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Introduction to Multivariate Network
Visualization

Andreas Kerren, Helen C. Purchase, and Matthew O. Ward

Information Visualization (InfoVis) research focuses on the use of techniques
to help people understand and analyze data. In particular, it considers how
abstract data (i.e., without correspondence to the physical world) can best be
visually represented. A variety of di↵erent abstract data types are addressed
in InfoVis research (e.g., numerical, ordinal, categorical [29]), all of which
can be arranged in di↵erent ways: for example, in linear, tabular, or network
form. Common representations of statistical data (e.g., pie charts, bar charts,
or scatter plots) are all visualizations of abstract numerical data.

A “multivariate network” (MVN) is an abstract data type that provides
particular challenges for the information visualization research community. It
permits the representation of complex relational data (stored in the form of a
network) as well as the association of attributes with that data. The attributes
themselves may use a range of di↵erent abstract data types.

A MVN therefore consists of a set of objects, each of which has informa-
tion associated with it. In addition, the objects are connected to each other
in a network that represents the relationship between the objects. Further
complexity is added when information is also associated with the inter-object
relationships themselves. For example, a social network representation may
consist of people (the objects), each of which has information associated with
them (their age and post code). Friendship relationships between the people
form the network, with additional information about each friendship between
two people being stored (e.g., the last time they communicated with each
other or how long they have known each other).

In InfoVis terms, the objects in the network are called nodes or vertices,
the relationships between the objects are called links or edges, the network is
mostly called a graph, and the information associated with the objects and
relationships are called attributes, features, dimensions, or properties.

MVNs prove particularly challenging for InfoVis researchers because of
the wealth, richness and variety of the information that can be stored in
them. Any number of attributes can be associated with nodes and edges,
and nodes can be associated with any number of other nodes. Depicting all
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this information in visual form so as to help people understand it is a clear
challenge. In many cases, given the limits of human perceptual and cognitive
abilities, it is impossible to clearly show all the information at once in a useful
form. Such problems may be addressed by prior knowledge of the user tasks
to be performed, by providing facilities for interacting with the data, or by
a clever choice of representation. These problems are of course made even
more complex if the information changes over time, if there is more than one
network, or if the network is particularly large.

Despite the challenges of depicting MVNs, their existence is common, and
they are (and have been) used to represent abstract domain knowledge for
many years (for example in software engineering, biology, evolution, environ-
mental sciences, meteorology, and sociology). The popular educational tool
of “concept mapping” demonstrates the wide range of applications to which
MVNs can be applied [23]. Studying ways in which computational techniques
may be used to help with the e↵ective visualization of MVNs is therefore an
area of study with wide applicability as well as the potential to be highly
useful in other research areas.

In this chapter, we define MVNs formally, introduce and classify existing
related InfoVis research, and provide a brief summary of the rest of the book.

1.1 Multivariate Networks: Definitions and Terminology

A (simple) graph G = (V,E) consists of a finite set of vertices (or nodes) V
and a set of edges E ✓ {(u, v)|u, v 2 V, u 6= v}. Based on this, a variety of
general graph properties and characteristics can be found in the literature;
the most important ones are introduced in the following list (cf. also the book
chapter [18] or the books [7, 14]).

• An edge e = (u, v) with u = v is called a self-loop.
• If an edge e exists several times in E then it is called a multiple edge.
• A simple graph has no self-loops and no multiple edges.
• The neighbors of a node v are its adjacent nodes.
• The degree of a node v is the number of its neighbors.
• A directed graph (or digraph) is a graph with directed edges, i.e., (u, v)

are ordered pairs of nodes.
• A directed graph is called acyclic if it has no directed cycles, i.e., there is

no directed path where the same node is visited twice.
• A graph is connected if there is a path between u and v for each pair (u, v)

of nodes.
• A graph is planar if it can be drawn in the 2D plane without intersections

of edges (edge crossings).

In contrast to the above definition of a simple graph, a multivariate net-
work N consists of an underlying graph G plus n additional attributes
A = {A1, . . . , An

} that are attached to the nodes (and/or edges). For node
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attributes, A
i

represents a column in a table of attributes A = (a
ji

) (j =
1 . . . |V | ; i = 1 . . . n) and contains one attribute value per node (similar defi-
nition for edges). Thus, au = (a

u1, . . . , aun) describes all attribute values for
node u given that there is no missing data.

Also in network theory, researchers have developed a set of useful mea-
surements and metrics that can be used to get an impression about the most
important characteristics of the graph topology such as central actors in a
social network [22]. Those measures can also be applied to multivariate net-
works. Community analysis based on specific clustering techniques is one such
approach. Another example are so-called network centralities, i.e., measures
that quantify how important a node or edge in the network is. More formal,
a network centrality C is a function that assigns a value C(u) to a node
u 2 V of a given graph G = (V,E). This function supports centrality com-
parisons according to their importance, i.e., u is more important than v i↵
C(u) > C(v) [8, 20]. A simple example of a network centrality is the degree
of a node in an undirected graph.

