them. This opens a widget that shows the particu-
lar subtree in two optional layouts that users can select
based on their preference. They can view the subtree in
an “explorer view” (Figure 9) based on an HV-drawing
algorithm [32] or as a radial dendrogram (Figure 10)

Figure 8: Cut-out of a mapping in the Cluster Tree view.

similar to other dendrogram visualizations [33, 34]. The
subtree widget appears next to the selected subtree box
glyph. It is semi-transparent in order to show the con-
text of the area that it covers. In case the area covered
by the widget is important and interesting, the user can
grab the widget with the mouse and move it around.
Similar to the GO view, a mouse-over action shows the
name of the particular node of the tree through a tool-
tip. Additionally, users can select one of the nodes in
the widget to create a “reverse mapping”, i. e., parse and
highlight the particular subtree until the genes (leafs)
are reached and continue parsing and highlighting the
GO DAG until a common root in the GO is reached.

Detailed Mapping View After several discussions
with domain experts and feedback from visualization
experts, we decided to implement an additional view
where the explicit mapping is shown on demand based
on the idea presented in Figure 1. It is called Detailed
Mapping view and implies the use of traditional graph
drawing algorithms. As described earlier in this article,
showing the complete data set is not possible. There-
fore, we use this more detailed view for representing
the highlighted subgraph and subtree solely. However,
even if we only focus on the highlighted part of both
subgraphs, their size is still considerable. This is es-
pecially noticeable in the cluster subtree as most of the
selected GO terms produce subtrees with large back-
bones. This in return creates long strings of backbone
nodes. Showing all this nodes in a detailed view using
traditional tree drawing algorithms introduces a lot of
clutter.

Figure 11 shows a screenshot of the mapping cre-
ated by selecting amino acid catabolic process from the
GO view. The genes (red nodes) are placed in the cen-
ter of both graphs showing the shared nodes explicitly.

9

Figure 9: Subtree (branch) view. The more detailed
view of the selected branch (green box glyph) is visu-
alized by following a so-called HV-drawing algorithm.

The GO DAG subgraph is drawn on the left hand side
using a simple layered-based approach (the light-blue
nodes). The cluster subtree is visualized by a dendro-
gram (light-grey nodes). The edges are shown in orange
to correspond to the mapping in the main view. How-
ever in this screenshot, we see a number of blue edges
which represent long backbones as those nodes are not
shown in order to avoid clutter. The length of a blue
edge corresponds to the number of nodes in that partic-
ular part of the backbone, giving insight into the number
of nodes that have been hidden. This view is activated
on user’s request and can enforce the perception of the
topology of both subgraphs at the expense of clutter,
enhanced edge lengths and many edge crossings. But
then, it gives a more direct insight into the mapping.

4 Technical Issues

4.1 Architecture and Implementation
CluMa-GO was developed using the Java programming
language and Java OpenGL (JOGL) for visualization
and interaction. JOGL is a wrapper library that allows

Figure 10: Subtree (branch) view. The more detailed
view of the selected branch (green box glyph) is visual-
ized as a dendrogram.

OpenGL to be used in Java [35] and is the reference im-
plementation for Java Bindings to OpenGL (JSR-231).
To build the graphical user interface (GUI), we used
the Java Swing API. It provides a native look and feel
that emulates the visual appearance of several computer
platforms. JOGL is just a wrapper that uses correspond-
ing native libraries depending on the platform. Thus,
builds for our tool have to be made for all popular plat-
forms, such as Windows 32 and 64 bit versions, Mac OS
X 10.6, or similar. Every build contains the necessary
native libraries and Java libraries (jars).

An overview on the tool’s architecture is given in
Figure 12. The implementation is divided into several
modules specialized for various tasks. The IO module
implements data loading from .gml files. The data is
stored in an extended .gml file format, which contains
additional properties for nodes, such as the node la-
bel. The Graph Core module extends the JUNG graph
model [36] in order to fit it to our requirements. The im-
plementation of Swing GUI and OpenGL user interac-
tions is realized by the User Interaction module. The
Graph Visualization module and its submodules con-
tain all code for the whole visualization process, includ-
ing our own layout implementation, primitive drawing
abstraction, and program state machine.

10

Figure 11: This screenshot shows the Detailed Mapping view. On the left hand side, the selected subgraph of the
GO DAG is represented; the Cluster Tree is shown on the right hand side using a dendrogram layout. Both are
connected with genes: the red nodes in the center. Some edges are thicker and blue. As seen in the cut-out of the
screenshot, they represent a lot of backbone nodes which are hidden in order to avoid clutter.

Figure 12: Module architecture of CluMa-GO.

One of the most important modules of CluMa-GO
is Subgraph Extraction that contains the implementa-
tion of the subgraph/-tree calculation algorithm, see Al-
gorithm 1 for its pseudo-code. The algorithm uses two
separate graph data structures as input: a GO graph and

a cluster tree as well as a user-selected vertex within the
GO graph. Each vertex in both graphs has a unique la-
bel except the leaves. The algorithm should finally out-
put a GO subgraph and a cluster subtree. Extracting the
GO subgraph is done by employing a (non-recursive)
DFS approach starting from the user-selected vertex as
root. Afterwards, all leaves of the freshly computed GO
subgraph are parsed so that the mapping to the cluster
tree can be made. This is done be checking the labels
on both graphs as only the leaves of both graphs have
identical labels. At the same time, all connected ver-
tices from the current leaf up to the cluster tree root
are stored in a list. Then the edges between the ver-
tices are added. After this process has been repeated for
each leaf, a cluster subtree is produced containing a path
from each leaf node in the subtree to the root of cluster
tree. Next, we need to find the common subtree root
and remove the rest of the vertices (called root chain in
the pseudo-code) from the cluster tree root to the com-

11

Algorithm 1 Subgraph Extraction
Input: GO graph, Cluster tree, and selected GO vertex
Output: GO subgraph and Cluster subtree

1: // extract subgraph using non-recursive DFS starting from selected GO vertex as root
2: GO subgraph = extractSubgraph(GO graph, selected GO vertex);

3: // build a list of all leaves in GO subgraph
4: listOfLeaves = GO subgraph.getAllLeaves();

5: // collect all paths to the cluster tree root for all GO leaves
6: for all vertex in listOfLeaves do
7: // leaf labels are the same for both graphs, but the vertex objects are different
8: label = GO graph.getLabel(vertex);
9: leaf = Cluster tree.getVertexByLabel(label);

10: // get all connected vertices from the current tree leaf up to the cluster tree root
11: connectedV ertices = getVerticesFromLeaf(Cluster tree, leaf);

12: // add connectedV ertices to Cluster subtree and create edges
13: addVertices createEdges(Cluster subtree, connectedV ertices);
14: end for

15: // find lowest common subtree root and
16: // remove the vertices from the cluster tree root to the lowest common root
17: removeRootChain(Cluster tree, Cluster subtree);

Figure 13: The red nodes in the middle are shared be-
tween both the GO DAG (light-blue nodes) and the
Cluster Tree (grey nodes) (cp. Figure 1). The interac-
tively selected node is highlighted in green, from which
we traverse the graph (orange nodes) until we reach all
accessible leaves (red nodes with orange background).
The leaves are used to calculate a subtree of the Cluster
Tree (orange nodes in the right part of the figure).

puted subtree root. Figure 13 shows an instantiation of
the algorithm on a given small input example. Note that
“gaps” in the mapping might occur; an example is the

red leaf node between the two orange rectangles in the
background of Figure 13. Our tool and the source code
are freely available in a SourceForge repository [37].