1.2 Existing Visualizations

In the following, we briefly highlight the most important visualization tech-
niques for arbitrary multivariate graphs/networks, i.e., we do not consider
special cases such as the visualization of hierarchies (trees) or directed acyclic
graphs (DAGs). The interested reader is referred to the vast amount of liter-
ature on these topics as for instance [11, 30].

Before we continue our discussion on multivariate network visualiza-
tions, we turn the reader’s attention to standard techniques for the visual-
ization of multivariate data itself. Multivariate (or multidimensional) data
sets can mostly be described as data tables with n data objects and m at-
tributes/features, i.e., for each object exists an attribute vector with m di-
mensions. The attribute values can be classified—for instance—into nominal,
ordinal, or quantitative. In practice, we often have a large amount of data
objects and many attributes with di↵erent types. Finding a suitable visual
representation is thus challenging, and the right choice might depend on fur-
ther parameters like application domain, integration into a larger visualization
environment, or support of specific interaction techniques. In general, visual
mappings for multivariate data can roughly be categorized into point-based ap-
proaches (e.g., scatterplot matrices [6], projection methods like MDS [21, 34],
etc.), axis-based approaches (parallel coordinate plots [10], Kiviat diagrams [3],
etc.), icon-based approaches (Cherno↵ faces [5], stick figures [24], etc.), and
pixel-based approaches (e.g., recursive patters [15], pixel bar charts [16], etc.).
There are many good textbooks that provide a good overview of those meth-
ods; we recommend the books of Spence [29], Kerren et al. [19], and Ward et
al. [31].
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A View on Graph Drawing

Traditional graph drawing (GD) methods compute a 2D/3D layout of the
nodes and the edges, mainly based on node-link diagrams [32]. They play a
fundamental role in network visualization. Particular graph layout algorithms
can give an insight into the topological structure of a network if properly
chosen and implemented. The graph readability is a↵ected by quantitative
measurements called aesthetic criteria [7]. Thus, graph drawing generally deals
with the ways of drawing graphs according to the set of predefined aesthetic
criteria [4]. These criteria are often contradictory, and problems which aim to
optimize the criteria are often NP-hard. Therefore, many GD algorithms are
heuristics. For the sake of completeness, we want to note that there are also
so-called space-filling methods that try to solve some conceptual problems of
node-link diagrams, such as the high space consumption or edge crossings.
Matrix displays fall into this category (like the approach proposed in [1]).
These visualizations represent a graph directly via its adjacency matrix, where
a matrix element (i, j) represents the existence of an edge between the two
nodes i and j. A disadvantage of matrices is that the perception of the graph
topology is depending of the node order in the matrix.

In both visual representations (i.e., node-link and matrix displays), mul-
tivariate data can be integrated in various ways. For instance in node-link
diagrams, multivariate glyphs that replace the node representations (usually
a dot or circle) can be used to show data attached to nodes; edge attributes
can be represented by di↵erent link colors, thicknesses, labels, or edge shapes.
In matrix representations, the cells can be color-coded or be replaced by small
icons to show edge attributes; node attributes might be shown as colored node
labels, for instance. Usually, all mentioned e↵orts to integrate multivariate at-
tributes into network representations do not scale well and get easily cluttered.
The next subsection provides a more detailed classification of techniques which
go beyond the traditional graph drawing approaches.

Classification of Approaches

Good drawing algorithms as previously described cannot solely solve the prob-
lem of MVNs. There are several reasons for this statement. First, the most
traditional graph drawings do not scale well, i.e., they are not able to rep-
resent huge data sets with many thousands of nodes and/or edges. Second,
additional multivariate data cannot be intuitively embedded into a standard
drawing. The InfoVis community has tried to address those issues by visualiza-
tion approaches that provide filtering and interaction possibilities in order to
reduce the number of graph elements under consideration as well as by meth-
ods to visually analyze attributes in context of the underlying graph topology.
According to Jusufi [12], several approaches can be found in the literature that
o↵er solutions for the problem of visualizing multivariate networks: multiple
and coordinated views, integrated approaches, semantic substrates, attribute-
driven layouts, and hybrid approaches.
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Multiple and coordinated views: Solutions in this category combine several
views and present them together. This strategy allows the user to choose
the most powerful visualization techniques for each specific view and data
set [9, 25]. As an application example, we highlight the work of Shannon
et al. [27]. Their approach consists of two distinct views: one view shows a
parallel coordinate approach for the visual representation of the network
attributes, and the other view displays a traditional node-link drawing of
a graph. The tool is equipped with a variety of visualization and interac-
tion techniques; both views are coordinated by linking and brushing [29]
techniques. The drawback of multiple views is that they split the displayed
data because of the spatial separation of the visual elements.