4.2 Scalability
When dealing with data sets as presented in Section 2,
a number of issues need to be addressed. One of the
main challenges is to show the complete data set to
start the analysis process or to provide an overview. As
explained in the previous section, we can clearly see
that our prototype is able to visualize the complete data
set. And with the help of the described interaction tech-
niques, we can gain more insight into the data and per-
form the mapping between the GO subset and Cluster
Tree.

Another issue that arises during the work with our
prototype is its responsiveness. An important question
is if the system can handle all data and provide the users
with real-time interaction possibilities. CluMa-GO can
open and visualize both input files in three to five sec-
onds approximately. However, when clicking on the
GO root term, the complete subgraph and subtree has
to be calculated that involves the parsing of almost all
nodes from both data sets. It can take up to ten seconds

12

to be calculated on a standard PC (Core 2 Duo Intel pro-
cessor with 2.53 GHz). This is of course the worst case
scenario, and most of the nodes from the lower levels
respond immediately when selected. Nevertheless, we
have implemented a simple caching strategy that speeds
up the process significantly (around one second to high-
light the calculated subtree if the root node is chosen).
Once the user has selected a particular GO term, the
calculated mapping data are cached. So, the next time
a user selects the same node only the highlight occurs
as the calculation is stored in memory. To reduce the
memory usage for caching, we used a smart map from
the open source library Google Guava [38]. This map
allows to set a limit of stored elements together with
a setting of their life times. The parameter setting in
our tool currently corresponds to a storage of up to 100
subgraphs for the GO and Cluster Tree for about one
minute. If one of these limits is reached then the old-
est map element will be removed. Frequently used ele-
ments remain in the cache for a longer time.

5 Discussion
Ontologies and hierarchical clustering are both im-
portant tools in biology and medicine to study high-
throughput data. The presented tool supports the inter-
action between both analysis frameworks. An example
has been presented in Section 1.1 for the analysis of
transcriptomics data. As described there, a typical user
session would be browsing the data to investigate the
relation between functional annotation in the ontology
and behavioral grouping of gene activity in the cluster-
ing.

5.1 Additional Requirements
The development of CluMa-GO followed an iterative
process of discussion with domain experts and proto-
type development. The initial requirements were to
be able to have a combined visualization of an ontol-
ogy and an hierarchical clustering of one data set in
a compact view; and allow to search and browse in
this data. After the implementation of the initial proto-
type and subsequent discussions with domain experts,
more specific requirements could be derived. This in-
cluded on the one hand specific improvements of the
presented method, such as different representations of
subtrees (already implemented by HV-drawings and ra-
dial dendrograms), zooming within the GO DAG (al-

ready implemented by the zoomed-in view), a different
representation of more balanced trees (cf. discussion in
Section 5.2), and ways to visualize a direct mapping be-
tween a terminal GO DAG node and a cluster tree leave.

On the other hand, many requirements addressed
more general aspects for making such an approach eas-
ily usable for domain experts. This included direct im-
port of microarray data sets, representing additional in-
formation connected to parts of the clustering, more sta-
tistical analysis methods (like computation of the afore-
mentioned enrichment of ontology terms), and employ-
ment of different clustering algorithms or other ontolo-
gies. As our focus here is to present a novel method
for the visualization of mappings between ontologies
and cluster trees from a conceptual side, we focused on
requirements for specific improvements of the method.
One way to address the second type of requirements
would be to implement the visualization and interaction
method as extension to existing tools for the analysis of
biological data.

Figure 14: In this cut-out of the cluster tree, we assume
that the subtrees highlighted in green and blue are too
large to be abstracted into boxes.

13

Figure 15: Nested Spiral Tree Layout built based on the tree sample in Figure 14. The red circles show the roots
of the main tree (the circle in the center) and of the branches (i. e., the nested subtrees).

5.2 Balanced Trees

As stated in Section 3.2, our visualization of the Clus-
ter Tree is based on the premise of visualizing highly
unbalanced binary trees. Even though unbalanced trees
are common, there is a considerable amount of cases
where more balanced trees appear. At the current state,
our approach does not work well with such trees. For
instance, normalization of the sizes of the boxes repre-
senting the branches (subtrees) would be ineffective in
such circumstances as the ratio of the nodes among dif-
ferent subtrees would be to high. Moreover, this would
mean abstracting a lot of information which is against
our initial goal of showing most of the information in
a single view. Therefore we continued to design an
improved version of our spiral tree metaphor to cope
with more balanced binary trees. One possible solution
is to create something we call “Nested Spiral Trees”.
The idea is to draw smaller spirals instead of aggregat-
ing larger subtrees that pass over a certain threshold of
nodes into box glyphs (cf. Figures 14 and 15). How-
ever, this approach will introduce more unused spaces,
making the approach less space-filling. This conceptual
drawback of the spiral approach demands other ways to
visualize more balanced trees.

Again we sought inspiration from pixel-based
approaches, especially from the recursive pattern
metaphor [20, 21]. In the following, only the funda-
mental concept of a possible solution is presented, as
it has not been implemented into our tool. The basic
idea is similar to the original spiral tree metaphor, i. e.,
we will reuse the backbone approach. However, instead
of laying the backbone into a spiral, we will employ

a snake-like shape, such as the one typically used in a
recursive pattern. With this approach, called “Recur-
sive Pattern Trees”, we can create less space-expensive
nested subtrees. It is exemplified in the following.

Let us assume that the green and blue marked sub-
trees in Figure 14 are too big to be abstracted into a
box. If we extract the backbones of these subtrees, we
can create new spirals and embed them into a general
spiral view at the expense of much unused space. How-
ever, if a recursive pattern metaphor is used, it is possi-
ble to lower the space usage. Figure 16 shows the basic
idea how such a layout might look like. The tree root
is placed on the top-left position of the view instead of
the center. As in the original approach, subtrees are ag-
gregated based on their size. However, the direction
of the backbone resembles a snake-like metaphor, i.e.,
when the backbone reaches the end of the screen, then
it goes a step down and turns into the opposite direc-
tion and continues until reaching the end of view. The
same process is repeated again until the whole tree has
been parsed. Similarly to the spiral metaphor, we aggre-
gate the two initial branches (see Figure 14) into boxes.
By following the backbone in Figure 16, we see that
there are two subtrees connected to the backbone be-
fore a bigger green box. If a certain branch is large,
i. e., it has more nodes than a predefined threshold, this
particular branch will not be aggregated into a box. In-
stead, it will be displayed inside a bigger container us-
ing the same algorithm as for the entire Cluster Tree.
This means that the branches will be nested inside the
tree. So, the blue branch in Figure 16 corresponds to the
branch highlighted in blue in Figure 14. The same prin-

14

Figure 16: A new layout method based on recursive patterns in order to visualize more balanced cluster trees.
Here, root nodes are always located in the top-left corner of each container.

ciple is applied for the green branch. The next branch
starts in a new line/row to avoid cases where two nested
branches appear close to each other, similar to our ex-
ample. In consequence, some space is lost as the back-
bone will get too long, but the approach makes it easier
to follow and to find the location where the nested sub-
trees appear. After drawing the nested branches, the al-
gorithm continues aggregating the rest of the branches
that do not pass the threshold, as seen in Figure 16.

6 Conclusion and Future Work

We presented a new method for the combined visual-
ization of an ontology (represented as DAG) and a hi-
erarchical clustering (represented as tree) of one data
set. The proposed method interactively visualizes all
the data without scrolling, thereby presenting an com-
plete overview. It also allows for interactive selection
and navigation to explore the data. We have showed
that CluMa-GO is able to tackle the problem in our re-
search focus, i.e., the visualization and visual mapping
between two huge and conceptually different data sets
which have some part in common. However, there are
some improvements that should be performed in the fu-
ture.