Integrated approaches : To provide a combined picture, attributes and the un-
derlying graph can be displayed in one single view. “Integrated views can
save space on a display and may decrease the time a user needs to find out
relations; all data is displayed in one place.” [9]. In Borisjuk et al. [2], small
diagrams (e.g., bar charts) are employed instead of representing the nodes
as simple circles, dots, or rectangles. Each diagram shows experimental
data that is related to the regarded node. This approach provides a view
of all available information, but the embedding of the visualizations into
the nodes consumes a lot of space. This issue may a↵ect the readability of
the network due to the visual clutter that may appear when the number
of nodes and the attributes is high [17]. However, the problem of space
usage and additional clutter can be alleviated by interaction techniques.

Semantic substrates: In order to further avoid clutter in multivariate network
visualizations, some researchers realized the idea of so-called semantic sub-
strates that “are non-overlapping regions in which node placement is based
on node attributes”: Shneiderman and Aris [28] introduced this idea and
combined it with sliders to control the edge visibility and thus to ensure
comprehensibility of the edges’ end nodes. Their tool e�ciently improves
the situation of visual clutter that happens with large MVNs. However,
one conceptual drawback of such approaches is that the underlying graph
topology is not (completely) visible.

Attribute-driven layouts: Those layouts use the display of the network ele-
ments to present insight about the attached multivariate data instead of
visualizing the graph topology itself. In contrast to semantic substrates,
this technique does not necessarily place the nodes into specific regions.
Instead, it controls the placement of a node in the graph layout by consid-
ering the node’s attributes. An example is PivotGraph [33] which shows
the relationships between (node) attributes and links within a 2D grid-
layout. This concrete approach scales well for some situations because of
the inherent node aggregation (nodes on the same grid position share the
same attribute values) but is restricted to discrete attribute values and
only two attribute dimensions.

Hybrid approaches : They combine at least two of the previously discussed
techniques. The most common combinations are multiple coordinated
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views with any of the integrated approaches. For instance, Rohrschnei-
der et al. [26] integrate additional attributes of a biological network inside
the nodes and edges. The authors also use other visual metaphors for
creating multiple coordinated views to show time-related data of the net-
work. Another hybrid approach is the JauntyNets tool [13] which combines
multiple coordinated views with an attribute-driven layout.

1.3 Outline of this Book

The book is divided into two parts. The first three chapters (Chaps. 2-4)
present three application domains in which multivariate networks are com-
monly used: software engineering, social networks and the life sciences. Writ-
ten by experts in the three respective fields, these chapters describe how mul-
tivariate networks play a crucial role in the study of the comprehension of
programs for the purposes of maintenance and evolution (Chap. 2), the anal-
ysis of personal and social networks defined by a wide variety of relationships
(Chap. 3), and the exploration and analysis of biological data at several levels
of detail (Chap. 4). Not only do these chapters describe the use of multivariate
networks in these domains, they also consider how these networks can be ef-
fectively and appropriately visualized so as to support domain-specific tasks,
and discuss the challenges facing these three rapidly evolving fields.

The second part of the book covers a range of topics associated with the
visualization and use of multivariate networks, focussing first on fundamental
visualization aspects (tasks, interaction, and representation), and then ad-
dressing broader issues (time, multiple networks, and large networks). Chap-
ter 5 presents a new framework of tasks specifically associated with multi-
variate networks, based on existing taxonomies of general visualization tasks
and simple graph-reading tasks. These multivariate network tasks are shown
to be composed of lower-level visualization tasks, and are then illustrated
with domain-specific examples. Chapter 6 highlights the fact that e↵ective
completion of user tasks when using a visual representation requires inter-
action, allowing the information landscape to be navigated, and more of the
information to be perceived. It describes the range of di↵erent methods of in-
teracting with multivariate networks, as well as guidelines for novel interaction
techniques. Chapter 7 focuses on the means by which multivariate networks
can be visually represented—beyond the traditional node-link method—by
proposing and discussing a range of alternative (and novel) visual metaphors
inspired by nature, geography or manufactured objects. It concludes with a
gallery of potential new metaphors.

The important issue of time is covered in Chap. 8. This chapter provides
essential definitions for temporal multivariate networks, and shows how two
applications (biology and social networks) relate to a structure-behaviour-
evolution model originally proposed for characterizing temporal networks in
software engineering. A survey of existing visualization methods for tempo-
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ral networks is presented. The heterogeneous networks chapter (Chap. 9) is
primarily concerned with multivariate networks that are associated with each
other at di↵erent levels and at di↵erent scales, and demonstrates the concepts
with examples from the three application domains of biology, social sciences,
and software engineering. The challenges of visualizing such linked networks
are discussed. The final chapter (Chap. 10) considers the ever-present visu-
alization challenge of scalability—what to do when the networks are so large
that they cannot be displayed e↵ectively. Based on considerations of cogni-
tive and architectural limitations, suitable visualization approaches for large
networked data sets are explored, and their e↵ectiveness discussed.
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