The current state of the prototype does not provide
a way to visualize a direct mapping between a terminal
GO DAG node and a cluster tree leave. A simple way to
overcome this problem for one specific node is to high-
light the corresponding nodes in the GO view and/or
Cluster Tree view on mouse-over action. This could be

easily implemented as a part of our future work. Simi-
larly, the Detailed Mapping View does not offer a pos-
sibility to explore the nodes inside the aggregated back-
bone (cf. the blue edges in Figure 11). We will extend
this view by adding simple details-on-demand interac-
tion triggered by mouse click on a desired edge, or im-
plement more complex focus+context techniques in or-
der to explore such data, e. g. by using fish-eye lenses.

Our tool is designed to specifically visualize highly
unbalanced binary trees. Thus, it does not work well
with more balanced cluster trees. In Subsection 5.2,
we presented the conceptual design for the visualiza-
tion of such balanced trees. One of our next steps is to
implement this concept and test it to see how it copes
with such data. Further improvements of the presented
concept are also possible depending on feedback from
domain experts.

As explained in Section 3, the zoomed-in GO view
shows three levels at the same time while displaying
the subgraph by highlighting the nodes only. The edges
are omitted due to clutter problems that can occur since
edges from a higher level might go through the zoomed-
in view to nodes in the lower layers. It does not make
sense to show them, because we have no insight from
which layer those edges are coming from, nor to which
layer they are going to. However, an improvement is
possible by showing only edges between the three lay-
ers shown in the zoomed-in GO view. At the same time,
the edge bundling algorithm could also be improved.

Finally, both Gene Ontology and hierarchical clus-
tering are currently provided by the input files. This has
the advantage that different algorithms could be used,

15

for example, to compute the clustering. However for an
end-user tool, it would be helpful if the user can import
the data directly into the tool without such preprocess-
ing. One way to reach this goal would be the embedding
of our visualization into existing tools for the analysis of
biological data. By doing this, additional data provided
by such tools—such as statistical data or centroids—
could be integrated and represented in our approach.

Funding
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

Acknowledgments
The authors wish to thank Vladyslav Aleksakhin for im-
plementing the first version of CluMa-GO, Christian
Klukas for providing the data sets used in this work,
and Christian Klukas and Astrid Junker for their con-
structive comments.

References
[1] R. G. Cote, P. Jones, L. Martens, R. Apweiler,

and H. Hermjakob. The ontology lookup service:
more data and better tools for controlled vocabu-
lary queries. Nucleic Acids Research, 36:W372–
W376, 2008.

[2] The gene ontology, last accessed: 2012-04-25.
http://www.geneontology.org/.

[3] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,
H. Butler, J. M. Cherry, A. P. Davis, K. Dolin-
ski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.
Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C.
Matese, J. E. Richardson, M. Ringwald, G. M. Ru-
bin, and G. Sherlock. Gene Ontology: tool for the
unification of biology. Nature Genetics, 25(1):25–
29, 2000.

[4] The Gene Ontology Consortium. The Gene On-
tology project in 2008. Nucleic Acids Research,
36(36):D440–D444, 2008.

[5] Michael B. Eisen, Paul T. Spellman, Patrick O.
Brown, and David Botstein. Cluster analysis and

display of genome-wide expression patterns. Pro-
ceedings of the National Academy of Sciences,
95(25):14863–14868, 1998.

[6] T. Dwyer and F. Schreiber. Optimal leaf ordering
for two and a half dimensional phylogenetic tree
visualisation. In Proc. Australasian Symposium on
Information Visualisation, volume 35 of CRPIT,
pages 109–115. ACS, 2004.

[7] H. Fernau, M. Kaufmann, and M. Poths. Compar-
ing trees via crossing minimization. In The 25th
Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, volume
3821 of LNCS, pages 457–469. Springer, 2005.

[8] B. Venkatachalam, J. Apple, K. St. John, and
D. Gusfield. Untangling tanglegrams: comparing
trees by their drawings. IEEE/ACM Transaction
on Compututational Biology and Bioinformatics,
7(4):588–597, 2010.

[9] C. Scornavacca, F. Zickmann, and D. H. Huson.
Tanglegrams for rooted phylogenetic trees and
networks. Bioinformatics, 27 (ISMB):i248–i256,
2011.

[10] Ilir Jusufi, Andreas Kerren, Vladyslav Alek-
sakhin, and Falk Schreiber. Visualization of Map-
pings between the Gene Ontology and Cluster
Trees. In Proceedings of the SPIE 2012 Con-
ference on Visualization and Data Analysis (VDA
’12), SPIE 8294, pages 8294–20, Burlingame,
CA, USA, 2012. IS&T/SPIE.

[11] Chris North and Ben Shneiderman. A taxonomy
of multiple window coordinations. Technical Re-
port CS-TR-3854, University of Maryland, Com-
puter Science Department, College Park, USA,
1997.

[12] Jonathan C. Roberts. Exploratory visualization
with multiple linked views. In Alan MacEachren,
Menno-Jan Kraak, and Jason Dykes, editors,
Exploring Geovisualization. Elseviers, December
2004.

[13] Michael Himsolt. GML: A portable graph file for-
mat. Technical report, University of Passau, Ger-
many, 1997.

[14] Richard A. Becker and William S. Cleveland.
Brushing scatterplots. Technometrics, 29(2):pp.
127–142, 1987.

16

http://www.geneontology.org/

[15] Helwig Hauser, Florian Ledermann, and Helmut
Doleisch. Angular brushing of extended parallel
coordinates. In INFOVIS ’02: Proc. IEEE Sym-
posium on Information Visualization (InfoVis’02),
page 127, Washington, DC, USA, 2002. IEEE
Computer Society.

[16] Carsten Görg, Mathias Pohl, Ermir Qeli, and Kai
Xu. Visual Representations. In Andreas Kerren,
Achim Ebert, and Jörg Meyer, editors, Human-
Centered Visualization Environments, LNCS Tu-
torial 4417, pages 163–230. Springer, 2007.

[17] M. Kaufmann and D. Wagner. Drawing Graphs:
Methods and Models, volume 2025 of Lecture
Notes in Computer Science Tutorial. Springer,
1999.

[18] Jarke J. Van Wijk and Wim A. A. Nuij. Smooth
and efficient zooming and panning. In Proceed-
ings of the Ninth annual IEEE conference on In-
formation visualization, INFOVIS’03, pages 15–
22, Washington, DC, USA, 2003. IEEE Computer
Society.

[19] Andreas Kerren, Ilir Jusufi, Vladyslav Alek-
sakhin, and Falk Schreiber. CluMa-GO: Bring
Gene Ontologies and Hierarchical Clusterings To-
gether. Interactive Poster, IEEE Symposium on
Biological Data Visualization (BioVis ’11), Prov-
idence, RI, USA, 2011.

[20] Daniel A. Keim, Mihael Ankerst, and Hans-Peter
Kriegel. Recursive pattern: A technique for visu-
alizing very large amounts of data. In Proceed-
ings of the 6th conference on Visualization ’95,
VIS ’95, pages 279–286. IEEE Computer Society,
1995.

[21] Daniel A. Keim, Jörn Schneidewind, and Mike
Sips. Scalable pixel based visual data exploration.
In Proceedings of the 1st first visual informa-
tion expert conference on Pixelization paradigm,
VIEW’06, pages 12–24, Berlin, Heidelberg, 2007.
Springer-Verlag.

[22] Daniel A. Keim, Jörn Schneidewind, and Mike
Sips. Circleview: a new approach for visualizing
time-related multidimensional data sets. In Pro-
ceedings of the working conference on Advanced
visual interfaces, AVI ’04, pages 179–182, New
York, NY, USA, 2004. ACM.

[23] Daniel A. Keim. Designing pixel-oriented vi-
sualization techniques: Theory and applications.
IEEE Transactions on Visualization and Com-
puter Graphics, 6(1):59–78, January 2000.

[24] Cynthia A Brewer. ColorBrewer. http://

colorbrewer2.org/, 2nd edition, last ac-
cessed: 2012-04-26.

[25] B. Shneiderman and A. Aris. Network visualiza-
tion by semantic substrates. IEEE Transaction
on Visualization and Computer Graphics, 12(5),
2006.

[26] Aleks Aris and Ben Shneiderman. Designing se-
mantic substrates for visual network exploration.
Information Visualization, 6(4):281–300, Decem-
ber 2007.

[27] J. A. Bondy and U. S. R. Murty. Graph Theory,
volume 244 of Graduate Texts in Mathematics.
Springer, 3rd corrected printing edition, 2008.

[28] Brian Johnson and Ben Shneiderman. Tree-maps:
a space-filling approach to the visualization of hi-
erarchical information structures. In Proceedings
of the 2nd conference on Visualization ’91, VIS
’91, pages 284–291, Los Alamitos, CA, USA,
1991. IEEE Computer Society Press.

[29] John Stasko and Eugene Zhang. Focus+context
display and navigation techniques for enhancing
radial, space-filling hierarchy visualizations. In
INFOVIS ’00: Proc. IEEE Symposium on Infor-
mation Vizualization 2000, page 57, Washington,
DC, USA, 2000. IEEE Computer Society.

[30] W. Aigner, S. Miksch, W. Muller, H. Schumann,
and C. Tominski. Visual methods for analyz-
ing time-oriented data. IEEE Transactions on
Visualization and Computer Graphics (TVCG),
14(1):47–60, 2008.

[31] Christian Tominski and Heidrun Schumann. En-
hanced interactive spiral display. In Proceed-
ings of the annual SIGRAD Conference, Special
Theme: Interaction, SIGRAD ’08, pages 53–56.
Linköping University Electronic Press, 2008.

[32] G. Di Battista, P. Eades, R. Tamassia, and I. G.
Tollis. Graph Drawing: Algorithms for the Visu-
alization of Graphs. Prentice Hall, New Jersey,
1999.

17

http://colorbrewer2.org/
http://colorbrewer2.org/

[33] Roberto Therón. Hierarchical-temporal data visu-
alization using a tree-ring metaphor. In Andreas
Butz, Brian Fisher, Antonio Krüger, and Patrick
Olivier, editors, Smart Graphics, volume 4073 of
Lecture Notes in Computer Science, pages 70–81.
Springer Berlin / Heidelberg, 2006.

[34] Rodrigo Santamarı́a and Roberto Therón. Treevo-
lution: visual analysis of phylogenetic trees.
Bioinformatics, 25:1970–1971, August 2009.

[35] JogAmp. Home of the projects JOGL, JOCL
and JOAL, last accessed: 2012-04-26. http:

//jogamp.org/.

[36] Joshua O’Madadhain, Danyel Fisher, and Tom
Nelson. JUNG - Java Universal Network/Graph
Framework, last accessed: 2012-04-26. http:

//jung.sourceforge.net/.

[37] SourceForge. Find, create, and publish open
source software for free, last accessed: 2012-04-
26. http://sourceforge.net/.

[38] Google. Guava: Google Core Libraries
for Java 1.5+, last accessed: 2012-04-26.
http://code.google.com/p/guava-

libraries/.

18

http://jogamp.org/
http://jogamp.org/
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://sourceforge.net/
http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/

	Introduction
	Background and Related Work

	Properties of the Input Data
	Visualization Approach—CluMa-GO
	GO (DAG) Visualization
	Cluster Tree Visualization
	Interaction Techniques and Additional Views

	Technical Issues
	Architecture and Implementation
	Scalability

	Discussion
	Additional Requirements
	Balanced Trees

	Conclusion and Future Work

